Occurrence of “precursors” of PKP-waves in the layered radial-symmetric Earth

Cover Page

Cite item

Full Text

Abstract

It is generally accepted that PKP‑waves “precursors”, which are observed on a real data ahead of PKP‑waves, are explained by scattering on small-scale inhomogeneities in the lower mantle. In this paper, a stable analytical solution (without interference) was obtained for the wave field of longitudinal waves in a layered (discrete) ball of planetary size. The calculations of the total wave field, rays and travel-time curves of longitudinal waves for the spherical model of the Earth AK135 with a carrier frequency of 1 hertz are presented. The analytical solution showed that at angles smaller than 145 degrees ahead of the PKP‑waves, low-amplitude waves appear, with a higher frequency of about 1,3 hertz. Indeed, these high-frequency oscillations have the form characteristic for waves scattered at a certain object. The ray pattern and the travel-time graph show that these high-frequency oscillations are due to exclusively to the spherical geometry of the Earth. This could be explained by the interference of refracted and reflected longitudinal waves in the bottom of a discrete outer core. This field propagates even further towards smaller angles due to the interference of diffraction waves.

About the authors

A. G. Fatyanov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences

Email: burmin@ifz.ru
Russian Federation, 6, Prospect Akad. Lavrentieva, Novosibirsk, 630090

V. Yu. Burmin

Institute of the Earth Physics of the Russian Academy of Sciences

Author for correspondence.
Email: burmin@ifz.ru
Russian Federation, 10-1, Bolshaya Gruzinskaya str., Moscow, 123242

References

  1. Wen L., Helmberger D. V. // Science. 1998. V. 279. Iss. 5357. P. 1701-1703.
  2. Hedlin M. A.H., Shearer P. M., Earle P. S. // Nature. 1997. V. 387 (6629). P. 145-150.
  3. Gutenberg B. // Eos Trans. AGU. 1957. V. 38. P. 750-753.
  4. Bullen K. E., Burke-Gaffney T.N. // Geophys J. Int. 1958. V. 1. P. 9-17.
  5. Bolt B. A. // Nature. 1962. V. 196. P. 122-124.
  6. Sacks I. S., Saa G. // Year Book Carnegie Inst. Washington. 1969. V. 69. P. 419-426.
  7. Бурмин В. Ю. // Физика Земли. 2004. № 6. С. 24-41.
  8. Бурмин В. Ю., Бойко А. Н. // ДАН. 2017. Т. 472. № 2. С. 197-200.
  9. Kennett B. L.N., Engdahl E. R., Buland R. // Geophys. J. Int. 1995. № 122. P. 108-124.
  10. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1977. 736 с.
  11. Fatyanov A. G., Burmin V.Yu. // Planetary and Space Science. 2018. V. 153. P. 100-106.
  12. Фатьянов А. Г. // ДАН. 1990. Т. 310. № 2. С. 323-327.
  13. Korneev V. A., Johnson L. R. // Geophys. J. Int. 1993. № 115. P. 230-250.
  14. Фатьянов А. Г. // Матем. заметки СВФУ. 2016. Т. 23. № 3. С. 91-103.
  15. Seiji T., Ando Kazuto, Takayuki M., Daniel P., Komatitsch D., Tromp Jeroen. // Int. J. High Performance Computing Appl. 2016. V. 30 (4). P. 411-422.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies