= ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

УДК 66-936.5

РАСПРЕДЕЛЕНИЕ TR_2O_3 , P_2O_5 и Nb_2O_5 МЕЖДУ ДВУМЯ НЕСМЕШИВАЮЩИМИСЯ РАСПЛАВАМИ В СИСТЕМЕ МОНАЦИТ-SiO₂-NaF-Nb₂O₅-Fe₂O₃

Л. М. Делицын

Представлено академиком РАН Л.И. Леонтьевым 10.06.2019 г.

Поступило 17.06.2019 г.

Система монацит—SiO₂—NaF—Nb₂O₅—Fe₂O₃ на изотерме 1200 °С характеризуется широкой областью двух несмешивающихся расплавов: силикатного и фосфатно-фторидного, солевого. Система является взаимной с образованием в солевом расплаве новых редкоземельных фаз: двойных фосфатов и фторидофосфатов РЗЭ и Na, в составе которых нет Fe и Nb. Железо оказывает большое влияние на несмесимость расплавов: при отсутствии железа область ликвации занимает 50% площади диаграммы, при 5% Fe₂O₃ — 57%, при 10% Fe₂O₃ — 70%. Оксиды РЗЭ, Р и Nb контрастно распределяются между несмешивающимися расплавами. РЗЭ и P на 95% концентрируются в фосфатно-солевом расплаве. Nb концентрируется в железо-силикатном расплаве. При отсутствии в силикатном расплаве Fe₂O₃ содержание Nb₂O₅ равно 4,91%, при 15,33% — 6,89%, т.е увеличилось на 40% отн.

Ключевые слова: распределение компонентов, ликвация расплавов, монацит, редкие земли, оксид ниобия, оксид железа, редкоземельные фосфаты, редкоземельно-ниобиевая фаза.

DOI: https://doi.org/10.31857/S0869-56524896599-605

Работа выполнена в плане создания теоретических основ технологии ликвационной плавки монацит-пирохлоровых руд коры выветривания Томторского месторождения [1]. Главный носитель редких земель (РЗЭ) в руде монацит содержит (мас.%): La₂O₃ 12,42–20,95; Ce₂O₃ 22,55–31,19; Pr₂O₃ 1,65–3,19; Nd₂O₃ 4,58–9,83; на остальные РЗЭ приходится 2–3% [2]. Содержания редких земель в монаците на разных участках месторождения могут сильно различаться. Большое влияние на технологию переработки руды оказывают присутствующие в ней оксиды железа. Ранее в системах LaPO₄–SiO₂– NaF–Nb₂O₅ и CePO₄–SiO₂–NaF–Nb₂O₅ было установлено, что La и Ce растворяются в фосфатно-солевом расплаве, Nb — в силикатном [3, 4].

Исследована область ликвации расплавов в системе монацит— SiO_2 —NaF— Nb_2O_5 — Fe_2O_3 . Установлено влияние железа на процессы, протекающие в системе: при 5 и 10% Fe_2O_3 область ликвации увеличилась на 12 и 40% соответственно. В результате химических реакций между компонентами системы и фторидом натрия образуются новые фазы: двойные фосфаты и фторидофосфаты РЗЭ и Na и редкоземельно-ниобиевая фаза, состав которой зависит от содержания Fe_2O_3 в системе. TR_2O_3 , P_2O_5 и Nb₂O₅

контрастно распределяются между несмешивающимися расплавами: TR_2O_3 и P_2O_5 на 95% концентрируются в фосфатно-солевом расплаве, Nb_2O_5 на 86– 90% — в железо-силикатном расплаве. Результаты работы публикуются впервые.

Для проведения экспериментов шихта готовилась из монацита, синтезированного из оксидов редких земель и ортофосфорной кислоты, и реактивов SiO₂, NaF, Fe₂O₃ и Nb₂O₅ ч.д.а. Синтезированный монацит по составу (мас.%): La₂O₂ 18,74; Ce₂O₂ 33,63; Pr₂O₃ 3,17; Nd₂O₃ 9,41; Sm₂O₃ 0,67; P₂O₅ 27,25 и данным РФА соответствует природному минералу. Шихта (5-20 г) тонко перетиралась под слоем спирта и помещалась в корундовые тигли. Плавки проводились при 1200 °C в течение 1-2 часов на воздухе с открытой поверхностью расплава. За указанный промежуток времени расплавы успевали разделиться на две несмешивающиеся жидкие фазы. Образовавшиеся слои отделяли друг от друга по границе фазового раздела и затем анализировали. Потери веса в системе при 1200 °С составляли 2-3%. Выше 1200 °С система не изучалась, так как потери веса достигали 3,5-4,0%, что приводит к искажению состава расплавов. Стенка корундовых тиглей частично растворялась в силикатном расплаве, однако это не повлияло на процесс образования несмешивающихся расплавов. Соответственно, Al₂O₃ является компонентом системы.

Объединённый институт высоких температур Российской Академии наук, Москва E-mail: delitzin@ihed.ras.ru

Продукты плавления исследовали петрографическим методом в прозрачных и полированных шлифах, рентгеновским методом на аппарате ДРОН-2 по стандартной методике и с помощью сканирующего электронного микроскопа JSM-5 («JEOL», Япония).

Система монацит—SiO₂—NaF—Nb₂O₅—Fe₂O₃ характеризуется наличием широкой области двух несмешивающихся расплавов: силикатного и фосфатно-солевого. На рис. 1 приведена диаграмма, где показаны области ликвации расплавов на изотерме 1200 °С для трёх случаев: при отсутствии железа и при добавке 5 и 10% Fe₂O₃. Такие содержания оксида железа обычно присутствуют в руде Томторского месторождения.

Железо оказывает большое влияние на взаимную растворимость жидких фаз. Введение 5-10% Fe₂O₃ в состав шихты приводит к расширению поля несмесимости жидких фаз: в отсутствие железа поле несмесимости расплавов составляет 50%, при добавке 5% Fe₂O₃ оно занимает 57% площади диаграммы, при добавке 10% — 70%.

Структуры силикатного и фосфатно-солевого расплава значительно отличаются друг от друга: силикатный расплав легко закаливается в стекло, фосфатно-солевой всегда находится в кристаллическом состоянии.

Силикатный расплав содержит мелкие капельки фосфатно-солевого расплава, в которых находится фаза с высоким содержанием ниобия. Фосфатносолевой расплав содержит капли-шарики силикатного расплава, при этом в самом солевом расплаве

Рис. 1. Диаграмма состояния монацит– SiO_2 –NaF– Nb_2O_5 – Fe_2O_3 , изотерма 1200 °C: область ликвации расплавов при отсутствии Fe_2O_3 , при содержании 5% Fe_2O_3 , при содержании 10% Fe_2O_3 .

находится фаза с высоким содержанием ниобия. В связи с указанными различиями распределение TR_2O_3 , P_2O_5 и Nb_2O_5 изучено по отдельности для каждого из сосуществующих расплавов.

С увеличением содержания Fe_2O_3 средний диаметр фосфатно-солевых капель заметно уменьшается: при 0,00% Fe_2O_3 он равен 2–3 мкм, при 2,84% $Fe_2O_3 - 1,0-1,5$ мкм, при 4,60% $Fe_2O_3 \le 1$ мкм, при 6,58% $Fe_2O_3 \le 0,6$ мкм. Количество капель-шариков фосфатно-солевого расплава, находящихся в силикатном расплаве, по результатам его растворимости в растворе 10%-й серной кислоты оценивается в 15– 17%.

Химический анализ подобных расплавов не позволяет выяснить состав силикатного расплава, равновесного с фосфатно-солевым расплавом, поскольку электронный пучок микрозонда при диаметре капель 3—5 мкм захватывает материал матрицы. В то же время на отдельных участках силикатного расплава присутствуют крупные капли фосфатно-солевого расплава диаметром от 10 до 100—150 мкм, вокруг которых всегда находится узкая полоса силикатного расплава, относительно чистая от мелких солевых капелек.

Структура силикатного стекла и его состав при различных содержаниях Fe_2O_3 приведены на рис. 2 и в табл. 1. На рис. 2 показаны главные фазы, установленные в структуре фосфатно-солевых шариков. Наряду с монацитом, двойными фосфатами и фторидофосфатами редких земель и натрия в них всегда присутствует фаза с высоким содержанием оксида

Рис. 2. Строение силикатного расплава при содержании Fe₂O₃ 0,00%: 1, 3 — двойные фосфаты РЗЭ и Na, 2, 4 — ниобиевая фаза (светлые крестообразные кристаллы), точка 5 — фторидофосфат РЗЭ и Na, 6 — силикатный расплав.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 6 2019

V as the assault of	Содержание Fe ₂ O ₃ в шихте, мас.%							
компоненты	0,00% (2)	2,84% (3)	4,60% (3)	6,58% (2)				
F	1,80	3,40	2,94	1,73				
Na ₂ O	7,25	11,25	11,72	11,35				
P_2O_5	2,20	3,82	3,97	3,14				
Al_2O_3	13,12	13,62	16,86	13,50				
SiO ₂	62,61	42,24	43,48	46,34				
$SiO_2 + Al_2O_3$	75,73	55,86	60,34	59,84				
Fe ₂ O ₃	0,00	7,86	11,94	15,53				
Nb_2O_5	4,91	5,17	5,32	6,89				
La ₂ O ₃	2,02	2,13	_	_				
Ce ₂ O ₃	4,88	3,82	2,24	1,40				
Nd_2O_3	0,88	2,37	< 1	_				
ΣTR_2O_3	7,34	9,49	_	_				
Ce : La	2,41	1,80	_	_				
Ce_2O_3 : P_2O_5	2,21	1,00	0,56	0,44				
$\Sigma TR_2O_3 : P_2O_5$	2,41	1,87						

Таблица 1. Содержание компонентов в силикатном расплаве при различном содержании Fe₂O₃ в шихте

Примечание. Прочерк означает, что данный компонент не обнаружен; в шапке в скобках указано число анализов.

ниобия (45,3–73,27%), редких земель и Na₂O. Морфологически ниобиевая фаза представлена двумя разновидностями: фаза 1 — кристаллы крестообразной формы и фаза 2 — мелкие, плохо оформленные кристаллики и их агрегаты. Подобные же ниобиевые фазы также установлены в фосфатно-солевом расплаве. Количество данной фазы невелико (5–10%), однако при столь большом содержании Nb₂O₅ она заслуживает того, чтобы её выделили в качестве отдельного ниобиевого промпродукта. Кристаллики ниобиевой фазы обычно очень мелкие (<5 × 5 — 5 × 10 мкм), но изредка встречаются крестообразные хорошо оформленные кристаллики размером 10 × 20 - 15 × 35 мкм (рис. 2).

Данные, приведённые в табл. 1, показали, что в составе силикатного стекла содержания F, Na₂O, P₂O₅ и Al₂O₃ изменяются слабо (в пределах ошибки анализа). Основные изменения происходят с содержаниями SiO₂, Fe₂O₃, Nb₂O₅ и Ce₂O₃. С увеличением содержания Fe₂O₃ содержания SiO₂ и Ce₂O₃ заметно уменьшились, тогда как содержания Fe₂O₃ и Nb₂O₅ увеличились. При содержании в силикатном расплаве Fe₂O₃ 7,86% (2,84% Fe₂O₃ в шихте) содержание Nb₂O₅ увеличилось на 0,42% и составило 5,17%, т.е. возросло на 8,5% по сравнению с содержанием в отсутствие Fe₂O₃. При содержании в силикатном расплаве 15,33% Fe₂O₃ (6,58% Fe₂O₃ в шихте) содержание Nb₂O₅ было 6,89%, т.е. увеличилось на 1,98%, что на 40% больше по сравнению с содержанием Nb_2O_5 4,91% в отсутствие Fe_2O_3 (табл. 1). Причём скорость возрастания содержания железа выше, чем ниобия.

Таким образом, в силикатном расплаве оксид ниобия находится: 1 — в растворённом состоянии в составе силикатного расплава, 2 — в кристаллической фазе, богатой ниобием, которая присутствует в фосфатных шариках.

Расчёт показал, что поскольку силикатный расплав содержит 6,89% Nb_2O_5 и он составляет 85%, а фосфатно-солевые шарики в нём — 15–17%, то при количестве в них ниобиевой фазы 5–7% и содержании в ней Nb_2O_5 45% добавка за её счёт Nb_2O_5 в баланс его распределения в силикатном расплаве составляет ~ 0,33–0,65 мас.%, что равно 8,5–10,5%. Основное количество Nb_2O_5 в его балансовом распределении между силикатным расплавом и ниобиевой фазой приходится на силикатный расплав и составляет 90–92%, и 8–10% приходится на фазу, богатую ниобием. Соответственно, ниобиевый расплав является главным концентратором ниобия в системе.

Количество TR_2O_3 , вносимое в баланс распределения РЗЭ в силикатный расплав для силикатной матрицы, составляет 7,1 мас.%, для фосфатно-солевых шариков — 7,5 мас.%, а за счёт ниобиевой фазы — 0,47%. Таким образом, в баланс распределения редких земель силикатный расплав вносит (доля TR_2O_3) 47,0%, фосфатно-солевые шарики — 50,0% и ниобиевая фаза — 3,0%.

Для P_2O_5 эти значения равны 3,14 и 22,0 мас.%, что составляет для силикатного расплава долю 45%, а для фосфатно-солевых шариков 55%. Поскольку ниобиевая фаза не содержит фосфор, то она в балансовом расчёте не учитывается. Установлено, что в силикатном расплаве TR_2O_3 и P_2O_5 распределяются примерно поровну (1 : 1).

Фосфатно-солевой расплав всегда находится в кристаллическом состоянии. Основное количество фаз в нём представлено редкоземельными фосфатами, шариками силикатного расплава и фазой с высоким содержанием ниобия. Количество шариков силикатного расплава по данным растворения фосфатносолевого расплава в 7%-й азотной кислоте оценено в 25–27%. Химический состав силикатных шариков (мас.%): F 4,22; Na₂O 14,10; P₂O₅ 3,83; Al₂O₃ 14,33; SiO₂ 46,34; Fe₂O₃ 11,51; Nb₂O₅ 5,60; TR₂O₃ 3,70 — почти не отличается от состава силикатного расплава, приведённого в табл. 1.

Первым из фосфатно-солевого расплава кристаллизуется монацит (рис. 2), к которому присоединя-

делицын

Компоненты	Редкоземель солевых в си.	ьные фосфаты шариках, нахо ликатном расп	в фосфатно- дящихся лаве	Редкоземельные фосфаты в фосфатно-солевом расплаве				
	Монацит (4)	Двойной фосфат РЗЭ и Na (4)	Фторидо-фосфат РЗЭ и Na (20)		Монацит (20)	Двойной фосфат РЗЭ и Na (10)	Фторидо- фосфат РЗЭ и Na (3)	
F	_	—	8,27		_	_	6,69	
Na ₂ O	_	20,06	12,48		_	19,58	13,16	
P_2O_5	29,85	36,94	22,00		28,90	36,50	23,97	
La ₂ O ₃	26,29	14,45	16,88		25,46	13,28	16,84	
Ce ₂ O ₃	32,13	19,58	24,10		32,39	19,90	24,53	
Pr ₂ O ₃	2,65	1,62	2,10		2,34	1,96	2,14	
Nd_2O_3	8,53	5,90	7,	17	8,16	6,44	7,36	
STR ₂ O ₃	69,60	41,55	50,25		68,35	41,58	50,87	
Ce : La	1,22	1,33	1,43		1,27	1,50	1,46	
Ce : Nd	3,76	3,32	3,36		3,96	3,10	3,33	
$TR_2O_3: P_2O_5$	2,33	1,12	2,28		2,36	1,14	2,12	

Таблица 2. Состав редкоземельных фосфатов в фосфатно-солевых шариках, находящихся в силикатном расплаве, и в кристаллических фазах, слагающих фосфатно-солевой расплав

Примечание. Прочерк означает, что данный компонент не обнаружен; в шапке в скобках указано число анализов.

ются двойные фосфаты и фторидофосфаты РЗЭ и Na. Редкоземельные фосфаты (монацит, двойные фосфаты РЗЭ и Na, фторидофосфаты РЗЭ и Na) обладают устойчивым химическим составом при всех содержаниях Fe₂O₃ (табл. 2). Каждая из этих фаз обладает своим характерным составом, что отражается в сумме редких земель, отношениях Ce : La и TR₂O₃ : P₂O₅. Показательно, что в составе редкоземельных фосфатов отсутствуют Fe₂O₃ и Nb₂O₅. Состав редкоземельных фосфатов в фосфатно-солевых шариках и фосфатно-солевого расплава оказался практически одинаковым (табл. 2), что свидетельствует об их идентичности. По существу, фосфатно-солевые шарики и фосфатно-солевой расплав представляют одно и то же. Их слияние в один расплав не произошло вследствие особенностей ликвационной плавки с малыми навесками шихты.

Ниобиевая фаза обнаружена в двух формах: фаза 1 в виде крестообразных кристалликов размером 5×7 , 30×40 мкм, не связанных с монацитом (рис. 3), фаза 2 в виде мелких кристаллов и их агрегатов размером $5 \times 5 - 20 \times 30$ мкм в сростках с монацитом. Ниобиевые фазы, находящиеся в составе фосфатносолевых шариков и в составе фосфатно-солевого расплава, заметно отличаются по структуре и химическому составу (табл. 3). Ниобиевая фаза 1 характеризуется мольным отношением TR_2O_3 : $Nb_2O_5 =$ = 1 : 1, содержанием $Nb_2O_5 41-45\%$, отсутствием Na_2O и высоким содержанием P3Э (43-54%) (табл. 3, колонки 2, 9, 10). Состав ниобиевой фазы 2 находится в зависимости от содержания Fe_2O_3 в шихте, при этом мольное отношение TR_2O_3 : Nb_2O_5 изменяется от 2 до 6. Для фосфатно-солевых шариков чем больше содержание Fe_2O_3 , тем выше в фазе 2 содержание Nb_2O_5 и тем меньше содержание суммы редких земель (табл. 3, колонки 3, 4, 5). Для фосфатно-солевого расплава чем выше содержание Fe_2O_3 , тем меньше в фазе 2 содержание Nb_2O_5 и тем выше содержание

Рис. 3. Структура фосфатно-солевого расплава при содержании в шихте Fe_2O_3 2,84%: 1 — монацит, 2 — фторидофосфат РЗЭ и Na, 3 и 4 — двойной фосфат РЗЭ и Na, 5 — ниобиевая фаза (крестообразные кристаллы), 6 — силикатные шарики, 7 — эвтектические структуры.

	Содержание Fe ₂ O ₃ в шихте, мас.%								
Komponentu	0,00*	2,84**	4,60**	6,50**	0,00**	2,84**	2,84**	4,60*	6,58*
Компоненты	Ниобиевые фазы в фосфатно-солевых шариках				Ниобиевые фазы в фосфатно-солевых расплавах				
1	2	2 3 4 5			6	7	8	9	10
F	_	2,92	0,72	_	1,85	2,48	_	-	-
Na ₂ O	_	12,85	8,53	9,57	11,19	13,47	6,06	_	_
Fe ₂ O ₃	—	6,84	11,72	3,17	_	6,41	18,0	—	10,25
Nb ₂ O ₅	45,00	43,27	45,80	73,27	61,63	48,32	47,83	44,97	41,06
La ₂ O ₃	11,40	5,60	4,68	3,47	2,87	3,25	4,14	12,20	5,30
Ce ₂ O ₃	28,60	12,37	9,88	7,87	12,35	9,36	12,40	28,47	27,12
Pr ₂ O ₃	3,05	1,20	1,17	0,50	0,76	0,9	0,8	2,92	2,47
Nd_2O_3	10,70	3,67	3,27	1,62	2,30	2,67	3,53	11,23	8,33
Ce: La	2,50	2,20	2,11	2,26	4,30	2,88	3,0	2,33	5,1
TR_2O_3	53,75	22,84	19,00	13,46	18,26	16,18	20,87	54,82	43,22
Nb ₂ O ₅ : TR ₂ O ₃ м.о.	1,0	2,3	3,0	6,7	4,1	3,6	2,9	1,0	1,16
Расчётная формула	TR Nb	TR_2 Nb _{2,3}	TR ₂ Nb ₃	TR ₂ Nb ₁₂	TR ₂ Nb ₈	TR ₂ Nb ₇	TR ₂ Nb ₃	TR Nb	TR Nb
	O_4	O ₇	O ₁₈	O ₃₃	O ₂₃	O ₂₁	O ₁₈	O ₄	O ₄

Таблица 3. Состав ниобиевых фаз, кристаллизовавшихся в фосфатно-солевых шариках, находящихся в силикатном расплаве, и в фосфатно-солевом расплаве

Примечание. * — фаза 1, светлые крестообразные кристаллы; ** — фаза 2, серые мелкие кристаллы; м.о. — мольное отношение; прочерк означает, что данный компонент не обнаружен.

редких земель (табл. 3, колонки 6–8). Фаза 2 содержит значительное количество Na_2O и Fe_2O_3 . Расчётная формула в них мольного отношения TR_2O_3 : : Nb_2O_5 показана в нижней строке табл. 3. Полученные данные позволяют сделать вывод о переменном составе фазы 2, который находится в зависимости от содержания Fe_2O_3 .

Участки стекла, чистого от включений фосфатносолевых шариков, и состав сопряжённых с ними фосфатно-солевых шариков были проанализированы на микрозонде, после чего были рассчитаны коэффициенты распределения компонентов между несмешивающимися расплавами (табл. 4). Расчёт коэффициентов распределения (К_р) компонентов показал, что F, P_2O_5 и TR_2O_3 концентрируются в фосфатно-солевом расплаве, Fe_2O_3 , Nb_2O_5 и SiO₂ в силикатном. Оксид натрия распределяется между расплавами примерно поровну. В табл. 4 представлен расчёт K_p, равного отношению содержания компонентов в силикатном расплаве к их содержанию в фосфатно-солевом расплаве (мас.%) при различном содержании Fe₂O₃ в шихте. Увеличение содержания Fe₂O₃ не оказало влияния на значения коэффициента распределения компонентов между расплавами.

В фосфатно-солевом расплаве основной носитель TR_2O_3 и P_2O_5 — редкоземельные фосфаты, количе-

ство которых составляет 75-80%, содержание силикатных шариков в фосфатном расплаве составляет 25-27%, и 7-10% приходится на ниобиевую фазу, которая присутствует в фосфатной матрице.

Количество Nb₂O₅ за счёт ниобиевой фазы составляет 4,5 мас.%, за счёт силикатных шариков — 1,40%. Поэтому за счёт силикатных шариков вклад Nb₂O₅ составляет долю 23%, а за счёт ниобиевой фазы 77%. Количество TR₂O₃ за счёт фосфатной матрицы составляет 38,1%, за счёт ниобиевой фазы 5,48%, за счёт силикатных шариков 0,92%. Отсюда следует, что вклад фосфатно-солевой матрицы составил долю 85,6%, вклад ниобиевой фазы 12,3%, а силикатных шариков 2,1%. Для P₂O₅ вклад фосфатно-солевой матрицы составил 95%, а силикатных шариков 5%. В этой связи фосфатно-солевой расплав является основным концентратором редких земель и P₂O₅.

Итоговые данные фазового распределения TR_2O_3 , P_2O_5 и Nb_2O_5 в сосуществующих расплавах показаны в табл. 5.

Представленные материалы позволяют определить методы переработки сосуществующих расплавов. Фосфатно-солевой расплав вскрывается слабым раствором азотной и серной кислоты с получением из продуктивных кислых растворов — концентратов РЗЭ. Кислотонерастворимый остаток представляет

делицын

Таблица 4. Коэффициенты распределения (K_p) компонентов между силикатными (L_{Si}) и фосфатно-солевыми (L_Φ) расплавами при различном содержании Fe₂O₃ в шихте. Содержание компонентов в силикатном и фосфатно-солевом расплаве

	Содержание Fe_2O_3 в шихте, мас.%									
Компоненты	0,00			4,60			6,58			
	L _{Si}	L _Φ	K _p	L _{Si}	L _φ	K _p	L _{Si}	L _Φ	K _p	
F	1,80	6,28	0,28	2,32	8,15	0,28	1,73	9,32	0,18	
Na ₂ O	7,25	13,16	0,55	11,23	11,73	0,95	10,76	11,85	0,90	
P_2O_5	2,20	20,89	0,11	3,43	22,32	0,15	2,77	21,02	0,13	
Nb_2O_5	4,91	< 1	5	5,32	< 1	> 5	6,89	< 1	> 6	
TR_2O_3	7,34	54,36	0,13	7,84	52,47	0,15	1,42*	48,48	_	
Fe ₂ O ₃	0,00	0,00	0,00	11,94	1,50	8,0	15,53	1,90	8,2	
SiO ₂	62,10	1-2	60,0	43,48	1,28	33	46,34	1-2	45	

Примечание. * — в силикатном расплаве определён только церий.

Таблица 5. Распределение TR_2O_3 , P_2O_5 и Nb_2O_5 по фазам силикатного и фосфатно-солевого расплава (%-е доли) при содержании Fe_2O_3 6,58%

	C	иликатный распла	1B	Фосфатно-солевой расплав			
Компо- ненты Силикатная матрица (85)	Curuvoruog	Фосфатно-	Фаза, богатая	Фосфатно-	Силикатные	Фаза, богатая	
	солевые шарики	ниобием	солевая матрица	шарики	ниобием		
	матрица (65)	(15)	(5-7)	(75)	(25)	(7-10)	
TR ₂ O ₃	48,0	51,0	1,0	85,6	2,1	12,3	
P_2O_5	45,0	55,0	0,0	95,0	5,0	0,0	
Nb ₂ O ₅	92,0	0,0	8,0	0,0	23,0	77,0	

Примечание. В скобках в шапке показано количество каждой фазы (мас.%), принимающей участие в строении расплава.

собой промпродукт, обогащённый ниобием и железом. Силикатный расплав вначале обрабатывается слабым раствором серной кислоты для очистки от фосфатно-солевых шариков, а затем раствором щёлочи для удаления SiO₂ и Al₂O₃. Нерастворимый остаток представляет собой ниобиевый промпродукт.

Источник финансирования. Работа выполнена при поддержке РФФИ (грант № 17–08–00583).

СПИСОК ЛИТЕРАТУРЫ

 Делицын Л.М., Мелентьев Г.Б., Батенин В.М., Толстов А.В. Сосуществование двух несмешивающихся фаз в силикатно-солевой ниобий-редкоземельной системе // ДАН. 2015. Т. 462. № 4. С. 440–443.

- Делицын Л.М. Механизм ликвации в природных и технологических силикатно-солевых расплавах — концентраторах редких земель и ниобия. М.: ГЕОС, 2018. 408 с.
- Лазарева Е.В., Жмодик С.М., Добрецов Н.Л., Толстов А.В., Щербов Б.Л., Карманов Н.С., Герасимов Е.Ю., Брянская А.В. Главные рудообразующие минералы аномально богатых руд месторождения Томтор (Арктическая Сибирь) // Геология и геофизика. 2015. Т. 56. № 6. С. 1080–1115.
- Делицын Л.М., Батенин В.М., Магазина Л.О., Бородина Т.И. Сосуществование двух несмешивающихся жидких фаз в системе LaPO₄-SiO₂-NaF-Nb₂O₅ // ДАН. 2018. Т. 480. № 4. С. 433-438.

DISTRIBUTION OF TR₂O₃, P₂O₅ AND NB₂O₅ BETWEEN TWO IMMISCIBLE MELTS IN THE MONAZITE-SIO₂-NAF-NB₂O₅-FE₂O₃ SYSTEM L. M. Delitsyn

Joint Institute of High Temperatures of the Russian Academy of Sciences, Moscow, Russian Federation

Presented by Academician of the RAS L.I. Leont'yev June 10, 2019

Received June 17, 2019

Monacite $-SiO_2-NaF-Nb_2O_5-Fe_2O_3$ system on 1200 °C isotherm is characterized by a wide area of two immiscible melts: silicate and phosphate-fluoride, salt. The system is a mutual education in molten salt a new phase of rare earth double phosphates and fluoridahospital REE and Na in the composition of which is Fe and Nb. Iron has a great influence on the immiscibility of melts: in the absence of iron, the liquation area occupies 50% of the chart area, at 5% Fe_2O_3 - 57%, at 10% Fe_2O_3 - 70%. REE, P and Nb oxides are contrast distributed between the two immiscible melts. REE and P are 95% concentrated in phosphate-salt melt. Niobium is concentrated in an iron-silicate melt. In the absence of Fe_2O_3 in the silicate melt, the content of Nb_2O_5 = 4,91%, at 15,33% it = 6,89%, i.e. increased by 40%.

Keyword: component distribution, immiscibility of melts, monazite, rare earths, niobium oxide, iron oxide, rare earth phosphates, rare earth-niobium phase.