The method of cleaning and modification of the material for bone xenografts in bi-phase media containing high pressure CO2

Cover Page

Cite item

Full Text

Abstract

In the present work, a promising method was proposed for purification of fragments of animal bone tissue from high-molecular weight compounds in bi-phase media containing high-pressure CO2 for the first time, namely, in solutions of carbonic and peroxycarbonic acids. The effectiveness of this purification was confirmed by SEM and IR spectroscopy. It turned out that during the exposure of bone fragments in solutions of carbonic and peroxycarbonic acids under high pressure of CO2, the components of the mineral phase of bone tissue are also extracted, which allows to obtain highly dispersed particles of hydroxyapatite during the deposition of the extract. The structure and composition of the extracts were investigated by XRD analysis and SEM.

About the authors

M. V. Bulat

Lomonosov Moscow State University

Email: pigaleva@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

M. A. Pigaleva

Lomonosov Moscow State University

Author for correspondence.
Email: pigaleva@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

I. V. Novikov

Lomonosov Moscow State University

Email: pigaleva@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

E. E. Levin

Lomonosov Moscow State University

Email: pigaleva@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

M. O. Gallyamov

Lomonosov Moscow State University; Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: pigaleva@polly.phys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 28, Vavilova street, Moscow, 119991

References

  1. Vangsness C., Dellamaggiora R. Current Safety Sterilization and Tissue Banking Issues for Soft Tissue Allografts // Clin. Sports Med. 2009. V. 28. P. 183-189. doi: 10.1016/j.csm.2008.10.008.
  2. Westhof E. Water and Biological Macromolecules. Boca Raton (FL): CRC Press, 1993.
  3. Michalarias I., Gao X., Ford R., Li J. Recent Progress on Our Understanding of Water Around Biomolecules // J. Mol. Liq. 2005. V. 117. P. 107-116. doi: 10.1016/j.molliq.2004.08.011.
  4. Chen C., Chang C., Chen Y., Lin T., Su C., Lee S. Applications of Supercritical Fluid in Alloplastic Bone Graft: A Novel Method and in vitro Tests // Ind. Eng. Chem. Res. 2006. V. 45. P. 3400-3405. doi: 10.1021/ie0507169.
  5. Russell N., Oliver R., Walsh W. The Effect of Sterilization Methods on the Osteoconductivity of Allograft Bone in a Critical-Sized Bilateral Tibial Defect Model in Rabbits // Biomaterials 2013. V. 34. P. 8185-8194. doi: 10.1016/j.biomaterials.2013.07.022.
  6. Pigaleva M., Elmanovich I., Kononevich Y., Gallyamov M., Muzafarov A. A Biphase H2O/CO2 System as a Versatile Reaction Medium for Organic Synthesis // RSC Adv. 2015. V. 5. P. 103573-103608. doi: 10.1039/c5ra18469j.
  7. Качала В., Хемчян Л., Кашин А., Орлов Н., Грачев А., Залесский С., Анаников В. Комплексное исследование структуры и механизмов получения и превращений газообразных, жидких и твердых химических систем методами масс-спектрометрии, спектроскопии ЯМР и электронной микроскопии // Успехи химии. 2013. Т. 82. С. 648-685. DOI: 10.1070/ RC2013v082n07ABEH004413.
  8. Кашин А., Анаников В. Формирование наноразмерных покрытий и наночастиц металлов путём магнетронного распыления и исследование методом сканирующей электронной микроскопии // Изв. АН. Сер. хим. 2011. № 12. С. 2551-2556. doi: 10.1007/s11172-011-0399-x.
  9. Zhang N., Zhou M., Zhang Y., Wang X., Ma S., Dong L., Yang T., Ma L., Li B. Porcine Bone Grafts Defatted by Lipase: Efficacy of Defatting and Assessment of Cytocompatibility // Cell Tissue Bank. 2014. V. 15. P. 357-367. doi: 10.1007/s10561-013-9391-z.
  10. http://www.icdd.com/index.php/pdf 4/
  11. Rietveld H. A Profile Refinement Method for Nuclear and Magnetic Structures // J. App. Cryst. 1969. V. 2. P. 65. doi: 10.1107/S0021889869006558.
  12. Bish D., Howard S. Quantitative Phase Analysis Using the Rietveld Method // J. Appl. Cryst. 1988. V. 21. P. 86. doi: 10.1107/S0021889887009415.
  13. Solovyov L. Full-Profile Refinement by Derivative Difference Minimization // J. Appl. Cryst. 2004. V. 37. P. 743. doi: 10.1107/S0021889804015638.
  14. Pingitore N., Fretzdorff S., Seitz B., Estrada L., Borrego P., Crawford G., Love K. Dissolution Kinetics of CaCO3 in Common Laboratory Solvents // J. Sedimentary Res. 1993. V. 63. № 4. P. 641-645. doi: 10.1306/D4267B9A 2B26-11D7-8648000102C1865D.
  15. Zhou H., Lee J. Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering // Acta Biomaterialia. 2011. V. 7. P. 2769-2781. doi: 10.1016/j.actbio.2011. 03.019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies