Microstructure and mechanical properties of Cu-Cu2O composites produced by hot pressing of copper powder
- Authors: Tkachuk G.A.1, Maltsev V.A.1, Chikova O.A.1,2
-
Affiliations:
- Ural Federal University named after the First President of Russia B.N. Yeltsin
- Ural State Mining University
- Issue: No 3 (2025)
- Pages: 50-60
- Section: Articles
- URL: https://journals.eco-vector.com/0869-5733/article/view/688129
- DOI: https://doi.org/10.31857/S0869573325035060
- ID: 688129
Cite item
Abstract
The article presents results of studying microstructure and mechanical properties of a composite material (Cu-Cu2O). The samples were taken from copper electrical contacts for electric welding machines manufactured by hot pressing PMS-1 powder under of «Uralelectromed». The microstructure was studied using scanning electron microscopy and scanning probe microscopy. The mechanical properties were determined by nanoindentation using the authors’ technique, which involves converting the indentation diagram F(h) into the tensile diagram σ(ε). Metallographic studies have shown a small grain size (~10 μm), the content of cuprite Cu2O inclusions of ~1 μm in size with faceted morphology was close to 20%. The results of measuring the mechanical properties: Young’s modulus E = 119.89±5.75 GPa, hardness HIT = 2.28±0.15 GPa; elastic recovery of the material R = 5.54±2.33%; plasticity characteristic δА = 94.46±2.33%; yield strength σт ≈ 600 MPa. Evaluation of mechanical stresses due to the two-phase nature of the composite material Cu-Cu2O showed that the additional pressure, related to the length of the rupture line, is approximately 50 times greater than the external force, and this can be the main reason for the failure of the products.
Full Text

About the authors
G. A. Tkachuk
Ural Federal University named after the First President of Russia B.N. Yeltsin
Author for correspondence.
Email: O.A.Chikova@urfu.ru
Russian Federation, Yekaterinburg
V. A. Maltsev
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: O.A.Chikova@urfu.ru
Russian Federation, Yekaterinburg
O. A. Chikova
Ural Federal University named after the First President of Russia B.N. Yeltsin; Ural State Mining University
Email: O.A.Chikova@urfu.ru
Russian Federation, Yekaterinburg; Yekaterinburg
References
- Ловшенко, Ф.И. Повышение электропроводности дисперсно-упрочненной меди / Ф.И. Ловшенко, А.И. Хабибуллин // Литье и металлургия. 2019. №4. С.115–122. – (Lovshenko, F.G. Increased electrical conductivity dispersion-hardened copper / F.G. Lovshenko, A.I. Khabibulin // Foundory production and metallurgy. 2019. V.4. P.115–122.)
- Гнесин, Г.Г. Спеченные материалы для электротехники и электроники: справочник / Г.Г. Гнесин, В.А. Дубок, Г.Н. Братерская [и др.]; под ред. Г.Г. Гнесина. – М.: Металлургия, 1981. 343 с. – (Gnesin, G.G. Sintered materials for electrical engineering and electronics : handbook / ed. G.G. Gnesin [et al.] – Moscow : Metallurgy, 1981. 343 p.)
- Раховский, В.И. Разрывные контакты электрических аппаратов / В.И. Раховский, Г.В. Левченко, О.К. Теодорович; под общ. ред. В.И. Раховского. – М.; Л.: Энергия, 1966. 295 с. – (Rakhovsky, V.I. Breaking contacts of electrical devices / V.I. Rakhovsky, G.V. Levchenko, O.K. Teodorovich. – Moscow : Energy, 1966. 295 p.)
- Braunovic, M. Electrical contacts : fundamentals, applications and technology; 1st ed. / M. Braunovic, N.K. Myshkin, V.V. Konchits. – CRC Press, 2007. 672 p. https://doi.org/10.1201/9780849391088
- Bukhanovskii, V.V. The effect of temperature on mechanical characteristics of copper-carbonic composite / V.V. Bukhanovskii, I. Mamuzić, N.P. Rudnitsky // Kovove Materialy (Metallic Materials). 2008. V.46. P.33–37.
- Bukhanovsky, V. Microlayered composite materials on basis of copper, refractory, rare-earth metals, and carbon for electrical contacts and electrodes / V. Bukhanovsky, M. Rudnytsky, I. Mamuzich // Intern. J. Nonferrous Metallurgy. 2014. V.3. P.18–27. DOI : 10.4236/ijnm.2014.32003.
