Dynamics of intravital concentration of amino acid metabolites in human brain in post-traumatic period

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Intracellular concentrations of N acetyaspartate (NAA), aspartate (Asp) and glutamate (Glu) were determined for the first time in human brain in vivo, and the effect of severe traumatic brain injury on NAA synthesis in acute and late post-traumatic period was investigated. In MRI‑negative frontal lobes one day after injury Asp and Glu levels were found to decrease by 45 and 35%, respectively, while NAA level decreased by only 16%. A negative correlation between NAA concentration and the ratio of Asp/Glu concentrations was found. In the long-term period, Glu level returned to normal, Asp level remained below normal by 60%, NAA level was reduced by 65% relative to normal, and Asp/Glu ratio significantly decreased. The obtained results revealed leading role of the neuronal aspartate-malate shuttle in violation of NAA synthesis.

Full Text

Restricted Access

About the authors

N. A. Semenova

Institute of Biochemical Physics of the Russian Academy of Sciences; Institute of Chemical Physics of the Russian Academy of Sciences; Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: andrey.man.93@gmail.com
Russian Federation, 4, Kosygina street, Moscow, 119991; 20 Bolshaya Polyanka Street, Moscow, 119180

P. E. Menshchikov

Institute of Biochemical Physics of the Russian Academy of Sciences; Institute of Chemical Physics of the Russian Academy of Sciences; Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: andrey.man.93@gmail.com
Russian Federation, 4, Kosygina street, Moscow, 119991; 20 Bolshaya Polyanka Street, Moscow, 119180

A. V. Manzhurtsev

Institute of Biochemical Physics of the Russian Academy of Sciences; Institute of Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: andrey.man.93@gmail.com
Russian Federation, 4, Kosygina street, Moscow, 119991

M. V. Ublinskiy

Institute of Biochemical Physics of the Russian Academy of Sciences; Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: andrey.man.93@gmail.com
Russian Federation, 4, Kosygina street, Moscow, 119991; 20 Bolshaya Polyanka Street, Moscow, 119180

T. A. Akhadov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: andrey.man.93@gmail.com
Russian Federation, 20 Bolshaya Polyanka Street, Moscow, 119180

S. D. Varfolomeev

Institute of Biochemical Physics of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: andrey.man.93@gmail.com

Сorresponding Member of the RAS

Russian Federation, 4, Kosygina street, Moscow, 119991; 1, Leninskie gory, Moscow, 119991

References

  1. Tallan H.H. // J. Boil. Chem. 1957. V. 224. P. 41–45.
  2. Moffett J., Ross B., Arun P., Madhavarao C., Nam-boodiri M. // Prog. Neurobiol. 2007. V. 81. № 2. P. 89–131.
  3. Moffett J., Arun P., Ariyannur P., Namboodiri A. // Front Neuroenergetics. 2013. V. 5. P. 1–19.
  4. Семенова Н.А., Луковенков А.В., Ахадов Т.А., Сидорин С.С., Варфоломеев С.Д. // Биохимия. 2012. Т. 77. № 4. С. 495–502.
  5. Moffet J., Arun P., Ariyannur P. Garbern J., Jacobo-witz D., Namboodiri A. // Glia. 2011. V. 59. № 10. P. 1414–1419.
  6. Kots E.D., Lushchekina S.V., Varfolomeev S.D., Nemukhin A.V. // J. Chem. Inf. Model. 2017. V. 57. № 8. P. 1999–2008.
  7. Vagnozzi R., Tavazzi B., Signoretti S., Amorini A.M., Belli A., Cimatti M., Delfini R., Di Pietro V., Fi-noc-chiaro A., Lazzarino G. // Neurosurgery. 2007. V. 61. № 2. P. 379–388.
  8. Harris J., Ye H., Choi I., Lee P., Berman N., Swerd-low R., Craciunas S., Brooks W. // J. Cereb. Blood Flow Metab. 2012. V. 32. P. 2122–2134.
  9. Kinoshita Y., A. Yokota A. // NMR Biomed. 1997. V. 10. № 1. P. 2–12.
  10. Mescher M., Merkle H., Kirsch J., Garwood M., Gruetter R. // NMR Biomed. 1998. V. 11. P. 266–272.
  11. Меньщиков П.Е., Семенова Н.А., Манжурцев А.В., Ахадов Т.А., Варфоломеев С.Д. // Изв. РАН. Сер. хим. 2018. № 4. С. 1–8.
  12. McKenna M., Waagepetersen H., Schousboe A., Sonnewald U. // Biochem. Pharmacol. 2006. V. 71. P. 399–407.
  13. La Noue K., Tischler M. // J. Biol. Chem. 1974. V. 249. P. 7522–7528.
  14. Jalil М., Begum L., Contreras L. // J. Biol. Chem. 2007. V. 280. P. 31333–31339.
  15. Di Pietro V., Amorini A., Tavazzi B., Vagnozzi R., Logan A., Lazzarino G., Signorett S., Lazzarino G., Belli A. // Mol. Med. 2014. V. 20. P. 147–157.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical 1H MR spectrum obtained in the frontal lobe of the brain intact according to the diagnostic MRI data - (a). The location of the VOI in the frontal lobe of the brain - (b). A typical spectrum of AspMEGA-PRESS, obtained in the region of the frontal lobe of the brain - (c).

Download (2MB)
3. Fig. 2. Concentrations of NAA, Asp, Glu (M ± SD) and the Asp / Glu ratio (M ± SD) in the frontal lobes of the human brain that are intact (according to diagnostic MRI data) are normal (n = 12), with PMTCT in the acute period (n = 8) and in the remote periods (n = 7).

Download (372KB)

Copyright (c) 2019 Russian Academy of Sciences