———— МЕХАНИКА ——

УДК 621.452.225

ИНИЦИИРОВАНИЕ ГОРЕНИЯ КЕРОСИНА В СВЕРХЗВУКОВОМ ПОТОКЕ ВОЗДУХА ПАКЕТОМ ГАЗОДИНАМИЧЕСКИХ ИМПУЛЬСОВ

П. К. Третьяков

Представлено академиком РАН В.А. Левиным 17.05.2019 г.

Поступило 25.04.2019 г.

Предложен способ и экспериментально подтверждена возможность его реализации для инициирования горения керосина в сверхзвуковом потоке воздуха в части камеры сгорания (КС) постоянного сечения. Режим интенсивного горения реализуется с применением пакета импульсов переменной энергии и сохраняется при отключении воздействия после организации горения в расширяющейся части КС. *Ключевые слова*: сверхзвуковой поток, инициирование горения, камера сгорания, импульсно-периодическое воздействие, пакет газодинамических импульсов, полнота сгорания.

DOI: https://doi.org/10.31857/S0869-56524893250-253

Интерес к организации горения керосина в сверхзвуковом потоке воздуха возник в связи с возможным применением углеводородного топлива в ПВРД для полёта летательных аппаратов (ЛА) со скоростью, в 5-6 раз (и более) превышающую скорость звука. Однако углеводородные топлива имеют сравнительно низкие скорости и узкие концентрационные пределы устойчивого горения по сравнению с водородом (реальность использования которого подтверждена в лётных испытаниях), поэтому для успешного применения требуется создание надёжных условий, обеспечивающих необходимое качество смешения, инициирование горения и высокую полноту сгорания. Известные экспериментальные исследования [1, 2] свидетельствуют о трудностях реализации высокой полноты сгорания, достижение которой невозможно без существенных гидравлических потерь. В работах [3-6] предложен и экспериментально реализован новый способ организации рабочего процесса, в котором по тракту двигателя после воздухозаборника в изоляторе (канале постоянного сечения) сохраняется сверхзвуковая скорость потока. Торможение до числа М ≈ 1,0 в конце его достигается за счёт организации интенсивного (вплоть до "преддетонационного" [7]) режима выгорания части топлива в "псевдоскачке". Остальное необходимое для полёта ЛА топливо сгорает в канале переменного сечения. Режим интенсивного горения возбуждается импульсно-периодическим газодинамическим воздействием на структуру течения в канале. Генератором может быть клапан, работающий на воздухе для создания пакета газодинамических импульсов заданной частоты, формы, энергии и длительности. Этот режим характеризуется малой протяжённостью зоны горения и высокой полнотой сгорания, а также возможностью сохранения стабильного горения при отключении внешнего воздействия после организации горения в расширяющейся части камеры сгорания (КС).

Выполненные на модельных КС (осесимметричных и плоских, см. [3-5, 8]) экспериментальные исследования с водородом и этиленом в качестве топлива подтвердили возможность реализации интенсивного режима горения и его сохранения при отключении воздействия. В [9] приведены особенности динамики изменения давления в КС при горении этилена. После воспламенения на некотором расстоянии от места подачи при включении генератора импульсов режим горения интенсифицируется. Подбором энергии в импульсе, его длительности, формы и скважности можно управлять положением области интенсивного горения в КС. В [5] для параметров потока, соответствующих полёту ЛА с числом Maxa M = 6,0 в осесимметричной модельной КС, проведены поисковые эксперименты по горению керосина. Выполненная серия экспериментов с воздействием пакетом импульсов постоянной энергии показала возможность влияния на инициирование процесса.

Задачей исследования является поиск параметров пакета импульсов, обеспечивающих стабильность устойчивого воспламенения и интенсивного горения, а также условий сохранения этого режима при отключении внешнего воздействия после органи-

Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской Академии наук, Новосибирск E-mail: paveltr@itam.nsc.ru

зации горения в расширяющейся части КС. Приводятся результаты, полученные в осесимметричных КС переменной геометрии, которые подтверждают возможность осуществления устойчивого режима горения керосина в сверхзвуковом потоке.

Схема одной из испытанных КС приведена на рис. 1. Параметры потока соответствовали полёту ЛА с числом Маха M = 6,0 (температура торможения ≈1650 К, скорость потока перед изолятором $M \approx 2,2$). Керосин подавался по оси (см. позицию *K* на рис. 1) КС через охлаждаемый водой инжектор с форсункой диаметром 0,6 мм.

Газодинамические импульсы от генератора (ГИ) вводились в конце участка постоянного сечения КС. Горение в канале с внезапным расширением осуществлялось после подачи водорода H_2 через 24 отверстия диаметром 1,5 мм перед входом в канал (рис. 1). В процессе эксперимента регистрировалось распределение давления P_i вдоль КС.

Циклограмма эксперимента представлена на рис. 2. Она отражает временную последовательность проведения эксперимента после установления параметров воздушного потока. Сначала подаётся керосин, затем вводится пакет импульсов, и через определённое время включается подача водорода. На циклограмме по вертикали отложено давление в соответствующих измерительных устройствах. Водород был выбран как наиболее удобное топливо (с точки зрения простоты) для организации горения в расширяющейся части КС.

Следует отметить, что после большого количества проведённых экспериментов была определена форма пакета импульсов, особенность которой связана с развитием процесса воспламенения и реализацией пульсирующего квазистационарного режима интенсивного горения керосина. Как следует из циклограммы, пакет содержит импульсы с уменьшающейся энергией.

Импульсы с высокой энергией вызывают воспламенение и развитие процесса горения, а импульсы с энергией, уменьшенной примерно в три раза, поддерживают установившийся пульсирующий режим горения. Об этом свидетельствуют результаты изменения давления вдоль КС, представленные на рис. 3. Подача керосина в КС не сказывается на изменении давления, что свидетельствует об отсутствии в ней процесса горения. На фотографии прозрачного участка (см. фото 1) видна подсвеченная дугой плазмотрона (подогревателя воздуха) струя керосина. Распределение давления (отнесённое к давлению в форкамере $P_{\rm db}$) за период осреднения 2 (рис. 2 и 3) характерно для псевдоскачка и отвечает установившемуся пульсирующему режиму горения в КС. Фото 2 подтверждает, что начало горения на-

Рис. 1. Принципиальная схема камеры сгорания. *1* — сопло, *2* — прозрачная вставка, *3* — канал постоянного сечения, *4* — канал с внезапным расширением.

Рис. 2. Циклограмма проведения эксперимента. *1* — керосин, *2* — пакет импульсов, *3* — водород, *4*—7 — характерные временные интервалы, в которых усреднялось распределение давления вдоль камеры.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 3 2019

Рис. 3. Распределение относительного давления вдоль камеры сгорания: 1 - подача керосина в камеру при выходе на расчётный режим течения (фото 1); 2 - стационарный пульсирующий режим горения при воздействии пакетом импульсов (фото 2); 3 - режим при воздействии пакетом импульсов и при горении водорода в канале с внезапным расширением (фото 3); 4 - режим горения при отключении генератора импульсов. Осреднение за период $\Delta \tau$, с: 7,30–7,40 (1); 7,75–7,80 (2); 8,35–8,40 (3); 8,75–8,85 (4).

чинается на некотором расстоянии от сопла (за прозрачным участком).

При подаче водорода его горение в расширяющей части КС в сочетании с воздействием импульсов приводит к перемещению интенсивного горения навстречу потоку. Это хорошо видно по появлению излучения из прозрачного участка (рис. 3, фото 3) и смещению псевдоскачка против потока. Горение водорода вызывает дополнительное гидравлическое сопротивление, которое приводит к наблюдаемому изменению в распределении давления по длине КС (рис. 3, кривая 3). При отключении подачи пакета импульсов (рис. 3, кривая 4) интенсивный режим горения сохраняется. Распределение давления на участке постоянного сечения совпадает с распределением при воздействии пакетом импульсов на режиме без подачи водорода.

Необходимо отметить, что был поставлен эксперимент, в котором полностью воспроизведены параметры в КС, но не было воздействия пакетом импульсов. При подаче керосина горение водорода не приводило к интенсивному режиму горения. В заключение можно сделать вывод, что так же, как для использования в качестве топлива водорода и этилена, для керосина подтверждена возможность реализации интенсивного режима горения в части КС постоянного сечения с применением пакета импульсов переменной энергии и его сохранение при отключении воздействия после организации горения в расширяющейся части КС.

Источник финансирования. Работа выполнена при поддержке РФФИ, проект № 17–08–00183.

СПИСОК ЛИТЕРАТУРЫ

- Карасев В.Н., Левин В.М., Волощенко О.В., Зосимов С.А., Николаев А.А. // Труды ЦАГИ. 2015. В. 2736. С. 35–43.
- Александров В.Ю., Кукшинов Н.В. // ФГВ. 2016. Т. 52. № 3. С. 32–36.
- Третьяков П.К., Забайкин В.А., Прохоров А.Н. Высокоскоростной ПВРД с пульсирующим режимом запуска // Сб. тр. XI Всеросс. съезда по фундаментальным проблемам теоретической и прикладной механики. Казань, 20–24 августа 2015 г. Казань, 2015. С. 3778–3780.
- Третьяков П.К. Некоторые особенности формирования тракта ГПВРД// Сб. тр. 6-й Всеросс. науч. конф. с междунар. участием им. И.Ф. Образцова и Ю.Г. Яновского "Механика композиционных материалов и конструкций, сложных и гетерогенных сред". Т. II. 16–18 ноября 2016 г. М., 2016. С. 26–33.
- Третьяков П.К., Крайнев В.Л., Постнов А.В., Тупикин А.В. Способ перехода работы ПВРД на режим ГПВРД // АКТО: Всеросс. научно-практич. конф. с международным участием. Материалы докл. Т. 1. 8–10 августа 2018 г. Казань, 2018. С. 291–295.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 3 2019

- Третьяков П.К., Прохоров А.Н. Сверхзвуковой прямоточный воздушно-реактивный двигатель с пульсирующим режимом запуска (СПВРД с ПРЗ) и способ его работы. Патент RU 2651016.
- Третьяков П.К. Преддетонационный режим горения (к реализации в высокоскоростном ПВРД) // В сб.: Материалы XI Междунар. конф. по неравновесным процессам в соплах и струях (NPNJ'2016). Московский авиационный институт (национальный исследовательский университет). 2016. С. 154–157.
- Abashev V.M., Korabelnikov A.V., Kuranov A.L., Tretyakov P.K. Hypersonic Hydrocarbon Fuel Vehicle with M = 6+ // HiSST: Int. Conf. on High-Speed Vehicle Science Technology (Moscow, Russia, November 26–29, 2018): Proceedings. № 2018 2240912. S. I, 2018. P. 1–10.
- Tretyakov P.K., Krainev V.L., Lazarev A.M., Postnov A.V. Peculiarities of Organization of Effective Hydrocarbon Fuel Combustion in Supersonic Flow // XIX Int. Conf. on the Methods of Aerophysical Res. (ICMAR2018, Novosibirsk, Russia, August 13–19, 2018): AIP Conf. Proc. V. 2027. № 1. S. 1. 2018. 030029(6) p.

INITIATION OF KEROSENE COMBUSTION IN SUPERSONIC AIR FLOW BY A PACKAGE OF GAS-DYNAMIC PULSES

P. K. Tretyakov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Presented by Academician of the RAS V.A. Levin May 17, 2019

Received April 25, 2019

A technique has been proposed and the possibility of its realization for the initiation of kerosene combustion in supersonic air flow in part of the combustion chamber (CC) of a constant cross section has been confirmed. The intense combustion regime is realized with the use of a package of pulses of variable energy and is preserved at a switch-off of the action after the combustion arrangement in the CC diverging part.

Keywords: supersonic flow, combustion initiation, combustion chamber, pulse-periodic effect, the package of gas-dynamic pulses, the completeness of combustion.