——— ГЕОХИМИЯ =

УДК 552.331.4 + 553.493.6 + 550.93

U–Pb-BO3PACT ЗЁРЕН СФЕНА, ПЕТРОХИМИЧЕСКИЕ, МИНЕРАЛОГИЧЕСКИЕ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ЩЕЛОЧНЫХ ПОРОД МАССИВА БОГДО (АРКТИЧЕСКАЯ СИБИРЬ)

Академик РАН Н. Л. Добрецов¹, С. М. Жмодик^{1,2,*}, Е. В. Лазарева¹, А. В. Толстов^{1,3}, Д. К. Белянин^{1,2}, О. Н. Сурков¹, Н. Н. Добрецов¹, Н. В. Родионов⁴, С. А. Сергеев⁴

Поступило 21.08.2019 г.

На севере Сибирской платформы, восточнее Анабарского щита, известно несколько выявленных массивов щелочных пород с карбонатитами: Томторский, Богдо, Промежуточный, а также прогнозируемых по геофизическим данным Буолкалах, Чюэмпэ, Уэле, образующих крупную щёлочно-карбонатитовую провинцию. Получены первые данные о составе щелочных пород массива Богдо, которые соответствуют группе фельдшпатоидных пород основного состава: рисчорритам, биотит-эгириновым либенеритовым сиенитам, карбонатизированным, с симплектитами и нефелин-полевошпатовыми агрегатами, псевдолейцитовым нефелиновым сиенитам. Из различных типов пород массива Богдо выделены зёрна сфена и определён с помощью вторично-ионного микрозонда SHRIMP-II их U–Pb-возраст. Рассчитанный U–Pb-возраст соответствует 394,4 \pm 3,2 млн лет, что близко к возрастному этапу, установленному для массива Томтор, и к возрасту пород Кольской щелочной провинции. Одной из причин проявления щелочного плюмового магматизма на этой территории может быть влияние периферической зоны Africa Large Low Shear Velocity Province ("Tuzo") в девонскую эпоху на Балтику и Сибирь.

Ключевые слова: фельдшпатоидные породы, массив Богдо, рисчорриты, либенеритовые и псевдолейцитовые сиениты, U–Pb-возраст, сфен, Арктическая Сибирь.

DOI: https://doi.org/10.31857/S0869-56524893281-285

На севере Сибирской платформы, восточнее Анабарского шита, известно несколько выявленных массивов щелочных пород с карбонатитами: Томторский, Богдо, Промежуточный, а также прогнозируемых по геофизическим данным Буолкалах, Чюэмпэ, Уэле, образующих в целом достаточно крупную щёлочно-карбонатитовую провинцию. Массивы располагаются среди известняков, доломитов, терригенных метаморфизованных пород NP₁-NP₃возраста и перекрываются континентальными (Р-возраста), морскими (Ј-возраста) и рыхлыми (Q-возраста) отложениями. Положение массивов контролируется меридиональной рифтогенной структурой — Уджинским сводом — и пересекающими её трансформными разломами. На теневых моделях рельефа и спектрозональных космических снимках положение Томторского и Богдинского

¹ Институт геологии и минералогии им. Соболева Сибирского отделения Российской Академии наук, Новосибирск

³ НИГП АК АЛРОСА, Мирный, Республика Саха (Якутия) ⁴ Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Санкт-Петербург *E-mail: zhmodik@igm.nsc.ru массивов подчёркивается кольцевыми структурами, осложнёнными разломными зонами субширотного (Томторский массив) и северо-восточного направлений (массив Богдо). Центральная часть массива Богдо примерно совпадает с геологическим центром крупной кольцевой структуры. В магнитном и особенно гравитационном полях массивы выделяются положительными округлыми аномалиями.

Массив Богдо расположен в 20–40 км на север от наиболее крупного Томторского массива. Сведения о массиве Богдо крайне фрагментарны. Возраст его определён К—Аг-методом для нефелиновых сиенитов, ювита, мельтейгита, биотита и калишпата — от 338 до 421 млн лет. Скорректированное на возраст значение ⁸⁷Sr/⁸⁶Sr равно 0,7043 и сопоставляется с фоидолитами Томторского массива [1, 2]. Данные о минералого-геохимических особенностях и возрасте щелочных массивов представляют значительный интерес с точки зрения обоснования масштабов распространения щелочного магматизма и оруденения томторского типа.

В плане массив Богдо имеет форму овала, размерами около 7—8 км и характеризуется концентрически-зональным, слабо асимметричным строением (рис. 1). Массив Богдо может быть отнесён к фор-

² Новосибирский национальный исследовательский государственный университет

мации ультраосновных щелочных пород и карбонатитов. По данным геологического картирования периферическая часть массива выполнена скарнированными, фенитизированными и мраморизованными известняками. В центральной части массива выделяется блок кальцитовых карбонатитов. Основная площадь массива представлена нефелиновыми сиенитами и ювитами, среди которых в виде полукольцевых участков распространены породы якупирангит-ийолитовой серии и "поздних" карбонатитов.

Нами был детально изучен керн скважины № 3257.5, вскрывающей на глубине 32–42 м в разной степени изменённые щелочные породы массива. В зависимости от количеств калиевого полевого шпата, нефелина, лейцита, эгирина, биотита и изменений породы имеют различные текстурные и структурные особенности: представлены как мелкозернистыми, так и крупнозернистыми разновидностями. Макро- и микроскопически породы могут быть разделены на четыре типа: 1 — крупнозернистые лейкократовые светло-серой или зеленовато-серой окраски полевошпат-нефелиновые сиениты

Рис. 1. Схематическая геологическая карта массива Богдо (Анабарский район, Арктическая Сибирь, Россия) (по материалам [3]). 1 — улахан-курунгская свита: доломиты с линзами и желваками кремней; 2 — зона скарнирования, фенитизации и мраморизации; 3 ювиты, нефелиновые сиениты; 4 — метасоматизированные породы якупирангит-ийолитовой серии; 5 породы якупирангит-ийолитовой серии: якупирангиты, ийолиты мельтейгиты; 6 — ранние кальцитовые карбонатиты; 7 — карбонатиты кальцитовые, доломитовые, анкеритовые; 8 — пикриты, альнёиты; 9 — геологические границы: a — достоверные; δ — предполагаемые; 10 — разрывные нарушения: a — достоверные; δ — предполагаемые; 11: a — озёра; δ — реки.

(рисчорриты) пойкилитовой структуры с пироксеном, биотитом, амфиболом, сфеном (рис. 2): 2 средне- и 3 — мелкозернистые тёмно-серые с красно-коричневыми идиоморфными кристаллами изменённого нефелина — либенерита (псевдоморфозы серицита по нефелину, представленные микрозернистым серицит-нефелиновым агрегатом), К-Ваполевым шпатом, меланитом — биотит-эгириновые либенеритовые сиениты; 4 — светло-серые пятнистые пойкилитовой структуры карбонатизированные с симплектитами и нефелин-полевошпатовыми агрегатами псевдолейцитовые нефелиновые сиениты (ПЛНС) (рис. 2). Породы массива Богдо содержат Zr-Nb-рутилы, сложные оксиды, карбонаты и силикаты Ti, Zr, Nb, REE, реже фосфаты — апатит и монацит. В породах широко распространены зёрна сфена с низкими содержаниями железа (от 1,45 до 2,36 мас.% FeO). В то же время цирконы в породах не были обнаружены, а только единичные зёрна бадделеита.

Уровень содержания SiO₂ в породах соответствует группе основных пород (49,0–52,6 мас.%), но с высокими концентрациями Al₂O₃ (20,5–23,6 мас.%) и Na₂O + K₂O (12,3–17,4 мас.%), с преобладанием K₂O (8,16–11,4 мас.% и Na₂O/K₂O 0,11–0,84), а также низкими содержаниями CaO (1,08–3,5 мас.%), MgO (0,27–0,78 мас.%) и FeO_{tot} (2,52–4,2 мас.%). Таким образом, породы соответствуют группе фельдшпатоидных пород основного состава (табл. 1). Коэффициент агпаитности (Na + K)/Al пород первого типа превышает 1 (1,0–1,13; среднее 1,10); второго и третьего типов меняется от 0,83 до 1,01 (среднее 0,9); четвёртого от 0,89 до 0,96 (среднее 0,93).

На диаграмме SiO₂–(Na₂O + K₂O) точки составов соответствуют нефелиновым сиенитам (основным фоидолитам и основным фоидитам по [4]) и нефелин-содалитовым кумулатам. На диаграмме Na–Al–K точки составов щелочных пород массива Богдо ложатся на продолжение линий трендов, выявленных для магматических серий массива Nechalacho Layered Suite, возникновение которых объясняется фракционированием расплава [5].

Из четырёх проб пород массива Богдо были выделены зёрна сфена CaTi[SiO₄] для определения U— Pb-возраста с помощью вторично-ионного микрозонда SHRIMP-II в Центре изотопных исследований ВСЕГЕИ [6]. В зёрнах сфена из 2 проб либенеритовых сиенитов содержания урана оказались очень низкими (0,1–1 ppm U). В сфене из двух проб (рисчоррит и ПЛНС) содержания урана варьируют от 3–4 до 13 ppm U. Рассчитанный для 4 проб

 500 мкм
 17
 8
 1

 1
 15
 15
 15

 23
 3
 4
 15

 20
 12
 5
 24
 27

 20
 13
 25
 27
 13
 25

 20
 13
 25
 27
 26
 20

Рис. 2. Микрофотография в скрещенных николях рисчоррита (слева) с пойкилитовой структурой полевого шпата, содержащего включения нефелина, биотита, эгирина и сфена; СЭМ (справа) симплектита (ортоклаз и нефелин) из псевдолейцитового сиенита массива Богдо. На СЭМ точки: 9–12, 14, 17, 18 — ортоклаз; 1, 21–23, 26 — нефелин; 2–3 — магнетит; 4–7, 25, 27 — биотит; 13, 15, 16, 19 — мусковит; 8, 20 — кальцит.

(63 зерна сфена) U–Pb-возраст соответствует 394,4 \pm 3,2 млн лет (рис. 3), что близко возрастному этапу около 400 млн лет, приведённому выше и обоснованному для Томторского массива [7].

По структурным особенностям (пойкилитовая структура, симплектиты), петрохимическим и минералого-геохимическим данным породы массива Богдо соответствуют рисчорритам, либенеритовым сиенитам и ПЛНС [8, 4]. Эти данные свидетельствуют в пользу представлений о формировании пород на магматической стадии. Проявление карбонатизации щелочных пород со значительным возрастанием содержаний TiO₂ (2,88 мас.%), REE

Рис. 3. Результаты U–Pb-датирования методом SHRIMP-II зёрен сфена из четырёх проб щелочных пород (рисчоррит, псевдолейцитовый и либенеритовые нефелиновые сиениты) массива Богдо. Эллипсы ошибок измерений соответствуют 2σ.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 3 2019

и редких элементов, с мультиэлементным спектром, близким к томторским карбонатитам, позволяет предположить значительное распространение карбонатитов с редкометалльной и REE-минерализацией в массиве Богдо.

Полученные данные свидетельствуют о среднедевонском времени формирования щелочных магматических пород массива Богдо 394,4 ± 3,2 млн лет. Выделенный возрастной рубеж не уникален для истории Сибирского кратона и в полной мере согласуется с эпохой крупнейших проявлений внутриплитного магматизма. В частности, на основании U–Pb- и Ar–Ar-датирования пород массива Томтор сделан вывод о двух этапах его формирования: 701-675 и 414-387 млн лет. Девонский период формирования массива Томтор связывается с воздействием Вилюйского плюма на восточный край Сибирского кратона, что привело к разрывам литосферы и образованию Вилюйской крупной изверженной провинции с радиальной системой рифтов, разломов, дайковых поясов [7, 9]. Кроме того, возраст пород Кольской щелочной провинции соответствует 410-362 млн лет [10], и этот факт требует поисков более общих причин регионального проявления плюмового магматизма девонского возраста. Одной из таких причин может быть влияние периферической зоны (в максимальной мере контролирующей положение LIP и кимберлитов) Africa Large Low Shear Velocity Province ("Tuzo") в девонскую эпоху на Балтику и Сибирь [11]. Полихронность формирования, подобную Томторской, можно ожидать и для массива Богдо. Глобальное проявление Сибирского суперплюма пермо-триасового возраста, ответственного за бактериально-гидротермальный этап фор-

ДОБРЕЦОВ и др.

284

Таблица 1. Химический (мас.%) и микроэлементный (ррт) состав рисчорритов (Р), псевдолейцитового сиенита (ПЛС),
карбонатизированного габбро-сиенита (КПЛС), крупнозернистого (кр/з) и среднезернистого (ср/з) либенеритового сиенита
(ЛС) массива Богдо и рисчоррита Хибинского массива (Р*) (Магматические горные породы, 1983).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Р	Р	Р	ПЛС	КПЛС	ЛС (кр/з)	ЛС (ср/з)	P*		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ле проов	bog-15	bog-17	bog-18	bog-1	bog-2	bog-6	bog-14	7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₂	50,91	49,93	49,05	52,43	45,90	49,28	50,01	51,30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TiO ₂	0,67	0,64	0,61	0,65	2,88	0,45	0,44	1,14		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al_2O_3	22,89	23,65	23,18	21,22	18,18	22,74	21,26	22,30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe ₂ O ₃	2,70	2,52	3,21	2,57	5,10	3,49	4,07	4,51		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO	0,13	0,14	0,16	0,09	0,28	0,18	0,22	0,17		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgO	0,28	0,33	0.33	0,50	1,70	0,73	0,78	0,67		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CaO	1.76	1.81	2.10	3.50	7.58	3.22	3.17	1.63		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₂ O	7.11	5.76	7.62	3.07	0.42	4.22	4.33	7.48		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ₂ Ô	10.06	9.93	9.80	10.15	9.93	8.23	7.93	9.86		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_2O_5	0.07	0.08	0.06	0.05	0.33	0.04	0.05	н.л.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BaO	0.77	0.66	0.88	0.24	0,09	1 98	2.02	нл		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₂	0.49	0.49	0.67	0.08	0,09	0.07	0,10	нл		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ппп	1.55	3 43	1 33	5.68	7 29	4 56	4 82	н.д.		
Solution $33,42$ $33,57$ $36,57$ $106,26$ $35,77$ $35,77$ $35,77$ $114,2$ Sc $0,56$ $0,67$ $0,81$ $0,35$ $0,86$ $0,54$ $0,72$ $H.д.$ V 59 68 116 100 284 140 168 $H.д.$ Cr $16,2$ $13,5$ 22 $5,8$ $5,2$ $6,6$ $13,2$ $H.d.$ Co $1,47$ $1,07$ $1,15$ $0,71$ $1,18$ $0,90$ $1,36$ $H.d.$ Ni 51 <3 $4,3$ $3,0$ <3 <3 $15,6$ $H.d.$	SUM	99.42	99 37	98.99	100.20	99 77	99.18	99.19	п.д.		
Sc $0,50$ $0,67$ $0,61$ $0,53$ $0,60$ $0,54$ $0,72$ $H.d.$ V 59 68 116 100 284 140 168 $H.d.$ Cr 16,2 13,5 22 5,8 5,2 6,6 13,2 $H.d.$ Co 1,47 1,07 1,15 0,71 1,18 0,90 1,36 $H.d.$ Ni 51 <3	Sc	0.56	0.67	0.81	0.35	0.86	0.54	0.72	п.д.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	50	68	116	100	284	140	168	п.д.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v Cr	16.2	12.5	22	5.8	5 2	6.6	12.2	н.д.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ci	10,2	13,5	1 15	5,8	J,2 1 10	0,0	13,2	н.д.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C0 Ni	51	1,07	1,13	0,71	1,10	0,90	1,50	н.д.		
	INI Cu	51		4,5	5,0	\5	_3	13,0	н.д.		
$C_{\rm u}$ 1,0 $C_{\rm v}$ 1,7 $C_{\rm v}$ $C_{\rm v$	Cu 7.	7,0	< 3	/,4		< 5 9.5	<5 5(0,/	н.д.		
$\sum n$ 0.5 /1 /8 444 85 50 85 H.A.	Zn	05		/8	44	85	20	83	н.д.		
KD $/33$ 626 588 455 448 115 155 H.Д. C 21 103 10 103 20 103 20 103 27 103 10 103 27 103	KD	/33	626		453	448	113	135	н.д.		
Sr $2,1\cdot10^{\circ}$ $1,9\cdot10^{\circ}$ $2,0\cdot10^{\circ}$ $/19$ $1,0\cdot10^{\circ}$ $3,9\cdot10^{\circ}$ $2,7\cdot10^{\circ}$ H.Д.	Sr	$2,1 \cdot 10^{-5}$	1,9 · 10	$2,0 \cdot 10^{-5}$	/19	1,0 · 10	$3,9 \cdot 10^{-1}$	$2,7 \cdot 10^{-22}$	н.д.		
Y = 2/2 33 50 16,4 56 14,7 22 H.A.	Y	27	33	50	16,4	56	14,/	22	н.д.		
Zr 336 305 465 209 497 433 560 H.g.	Zr	336	305	465	209	497	433	560	н.д.		
Nb 129 137 112 136 495 83 103 н.д.	Nb	129	137	112	136	495	83	103	н.д.		
Мо 3,5 3,8 4,3 1,10 2,6 0,97 0,66 н.д.	Mo	3,5	3,8	4,3	1,10	2,6	0,97	0,66	н.д.		
Sb 0,48 0,48 0,36 0,27 0,48 0,27 0,36 н.д.	Sb	0,48	0,48	0,36	0,27	0,48	0,27	0,36	н.д.		
Сѕ 11,2 7,9 5,8 1,42 0,90 0,30 0,60 н.д.	Cs	11,2	7,9	5,8	1,42	0,90	0,30	0,60	н.д.		
Ba $5,1\cdot10^3$ $4,0\cdot10^3$ $5,5\cdot10^3$ $2,0\cdot10^3$ 843 $1,5\cdot10^4$ $1,6\cdot10^4$ H.g.	Ba	$5,1 \cdot 10^{-5}$	$4,0 \cdot 10^{3}$	$5,5 \cdot 10^{-3}$	$2,0 \cdot 10^{-5}$	843	$1,5 \cdot 10^{4}$	$1,6 \cdot 10^{-4}$	н.д.		
La 56 55 46 39 122 57 54 H.g.	La	56	55	46	39	122	57	54	н.д.		
Се 80 83 81 68 241 65 61 н.д.	Ce	80	83	81	68	241	65	61	н.д.		
Рг 7,4 7,5 7,1 7,1 26 4,9 4,3 н.д.	Pr	7,4	7,5	7,1	7,1	26	4,9	4,3	н.д.		
Nd 20 22 22 19,3 79 12,1 12,4 н.д.	Nd	20	22	22	19,3	79	12,1	12,4	н.д.		
Sm 2,9 3,3 3,8 2,6 10,5 1,31 2,1 н.д.	Sm	2,9	3,3	3,8	2,6	10,5	1,31	2,1	н.д.		
Еи 0,97 1,15 1,31 0,79 3,4 0,65 0,89 н.д.	Eu	0,97	1,15	1,31	0,79	3,4	0,65	0,89	н.д.		
Gd 3,1 3,8 4,1 2,7 10,3 1,55 1,98 н.д.	Gd	3,1	3,8	4,1	2,7	10,3	1,55	1,98	н.д.		
Ть 0,52 0,63 0,80 0,36 1,59 0,22 0,33 н.д.	Tb	0,52	0,63	0,80	0,36	1,59	0,22	0,33	н.д.		
Dy 3,5 4,2 5,9 2,3 9,7 1,32 2,2 н.д.	Dy	3,5	4,2	5,9	2,3	9,7	1,32	2,2	н.д.		
Но 0,72 0,93 1,38 0,51 1,88 0,30 0,45 н.д.	Но	0,72	0,93	1,38	0,51	1,88	0,30	0,45	н.д.		
Ег 2,4 3,0 4,8 1,45 5,1 0,92 1,57 н.д.	Er	2,4	3,0	4,8	1,45	5,1	0,92	1,57	н.д.		
Ттт 0,37 0,51 0,76 0,20 0,64 0,20 0,28 н.д.	Tm	0,37	0,51	0,76	0,20	0,64	0,20	0,28	н.д.		
Yb 2,2 3,1 4,7 1,02 3,8 1,22 1,97 н.д.	Yb	2,2	3,1	4,7	1,02	3,8	1,22	1,97	н.д.		
Lu 0,34 0,43 0,64 0,12 0,46 0,21 0,30 н.д.	Lu	0,34	0,43	0,64	0,12	0,46	0,21	0,30	н.д.		
Hf $5,3$ $4,4$ $6,8$ $3,1$ $8,5$ $5,4$ 0.8 H.I.	Hf	5,3	4,4	6,8	3,1	8,5	5,4	0,8	н.д.		
Та 3,6 3,4 2,6 4,6 9,3 1,03 1.23 н.п.	Та	3.6	3.4	2.6	4.6	9.3	1,03	1,23	н.д.		
РЬ 15,1 10,9 10,7 4,4 6,6 9,7 9,0 н.п.	Pb	15.1	10.9	10.7	4,4	6.6	9.7	9.0	н.д.		
Тh 6,0 14,5 6,5 1.84 3.3 2.1 2.3 н.л.	Th	6.0	14.5	6.5	1,84	3.3	2.1	2.3	н.л.		
U 2.9 3.0 3.2 0.93 1.11 2.6 2.7 H.T.	U	2.9	3.0	3.2	0.93	1.11	2.6	2.7	н.л.		
Ац 0.03 0.02 0.01 0.08 0.004 0.01 0.01 НЛ	Au	0.03	0.02	0.01	0.08	0.004	0.01	0.01	н.л.		
Ад 0,03 0,02 0,04 0.08 0,004 0.01 0.01 И.Д.	Ag	0,03	0,02	0,04	0,08	0,004	0,01	0,01	н.д.		

Примечание. ППП — потери при прокаливании, н.д. — нет данных. Аналитические работы выполнялись в АЦМЭиИИ ИГМ СО РАН. Определение окислов проводилось РФА методом на спектрометре ARL-9900XP, "Thermo Fisher Scientific" (ИГМ СО РАН, аналитик Н.Г. Карманова) с применением программы QuantAS. Препараты для анализа готовили путём сплавления (1:9) пробы с флюсом на основе смеси тетрабората и метабората лития. Пределы обнаружения элементов составили 0,001–0,1%; содержания микроэлементов определены на приборе ELEMENT фирмы "Finnigan MAT" (аналитик И.В. Николаева, С.В. Палесский). Подготовка проб осуществлялась сплавлением с метаборатом лития; пределы обнаружения 10^{-7} —10⁻⁹%; содержания Au и Ag определены химико-атомно-абсорбционным методом на приборе Solar M6 ("Thermo Electron Corporation") с Зеемановской и дейтериевой коррекцией фона, с пределами обнаружения 10^{-7} % (аналитик В.Н. Ильина). Р^{*} — по [4].

мирования Томторских руд [12], должно быть также подтверждено минеральными ассоциациями и изотопными характеристиками в породах массива Богдо.

Источники финансирования. Работа поддержана РФФИ (грант 05–18–70109_Арктика) и Министерством науки и высшего образования РФ.