- Фетисов, А.В. Анализ электронных состояний оксидного слоя на поверхности ультрадисперсной меди методом рентгеновской фотоэлектронной спектроскопии / А.В. Фетисов, М.В. Кузнецов // Журн. прикладной спектроскопии. 2009. Т.76. №4. С.552–556. – (Fetisov, A.V. Analysis of the electronic states of the oxide layer on the surface of ultradispersed copper by X-ray photoelectron spectroscopy / A.V. Fetisov, M.V. Kuznetsov // J. Appl. Spectroscopy. 2009. V.76. №4. P.552–556.)
- Gordeev, Y.I. Prospects of nanoparticle application in contact materials of urban electric transport / Y.I. Gordeev, G.M. Zeer, E.G. Zelenkova [et al.] // Russian J. Non-Ferrous Metals. 2012. V.53(4). P.351–355. DOI : 10.3103/S1067821212030091.
- Zeer, G.M. Microstructure and properties of an electrocontact Cu-(ZnO/TiO2) material / G.M. Zeer, E.G. Zelenkova, V.V. Beletskii [et al.] // Tech. Physics. 2015. V.60. №12. P.1823–1828. DOI : 10.1134/S1063784215120270.
- Zhang, X. Thermal deformation behavior of the Al2O3-Cu/(W, Cr) electrical contacts / X. Zhang, Y. Zhang, B. Tian [et al.] // Vacuum. 2019. V.164. P.361–366. DOI : 10.1016/j.vacuum.2019.03.054.
- Loginov, Y.N. Interaction of a copper oxide particle with copper in drawing / Y.N. Loginov, S.L. Demakov, A.G. Illarionov, M.A. Ivanova // Russian Metallurgy (Metally). 2012. №11. P.947–953. DOI : 10.1134/S0036029512110109.
- Abedi, M. A critical review on spark plasma sintering of copper and its alloys / M. Abedi, A. Asadi, S. Vorotilo [et al.] // J. Mater. Sci. 2021. V.56. P.19739–19766. https://doi.org/10.1007/s10853-021-06556-z
- Cipolloni, G. Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering / G. Cipolloni, M. Pellizzari, A. Molinari [et al.] // Powder Technol. 2015. V.275. P.51–59. https://doi.org/10.1016/j.powtec.2015.01.063
- Menapace, C. Spark plasma sintering behaviour of copper powders having different particle sizes and oxygen contents / C. Menapace, G. Cipolloni, M. Hebda, G. Ischia // Powder Technol. 2016. V.291. P.170–177. https://doi.org/10.1016/j.powtec.2015.12.020
- Diouf, S. Spark plasma sintering of cryomilled copper powder / S. Diouf, C. Menapace, M. D’Incau [et al.] // Powder Metall. 2013. V.56(5). P.420–426. https://doi.org/10.1179/1743290113y.0000000065
- Monnier, J. Spark plasma sintering and hydrogen pre-annealing of copper nanopowder / J. Monnier, Y. Champion, L. Perriere [et al.] // Mater. Sci. Eng. A. 2015. V.621. P.61–67. DOI : 10.1016/j.msea.2014.10.040.
- Wen, H.M. The influence of oxygen and nitrogen contamination on the densification behavior of cryomilled copper powders during spark plasma sintering / H.M. Wen, Y.H. Zhao, Z.H. Zhang [et al.] // J. Mater. Sci. 2011. V.46(9). P.3006–3012. https://doi.org/10.1007/s10853-010-5178-9
- Portier, R.A. Spark plasma sintering of Cu-Al-Ni shape memory alloy / R.A. Portier, P. Ochin, A. Pasko [et al.] // J. Alloys Comp. 2013. V.577. P.S472–S477. https://doi.org/10.1016/j.jallcom.2012.02.145
- Kossman, S. A new approach of the Oliver and Pharr model to fit the unloading curve from instrumented indentation testing / S. Kossman, T. Coorevits, A. Iost, D. Chicot // J. Mater. Res. 2017. V.32. №12. P.2230–2240. DOI : 10.1557/jmr.2017.120.
- Kossman, S. Mechanical characterization by multiscale instrumented indentation of highly heterogeneous materials for braking applications / S. Kossman, A. Iost, D. Chicot [et al.] // J. Mater. Sci. 2019. V.54. №6. P.4647–4670. DOI : 10.1007/s10853-018-3158-7.
- