= ФИЗИЧЕСКАЯ ХИМИЯ =

УДК 544.654.2

ЭЛЕКТРООСАЖДЕНИЕ ПЛАТИНЫ В СВЕРХКРИТИЧЕСКОМ ЭЛЕКТРОЛИТЕ НА ОСНОВЕ ДИОКСИДА УГЛЕРОДА

Э. Д. Урсов¹, М. С. Кондратенко^{1,*}, М. О. Галлямов^{1,2}

Представлено академиком РАН А.Р. Хохловым 30.09.2019 г.

Поступило 03.10.2019 г.

Впервые исследовано электроосаждение платины из сверхкритического электролита на основе диоксида углерода с добавлением ацетонитрила в качестве сорастворителя и соли тетрабутиламмония тетрафторбората. В качестве прекурсора используется диметил(1,5-циклооктадиен)платина. Установлено, что в результате потенциостатического электроосаждения формируется не сплошная плёнка, а агломераты плотноупакованных наночастиц платины.

Ключевые слова: сверхкритический электролит, электроосаждение, диоксид углерода, диметил(1,5-ци-клооктадиен)платина, платина.

DOI: https://doi.org/10.31857/S0869-56524896606-610

Электроосаждение плёнок металлов в сверхкритическом электролите является сравнительно новым и малоизученным направлением [1]. Более высокие коэффициенты диффузии в сверхкритических средах в сравнении с обычными жидкими растворителями позволяют существенно ускорить массоперенос, а высокая проникающая способность и отсутствие обусловленных поверхностным натяжением капиллярных эффектов — получать однородные покрытия даже в самых малых порах подложек со сложной геометрией поверхности. Так, ранее была показана возможность успешного электроосаждения меди и серебра в сверхкритических электролитах [2, 3]. Показана возможность управляемого получения нанопроводов из различных материалов с помощью использования наноструктурированных шаблонов путём такого электроосаждения [4-8]. Таким образом, мы ожидаем, что использование новых типов прекурсоров позволит развить данный подход и получить новые перспективные материалы посредством электроосаждения в сверхкритическом растворителе.

В настоящей работе изучается принципиальная возможность получения электрохимических осадков платины в сверхкритическом (СК) электролите на основе диоксида углерода. В качестве прекурсора платины было выбрано следующее соединение:

1 Московский государственный университет

им. М.В. Ломоносова

диметил(1,5-циклооктадиен)платина, обладающее сравнительно высокой растворимостью в СК CO_2 (~4,76 \cdot 10⁻² моль/л при температуре 343 К и давлении 276 атм [9]). Так, ранее нашей группой было показано, что путём осаждения данного прекурсора в сверхкритическом диоксиде углерода и его последующего термического разложения возможно получать монодисперсные наночастицы платины на углеродных подложках различной природы, которые демонстрируют высокую электрокаталическую активность в реакции восстановления кислорода в условиях работы топливного элемента [9].

Эксперименты по электроосаждению проводили в двухэлектродной ячейке высокого давления объёмом 10 мл, изготовленной из нержавеющей стали. В качестве подложки и рабочего электрода был выбран электрод из высокоориентированного пиролитического графита (ВОПГ) прямоугольной формы размерами около 2×4 мм (площадь 0,16 см²). В качестве противоэлектрода и электрода сравнения использовали корпус самой ячейки. В качестве электролита использовали сверхкритический диоксид углерода с добавлением ацетонитрила в качестве сорастворителя с предварительно растворённой в нём солью (тетрабутиламмония тертрафторбората (ТБАТФБ)). Изучение фазового поведения электролита при добавлении в него прекурсора платины показало, что при давлении выше 500 атм и температуре выше 343 К четырёхкомпонентная система следующего состава: 16 мМ ТБАТФБ, 2,3 М ацетонитрила, 14,4 мМ диметил(1,5-циклооктадиен)платины в диоксиде углерода — образует одну гомогенную сверхкритическую фазу.

² Институт элементоорганических соединений

им. А.Н. Несмеянова

Российской Академии наук, Москва

^{*}E-mail: kondratenko@polly.phys.msu.ru

Рис. 1. Циклические вольтамперограммы рабочего электрода из ВОПГ в фоновом сверхкритическом электролите (16 мМ ТБАТФБ, 2,3 М ацетонитрила в диоксиде углерода) и в электролите, содержащем 14,4 мМ прекурсора платины (циклооктадиендиметил платина). Пунктиром и сплошной линией показаны кривые, полученные в отсутствие и в присутствии прекурсора соответственно. Температура 353 К, давление 530 атм. Скорость развёртки потенциала 100 мВ/с.

Эксперименты по электроосаждению производили в потенциостатическом режиме при потенциале рабочего электрода –3,5 В относительно противоэлектрода. Как видно из циклических вольтамперограмм на рис. 1, при данных значениях потенциала ток, обусловленный восстановлением прекурсора платины, уже существенно отличается от фонового (разница составляет около 1,2 мА/см²). Высокие значения фонового тока в данном случае могут быть обусловлены восстановлением диоксида углерода до монооксида или до оксалат-анионов, что было описано ранее в работе [10].

На временных зависимостях тока при потенциостатическом осаждении (рис. 2) наблюдаются явные пики, ток восстановления растёт и затем падает. Такое поведение является вполне типичным при электроосаждении платины в водных электролитах при высоких перенапряжениях и обусловлено диффузионным контролем скорости первичной нуклеации [11, 12]. Таким образом, даже несмотря на существенно более высокие коэффициенты диффузии в сверхкритическом электролите по сравнению с водным электролитом, диффузионный поток прекурсора к поверхности электрода ограничивает скорость роста осадков платины, что может быть связано с низкой концентрацией прекурсора и высокими значениями перенапряжения, при которых кинетический ток оказывается существенно выше диффузионного.

Варьировалось время электроосаждения, полученные серии образцов охарактеризованы в табл. 1.

Рис. 2. Зависимости тока и заряда от времени в ходе электроосаждения платины (серия 2) на поверхность ВОПГ из сверхкритического электролита (16 мМ ТБАТФБ, 2,3 М ацетонитрила в диоксиде углерода) при температуре 353 К и давлении 530 атм.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 6 2019

Таблица 1. Серии полученных образцов: длительность потенциостатической экспозиции при потенциале –3,5 В и общий заряд, протёкший через рабочий электрод.

№ серии	Длительность экспозиции, ч	Протёкший заряд, Кл
1	1	1,47
2	2	2,4
3	10	10,0

При экспозиции 1 ч количество осадков оказывается незначительным. Согласно данным сканирующей электронной микроскопии (прибор Carl Zeiss Supra 40, Германия) при более длительной экспозиции наблюдаются сначала отдельные агломераты плотно упакованных наночастиц платины с относительно узким распределением по размерам со средним диаметром около 27 нм (рис. 3a, б).

Рис. 3. СЭМ-микрографии (а, в) и распределения по размерам (б, г) частиц осадков, полученных потенциостатическим электроосаждением платины на поверхность электрода из ВОПГ в сверхкритическом электролите при различном времени осаждения: образец серии 2, время осаждения 2 ч (а, б); образец серии 3, время осаждения 10 ч (в, г). ACM-изображения для образца серии 3 в режиме измерения топографии (д, ж) и сдвига фаз (е, з). На изображениях д, е показаны участки, отсканированные повторно с большим разрешением (изображения ж, з соответственно). Шкала высот 300 нм (д, ж). Масштабная линия 400 нм (а, в, д–з).

Образование агломератов, по всей видимости, обусловлено различными скоростями восстановления прекурсора на поверхности платины и ВОПГ. Более высокая скорость вторичной нуклеации на поверхности платины по сравнению со скоростью первичной нуклеации на поверхности ВОПГ приводит к разрастанию агломератов. При этом количество агломератов, определяемое скоростью первичной нуклеации на поверхности ВОПГ, растёт очень медленно. В результате это приводит к формированию наблюдаемой структуры из небольшого количества разрозненных агломератов. Размер частиц внутри агломератов может быть обусловлен неполным восстановлением платины из прекурсора и адсорбцией продуктов такого частичного восстановления на поверхности платины, что ограничивает рост частиц.

При дальнейшем увеличении времени экспозиции до 10 ч агломераты увеличиваются в размерах и покрывают значительную площадь поверхности ВОПГ (рис. 3в). Распределение частиц по размерам становится более широким (рис. 3г), средний размер частиц уменьшается до 17 нм. По данным атомносиловой микроскопии (прибор MultiMode AFM-2 с контроллером NanoScope IIIa) толщина осадков составляет до 500 нм (рис. 3д–3).

На вольтамперограммах, снятых в трёхэлектродной ячейке в 1 М водном растворе соляной кислоты (рис. 4), можно выделить пики адсорбции и десорбции водорода на поверхности платины, что под-

Рис. 4. Циклическая вольтамперограмма ВОПГ электрода с осадками платины (серия 2) в 1 М водном растворе соляной кислоты. Потенциал определён относительно Ag|AgC электрода сравнения. Скорость развёртки потенциала 10 мВ/с.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 6 2019

тверждает успешность процесса электроосаждения из сверхкритического электролита. Вычисление заряда под пиком десорбции водорода позволяет оценить площадь поверхности платины [13]. Так, площадь под пиком десорбции водорода для образца серии 2 составила 680 мкКл, что соответствует площади поверхности платины около 3,2 см².

Таким образом, впервые путём электрохимического осаждения в сверхкритическом электролите получены осадки платины. Примечательно, что осадки имеют морфологию не однородной поликристаллической плёнки, а представляют собой агломераты наночастиц. В дальнейшем планируется подробно исследовать механизмы роста осадков и их структуру в зависимости от параметров осаждения (потенциал, температура, давления).

Источник финансирования. Исследование выполнено за счёт гранта Российского научного фонда (проект № 16–13–10338 П).

СПИСОК ЛИТЕРАТУРЫ

- Bartlett P.N., Cook D.A., George M.W., et al. Electrodeposition from Supercritical Fluids // Phys. Chem. Chem. Phys. 2014. V. 16. P. 9202–9219. DOI: 10.1039/c3cp54955k.
- Ke J., Su W., Howdle S.M., et al. Electrodeposition of Metals from Supercritical Fluids // Proc. Natl. Acad. Sci. 2009. V. 106. P. 14768–14772. DOI: 10.1073/ pnas.0901986106.
- Cook D., Bartlett P.N., Zhang W., et al. The Electrodeposition of Copper from Supercritical CO₂/Acetonitrile Mixtures and from Supercritical Trifluoromethane // Phys. Chem. Chem. Phys. 2010. V. 12. P. 11744. DOI: 10.1039/c004227g.
- Sakamoto K., Nakabayashi K., Fuchigami T. Electrochemical and Photoelectrochemical Behaviors of Polythiophene Nanowires Prepared by Templated Electrodeposition in Supercritical Fluids // Electrochemistry. 2013. V. 81. P. 328–330. DOI: 10.5796/electrochemistry.81.328.
- Atobe M., Yoshida N., Sakamoto K., et al. Preparation of Highly Aligned Arrays of Conducting Polymer Nanowires Using Templated Electropolymerization in Supercritical Fluids // Electrochim. Acta. 2013. V. 87. P. 409–415. DOI: 10.1016/j.electacta.2012.09.032.
- Chuang H.-C., Chang T.-S., Sanchez J. Fabrication of High Aspect Ratio NiP Nanowires from Blind-Hole AAO Templates by sc-CO₂ Electroless Plating // Mater. Lett. 2019. V. 236. P. 657–660. DOI: 10.1016/j. matlet.2018.11.037.
- Bartlett P.N., Cook D.A., Hasan M.M., et al. Supercritical Fluid Electrodeposition, Structural and Electrical Characterisation of Tellurium Nanowires // RSC

Adv. 2017. V. 7. P. 40720–40726. DOI: 10.1039/ C7RA07092F.

- Lodge A.W., Hasan M.M., Bartlett P.N., et al. Electrodeposition of Tin Nanowires from a Dichloromethane Based Electrolyte // RSC Adv. 2018. V. 8. P. 24013– 24020. DOI: 10.1039/C8RA03183E.
- Grigor'ev T.E., Said-Galiev E.E., Nikolaev Y.A., et al. Electrocatalysts for Fuel Cells Synthesized in Supercritical Carbon Dioxide // Nanotechnol. Russ. 2011. V. 6. P. 311–322. DOI: 10.1134/S1995078011030062.
- Abbott A.P., Eardley C.A. Electrochemical Reduction of CO₂ in a Mixed Supercritical Fluid // J. Phys. Chem. B. 2000. V. 104. P. 775–779. DOI: 10.1021/jp9932867.
- Plyasova L.M., Molina I.Y., Gavrilov A.N., et al. Electrodeposited Platinum Revisited: Tuning Nanostructure Via the Deposition Potential // Electrochim. Acta. 2006. V. 51. P. 4477–4488. DOI: 10.1016/j.electacta.2005.12.027.
- Scharifker B., Hills G. Theoretical and Experimental Studies of Multiple Nucleation // Electrochim. Acta. 1983. V. 28. P. 879–889. DOI: 10.1016/0013-4686(83)85163-9.
- Trasatti S., Petrii O.A. Real Surface Area Measurements in Electrochemistry // Pure Appl. Chem. 1991. V. 63. P. 711–734. DOI: 10.1351/pac199163050711.

ELECTRODEPOSITION OF PLATINUM FROM CARBON DIOXIDE BASED SUPERCRITICAL ELECTROLYTE

E. D. Ursov¹, M. S. Kondratenko¹, M. O. Gallyamov^{1,2}

¹Lomonosov Moscow State University, Moscow, Russian Federation ²Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russian Federation

Presented by Academician of the RAS A.R. Khokhlov September 30, 2019

Received October 3, 2019

For the first time, the electrodeposition of platinum from a carbon dioxide-based supercritical electrolyte with the addition of acetonitrile as a co-solvent and tetrabutylammonium tetrafluoroborate salt was studied. Dimethyl (1,5-cyclooctadiene) platinum is used as a precursor. It has been established that as a result of potentiostatic electrodeposition, not a continuous film is formed, but agglomerates of densely packed platinum nanoparticles.

Keywords: supercritical electrolyte, electrodeposition, carbon dioxide, dimethyl(1,5-cyclooctadiene) platinum, platinum.