——— ГЕОХИМИЯ —

УДК 549.01 + 549.08 + 549.765.2

ОЛИВИН В КОЭСИТОВОМ ЭКЛОГИТЕ ИЗ КИМБЕРЛИТОВОЙ ТРУБКИ "УДАЧНАЯ" Д. С. Михайленко¹, Д. И. Резвухин^{1,*}, А. В. Корсаков¹, академик РАН Н. В. Соболев^{1,2}

Поступило 10.06.2019 г.

Проведено исследование оливина (высокожелезистого форстерита; Fo# 69–76) и ассоциирующих минералов в коэситсодержащем алмазоносном эклогите из кимберлитовой трубки "Удачная Восточная". Оливин обнаружен в интерстициях совместно с калиевым полевым шпатом, содалитом, флогопитом и джерфишеритом. Состав отдельных зёрен оливина изменяется в пределах ксенолита и характеризуется постоянным присутствием таких примесей, как P₂O₅, MnO, CaO и Al₂O₃. Для мантийных ксенолитов ассоциация оливина и коэсита нехарактерна. Присутствие оливина и К, Na, Cl-содержащих минералов в изученном образце может являться следствием взаимодействия эклогита с протокимберлитовым расплавом, богатым щелочными компонентами и хлором.

Ключевые слова: оливин, коэсит, алмаз, кимберлиты, метасоматоз, эклогиты.

DOI: https://doi.org/10.31857/S0869-56524893286-291

Оливин является наиболее распространённым минералом мантии Земли до глубин около 410 км и широко представлен в качестве породообразующего минерала основных и ультраосновных магматических пород. В частности, оливин принадлежит к числу характерных минералов кимберлитов и является индикатором перидотитового (P-type) материнского субстрата при кристаллизации алмаза в верхней мантии [1, 2]. Мировые литературные данные свидетельствуют о том, что ~65% изученных алмазов с минеральными включениями относятся к перидотитовому парагенезису [2]. Среди алмазоносных перидотитов преобладают ксенолиты гарцбургит-дунитового типа [3] при единичных находках алмазоносных дунитов. Систематические исследования ксеногенного оливина из кимберлитов Якутии установили в нём достаточно узкий диапазон содержания форстеритового компонента (Fo# от 91 до 94) и примесных элементов (Ti, Mn, Ca, Cr, Ni и Co) [4].

Сосуществование двух минеральных парагенезисов (перидотитового и эклогитового) для ксенолитов мантийных пород нехарактерно, хотя совместная ассоциация перидотитовых и эклогитовых минералов в пределах одного кристалла алмаза отмечается в ряде публикаций (например, в [5, 6]). Включения SiO₂ (эклогитовый парагенезис) и оливина (перидотитовый парагенезис) в алмазах одного эклогитового ксенолита из кимберлитовой трубки "Удачная Восточная" описаны в работе [7]. Образование включений смешанной ассоциации в этом ксенолите объясняют несколькими этапами роста кристаллов алмаза, при которых происходило изменение химических условий среды кристаллизации.

В данной работе мы представляем находку оливина с крайне необычным примесным составом в алмазоносном коэситовом эклогите из кимберлитовой трубки «Удачная Восточная». Наши данные свидетельствуют о метасоматическом преобразовании первичного эклогитового субстрата под воздействием протокимберлитового расплава, обогащённого щелочными компонентами и хлором.

Аналитические работы выполнены в ЦКП Многоэлементных и изотопных исследований СО РАН (Новосибирск). Состав минералов ксенолита определён на рентгеноспектральном микроанализаторе Jeol JXA-8100; для анализа зёрен оливина использовались ускоряющее напряжение 20 кВ и ток зонда 100 нА, время набора сигнала на пике и фоне при определении концентраций микропримесей (P, Mn, Ca, Al, Ni, Ti, Cr) составляло 180 и 90 с (табл. 1) соответственно. КР-спектры оливина получены с использованием спектрометра LabRam "Horiba Jobin Yvon" с лазером (длина волны излучения 532 нм) при ~10 мВт. ИК-спектры поглощения для исследования дефектно-примесного состава алмаза изучены на спектрометре с преобразованием Фурье "Bruker" VERTEX 70 с ИК-микроскопом Hyperion 2000. Масс-спектрометрические измерения изотоп-

¹ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской Академия наук, Новосибирск

² Новосибирский национальный исследовательский

государственный университет

^{*}E-mail: pazilovdenis@igm.nsc.ru

	Ол	Ол	Ол	Ол	Ол	Гр (центр)	Ом (34)
SiO ₂	37,2	37,5	37,1	37,4	37,2	40,6	55,2 (0,57)
TiO ₂	0,03	0,02	0,02	0,04	0,02	0,7	0,7 (0,09)
Al_2O_3	0,06	0,06	0,07	0,06	0,03	21,9	7,9 (0,17)
Cr ₂ O ₃	н.п.	н.п.	н.п.	н.п.	0,02	0,04	н.п
FeO	24,6	23,7	23,4	24,1	27,1	16,1	5,4 (0,12)
MnO	0,61	0,66	0,64	0,60	0,52	0,45	0,03 (0,07)
MgO	37,1	38,1	38,0	37,5	35,3	13,4	11,4 (0,57)
CaO	0,19	0,23	0,24	0,21	0,31	6,9	14,3 (0,2)
Na ₂ O	н.о.	н.о.	н.о.	н.о.	н.о.	0,24	4,1 (0,14)
K ₂ O	н.о.	н.о.	н.о.	н.о.	н.о.	н.п.	0,7 (0,15)
NiO	0,01	0,01	0,01	0,01	0,01	н.о.	н.о.
P_2O_5	0,46	0,20	0,24	0,12	0,21	н.о.	н.о.
Сумма	100,3	100,5	99,7	100,0	100,8	100,3	99,8
Fo	72,9	74,1	74,4	73,5	69,8		

Таблица 1. Представительные анализы химического состава оливина (Ол), граната (Гр), омфацита (Ом) из коэситового эклогита Uv-537

Примечание. н.о. — не определялось; н.п. — ниже пределов обнаружения.

ного состава углерода в кристаллах алмаза проведены на приборе Finnigan MAT Delta.

Ксенолит алмазоносного коэситового эклогита Uv-537 найден в несерпентинизированном кимберлите трубки «Удачная Восточная» [8]. Эклогит имеет гранобластовую среднезернистую структуру (размер зёрен 0,5-1 мм) и массивную текстуру. Породообразующие минералы представлены голубовато-синим омфацитом (60 об.%), оранжево-красным гранатом (30 об.%) и молочно-белым коэситом/кварцем (10 об.%). В породообразующих минералах обнаружены следующие твердофазные включения: в гранате — омфацит и коэсит, в коэсите — омфацит, в омфаците — полиминеральные сростки сульфидов и гранат. На зёрнах граната развиты келифитовые каймы, а на зёрнах омфацита диагностированы "губчатые" структуры (симплектит: клинопироксен + плагиоклаз + калиевый полевой шпат). Размер вновь образованных фаз в симплектите увеличивается по мере удаления от реликта омфацита. Химический состав вторичного клинопироксена (Di₁₉₋₅₂) сильно изменяется в пределах симплектита, однако в целом характеризуется снижением жадеитовой составляющей (табл. 2). Реликты коэсита окружают мощные кварцевые каймы размером от 0,2 до 2 мм. Акцессорными минералами в межзерновом пространстве породы являются алмаз, флогопит, калиевый полевой шпат, плагиоклаз, содалит, шпинель, полиминеральные сростки сульфидов (пирротин, халькопирит, пентландит, джерфишерит) и оливин.

Прозрачные кристаллы алмаза (150–400 мкм) имеют октаэдрический габитус и, как правило, образуют срастания из трёх и более индивидов размером до 2 мм. На гранях кристаллов алмаза отмечаются многочисленные скульптурные элементы — отрицательно ориентированные тригоны и полицентрические грани с ламинарным строением. Следы растворения кристаллов отсутствуют. Согласно классификации Орлова [9], алмазы относятся к разновидности І. Изотопный состав углерода кристаллов алмаза имеет мантийный источник (-6,38‰). По данным ИК-спектроскопии концентрация азота в алмазах ниже 20 ppm (низкоазотная разновидность IIa), что весьма характерно как для перидотитового, так и эклогитового парагенезиса, а также для нижнемантийных алмазов [10].

Удлинённые кристаллы оливина размером по длинной оси до 200 мкм обнаружены в интерсти-

Таблица 2. Представительные анализы химического состава вторичного клинопироксена (CpxII) из коэситового эклогита Uv-537

	1	2	3	4	5	6
SiO ₂	53,4	52,3	55,8	43,3	47,9	55,2
TiO ₂	0,55	0,65	н.п.	0,87	1,4	0,25
Al_2O_3	3,1	4,3	5,5	15,1	9,8	0,2
FeO	6,0	7,1	4,7	7,5	6,3	4,3
MnO	н.п.	0,19	0,18	0,28	0,25	0,19
MgO	15,8	15,5	15,1	10,2	14,8	16,2
CaO	19,1	18,5	15,5	20,9	17,7	22,7
Na ₂ O	1,2	0,96	3,2	0,66	0,85	1,2
K ₂ O	н.п.	н.п.	н.п.	н.п.	н.п.	н.п.
Сумма	99,0	99,6	100,0	98,7	98,9	100,3
Jd	7,5	5,1	22,5	0,00	0,29	1,7
Di	61,4	54,5	50,6	35,8	42,8	82,2
Hd	12,5	13,5	8,8	14,0	8,9	5,5
En	12,9	15,5	15,2	8,7	19,2	2,9

Примечание. н.п. — ниже пределов обнаружения.

циях между породообразующими зёрнами граната и омфацита (рис. 1). Срастания оливина и коэсита не выявлены. Химический состав отдельных кристаллов оливина в пределах образца изменяется от Fo# 69 до Fo# 76, однако гомогенен в пределах индивидуальных зёрен и характеризуется постоянным присутствием таких примесей, как P_2O_5 (0,11–0,46), MnO (0,32–0,70), CaO (0,12–0,31) и Al_2O_3 (0,03–0,06) (в мас.%, табл. 1). Концентрации NiO и TiO₂ не превышают 0,04 мас.%. На KP-спектрах отдельных зёрен оливина прослеживаются интенсивные пики на 821 и 850 см⁻¹ и дополнительные менее интенсивные на 582 и 917 см⁻¹, что соответствует обычному положению линий в оливине (рис. 2).

Содержание форстеритового компонента в изученных зёрнах оливина существенно ниже, чем установлено для оливина из ксеногенного материала кимберлитов Якутии, в том числе и в виде включений в алмазах [4]. Нетипичен столь низкий Fo# и для породообразующего оливина архетипных кимберлитов. Ранее крайне низкое содержание форстеритового минала (Fo# 78–93) было описано в макрокристах оливина из триасовой кимберлитовой

Рис. 1. (а) — зёрна оливина, окружённые ассоциирующимися минералами в межзерновом пространстве. Цифрами обозначены номера анализов вторичного клинопироксена (CpxII), соответствующих номерам столбцов в табл. 2; (б) — элементная карта концентрации Al в межзерновом пространстве вокруг зёрен оливина. Grt — гранат; Ol — оливин; Kfs — калиевый полевой шпат; Pl — плагиоклаз; Spl — шпинель; Sulf — сульфиды.

Рис. 2. Представительные КР-спектры зёрен оливина из образца Uv-537.

трубки "Малокуонапская" [11]. По мнению авторов, увеличение концентрации Fe и вариации содержаний примесных элементов в оливине могут свидетельствовать о повторном обогащении глубинных частей литосферы Сибирского кратона вследствие воздействия горячей мантийной струи, обогащённой материалом рециклированной океанической коры. Авторы предположили, что реакционное взаимодействие эклогита и протокимберлитового расплава может приводить к образованию оливина, состав которого будет зависеть от соотношения объёмов реагирующих компонентов [11]. При низком соотношении расплав : порода ожидается появление преимущественно железистого оливина с низким содержанием Al, Ca, Mn и Cr, которые не будут поступать из равновесных минералов эклогита — граната и клинопироксена. При высоком соотношении расплав : порода эклогит будет преимущественно расплавлен, что приведёт к образованию магнезиального оливина с высоким содержанием Al, Ca, Mn and Cr за счёт поступления этих элементов из плавящихся граната и клинопироксена [11].

Необходимо отметить, что в исследованных зёрнах оливина из нашего образца диагностированы как высокая железистость (Fo# 69-76), так и экстремально высокие содержания некоторых примесных компонентов, таких как P_2O_5 , MnO и CaO. В то же время концентрация Ni практически на порядок ниже типичных содержаний этого элемента во вкрапленниках оливина из ксеногенного материала сибирских кимберлитов [4]. Таким образом, состав изученных кристаллов оливина в отношении концентраций макро- и микроэлементов является очень своеобразным и не соответствует химизму этого минерала в его типичных проявлениях в кимберлитах Якутии. Причина этого, по-видимому, лежит в крайне специфических условиях происхождения изученного оливина в ходе реакционного взаимодействия эклогитового субстрата с флюидомрасплавом глубинного происхождения, что в целом согласуется с концепцией [11], хотя распределение примесей в оливине такого генезиса может зависеть от многих факторов и требует дальнейшего изучения.

Кимберлитовая трубка "Удачная Восточная" практически не затронута син- и постмагматическими изменениями и характеризуется присутствием щелочных карбонатов, сульфатов и хлоридов в матриксе пород, что обусловливает главную химическую особенность неизменённых кимберлитов — высокие концентрации щелочных элементов (до 8 мас.% Na₂O + K₂O) и Cl (до 6 мас.%) и низкие содержания H₂O (<0,5 мас.%) [8]. В настоящее время рядом исследователей предполагается безводный щёлочнокарбонатитовый состав протокимберлитовых расплавов [8, 12, 13]. Сохранность коэсита в изученном образце также указывает на отсутствие воды в системе "эклогит — метасоматизирующий расплав", в то время как наличие минералов, содержащих К, Na и Cl (калиевый полевой шпат, флогопит, содалит, джерфишерит), в ассоциации с оливином свидетельствует в пользу взаимодействия эклогита с расплавом, обогащённым щелочными компонентами и хлором.

Детальное изучение вторичной минеральной ассоциации в ксенолитах эклогитов из кимберлитовой трубки "Удачная Восточная" показало, что их формирование происходило в два этапа с участием метасоматизирующих агентов различного состава [14]. С первым этапом связывается образование флогопита вследствие инфильтрации К-Н₂О-флюида во время нахождения ксенолитов в мантии, в то время как в ходе второго этапа происходило образование губчатого симплектита вокруг омфацита, келифитовых кайм вокруг граната, а также содалита, шпинели, кальцита, калиевого полевого шпата и джерфишерита. По мнению авторов, более поздний второй этап включает ряд метасоматических реакций с участием граната, омфацита и флюида в ходе транспортировки ксенолита кимберлитовым расплавом к поверхности [14].

Согласно экспериментальным данным [15] появление оливина в ассоциации с калиевым полевым шпатом, флогопитом и коэситом может являться результатом возрастания активности шелочных компонентов (К и Na) в ходе метасоматических процессов по реакциям 1 и 2:

$$Coe + \frac{1}{6}K_{2}O + \frac{1}{12}Prp + \frac{1}{12}Grs = = \frac{1}{3}Kfs + \frac{1}{4}Di,$$
(1)

Coe +
$$\frac{2}{9}$$
K₂O + $\frac{2}{9}$ Prp = $\frac{4}{9}$ Kfs + $\frac{1}{3}$ Fo. (2)

Таким образом, образование оливина в ассоциации с К, Na, Cl-содержащими минералами в изученном образце, вероятно, связано с процессами частичного плавления и метасоматоза, инициированными взаимодействием протокимберлитового расплава, обогащённого щелочными компонентами и хлором, с эклогитовым субстратом. Частичное плавление эклогита обусловливает формирование смешанной минеральной ассоциации, что может приводить и к полной трансформации породы. По всей видимости, кристаллизация более позднего оливина в изученном эклогите приурочена к генерации протокимберлитовых расплавов в ходе среднепалеозойского (~362–344 млн лет) этапа кимберлитового магматизма в пределах Сибирского кратона. Однако наличие в интерстициях породы минералов, предположительно неустойчивых при *PT*-параметрах низов континентальной литосферы (таких как содалит, джерфишерит [13, 14], а также шпинель), свидетельствует о том, что образование изученной минеральной ассоциации по крайней мере частично могло произойти не только в основании литосферы, но и на менее глубинных горизонтах непосредственно в ходе подъёма и внедрения кимберлитовой магмы трубки "Удачная Восточная".

Источники финансирования. Работа выполнена в рамках государственного задания ИГМ СО РАН и при финансовой поддержке проектов РФФИ 18– 35–00219, 18–05–00643A, 18–3520072.

СПИСОК ЛИТЕРАТУРЫ

- 1. Sobolev N.V., Logvinova A.M., Zedgenizov D.A., et al. Olivine Inclusions in Siberian Diamonds: High-Precision Approach to Minor Elements // Europ. J. Mineral. 2008. V. 20. № 3. P. 305–315.
- Stachel T., Harris J.W. The Origin of Cratonic Diamonds — Constraints from Mineral Inclusions // Ore Geol. Rev. 2008. V. 34. № 1/2. P. 5–32.
- 3. Соболев Н.В., Похиленко Н.П., Ефимова Э.С. Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов // Геология и геофизика. 1984. № 12. С. 63-80.
- Sobolev N.V., Logvinova A.M., Zedgenizov D.A., et al. Petrogenetic Significance of Minor Elements in Olivines from Diamonds and Peridotite Xenoliths from Kimberlites of Yakutia // Lithos. 2009. V. 112. P. 701– 713.
- Prinz M., Mansoni D.V., Hlava P.F., et al. Inclusions in Diamonds: Garnet Lherzolite and Eclogite Assemblages // Physics and Chemistry of the Earth. Pergamon, 1975. P. 797–815.

- Wang W. Formation of Diamond with Mineral Inclusions of "Mixed" Eclogite and Peridotite Paragenesis // Earth and Planet. Sci Lett. 1998. V. 160. № 3/4. P. 831–843.
- 7. Рагозин А.Л., Шацкий В.С., Зедгенизов Д.А., и др. Свидетельства эволюции среды кристаллизации алмазов в ксенолите эклогита из кимберлитовой трубки Удачная (Якутия) // ДАН. 2006. Т. 407. № 5. С. 660–663.
- Kamenetsky V.S., Kamenetsky M.B., Golovin, A.V., et al. Ultrafresh Salty Kimberlite of the Udachnaya—East Pipe (Yakutia, Russia): A Petrological Oddity or Fortuitous Discovery? // Lithos. 2012. V. 152. P. 173–186.
- 9. *Орлов Ю.Л*. Минералогия алмаза. М.: Наука, 1984. 264 с.
- Stachel T., Harris J.W., Brey G.P., et al. Kankan Diamonds (Guinea) II: Lower Mantle Inclusion Parageneses // Contribs to Mineral. and Petrol. 2000. V. 140. № 1. P. 16–27.
- Соболев Н.В., Соболев А.В., Томиленко А.А. и др. Уникальные особенности состава вкрапленников оливина посттрапповой алмазоносной кимберлитовой трубки Малокуонапская, Якутия // ДАН. 2015. Т. 463. № 5. С. 587–587.
- Golovin A.V., Sharygin I.S., Kamenetsky V.S., et al. Alkali-Carbonate Melts from the Base of Cratonic Lithospheric Mantle: Links to Kimberlites // Chem. Geol. 2018. 483. P. 261–274.
- 13. Abersteiner A., Kamenetsky V.S., Goemann K., et al. Djerfisherite in Kimberlites and their Xenoliths: Implications for Kimberlite Melt Evolution // Contribs to Mineral. and Petrol. 2019. V. 174. № 1. P. 8.
- Misra K.C., Anand M., Taylor L.A., et al. Multi-Stage Metasomatism of Diamondiferous Eclogite Xenoliths from the Udachnaya Kimberlite Pipe, Yakutia, Siberia // Contribs to Mineral. and Petrol. 2004. V. 146 (6). P. 696–714.
- Сафонов О.Г., Бутвина В.Г. Реакции—индикаторы активности К и Na в верхней мантии: природные и экспериментальные данные, термодинамическое моделирование // Петрология. 2016. № 10. С. 893– 908.

OLIVINE IN A COESITE-BEARING ECLOGITE FROM THE UDACHNAYA KIMBERLITE PIPE D. S. Mikhailenko¹, D. I. Rezvukhin¹, A. V. Korsakov¹, Academician of the RAS N. V. Sobolev^{1,2}

¹Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Novosibirsk, Russian Federation ²Novosibirsk State University, Novosibirsk, Russian Federation

Received June 10, 2019

Olivine (high-Fe forsterite; Fo# 69–76) and associated minerals have been studied in a coesite-bearing diamondiferous eclogite from the Udachnaya-East kimberlite pipe. Olivine was identified in the rock interstices together with K-feldspar, sodalite, phlogopite and djerfisherite. The composition of individual olivine grains varies within the xenolith and is characterized by a consistent presence of P_2O_5 , MnO, CaO μ Al₂O₃. The coexistence of olivine and coesite is uncommon for mantle xenoliths. The occurrence of olivine and K, Na, Cl-bearing minerals in the studied sample is suggested to have been caused by the interaction of the eclogite with a protokimberlitic melt enriched in alkali components and chlorine.

Keywords: olivine, coesite, diamond, kimberlite, metasomatism, eclogite.