СПИСОК ЛИТЕРАТУРЫ

- Зайцев А.И., Энтин А.Р., Ненашев Н.И., Лазебник К.А., Тян О.А. Геохронология и изотопная геология Якутии. Якутск: ЯНЦ СО РАН, 1992. 248 с.
- 2. *Толстов А.В., Тян О.А.* Геология и рудоносность массива Томтор. Якутск: ЯНЦ СО РАН, 1999. 164 с.
- 3. Охлопков В.И. Отчет о групповой геологической съёмке по работам Верхне-Уджинского объекта Анабарской партии. Амакинская ГРЭ. 1987.
- Магматические горные породы. Классификация, номенклатура, петрография. Ч. 2 / Гл. ред. О.А. Богатиков. М.: Наука, 1983. 767 с.
- Moller V., Williams-Jones A.T. // J. Petrology. 2016.
 V. 57. P. 229–276. doi.org/10.1093/petrology/egw003

- Rodionov N.V., Lepekhina E.N., Antonov A.V., et al. // Russian Geology and Geophysics. 2018. V. 59. P. 962– 974. doi.org/10.1016/j.rgg.2018.07.016
- Владыкин Н.В., Котов А.Б., Борисенко А.С., Ярмолюк В.В., Похиленко Н.П., Сальникова Е.Б., Травин А.В., Яковлева С.З. // ДАН. 2014. Т. 454. № 2. С. 195–199. DOI: 10.7868/S0869565214020224.
- 8. *Заварицкий А.Н.* Изверженные горные породы. М.: Изд-во АН СССР, 1961. 479 с.
- Kiselev A.I., Ernst R.E., Yarmolyuk V.V., Egorov K.N. // J. Asian Earth Sci. 2012. V. 45. P. 1–16. DOI: 10.1016/ j.jseaes.2011.09.004
- Kramm U., Sindern S. In: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Eds F. Wall, A.N. Zaitsev // Mineralogical Society Series. 2004. V. 10. P. 75–97.
- Torsvik T.H., Burke K., Steinberger B., Webb S.J., Ashwal L.D. // Nature. 2010. V. 466. P. 352–355. DOI: 10.1038/nature09216
- Лазарева Е.В., Жмодик С.М., Добрецов Н.Л., Толстов А.В., Щербов Б.Л., Карманов Н.С., Герасимов Е.Ю., Брянская А.В. // Геология и геофизика. 2015. Т. 56. № 6. С. 1080–1115. DOI: 10.15372/ GiG20150603.

U–Pb AGE OF SPHENE GRAINS, PETROCHEMICAL, MINERALOGICAL AND GEOCHEMICAL FEATURES OF ALKALINE ROCKS OF THE BOGDO COMPLEX (ARCTIC SIBERIA)

Academician of the RAS N. L. Dobretsov¹, S. M. Zhmodik^{1,2}, E. V. Lazareva¹, A. V. Tolstov^{1,3}, D. K. Belyanin^{1,2}, O. N. Surkov¹, N. N. Dobretsov¹, N. V. Rodionov⁴, S. A. Sergeev⁴

¹Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

²Novosibirsk State University, Novosibirsk, Russian Federation

³*Research and Development Exploration Enterprise AK ALROSA*, *Mirny*, *Republic of Sakha Yakutia*,

Russian Federation

⁴A.P. Karpinsky Russian Geology Research Institute, Saint-Petersburg, Russian Federation

Received August 21, 2019

In the north of the Siberian Platform, east of the Anabar Shield, several identified massifs of alkaline rocks with carbonatites are known: Tomtorsky, Bogdo, Promezhutochniy, as well as Bualkalakh, Chuempe, Uele, which are projected according to geophysical data and forming a large alkaline-carbonatite province. The first data on the composition of alkaline rocks of the Bogdo massif were obtained, which correspond to a group of feldspathic rocks of the main composition: rischorrites, biotite-aegirine libenerite syenites, carbonatized, with symplectites and nepheline-feldspar aggregates, pseudo-leucite nepheline syenites. Sphenes were extracted from various types of rocks of the Bogdo massif and their U–Pb age was determined using the SHRIMP-II secondary-ion microprobe. The calculated U–Pb age corresponds to $394,4 \pm 3,2$ Ma, which is close to the age stage established for the Tomtor massif and the age of the rocks of the Kola alkaline province. One of the reasons for the manifestation of alkaline plume magmatism in this territory may be the influence of the peripheral zone Africa Large Low Shear Velocity Province ("Tuzo") in the Baltic and Siberia during the Devonian era.

Keywords: feldspathic rocks, Bogdo massif, rischorrites, libenerite and pseudoleucite syenites, U–Pb age, sphene, Arctic Siberia.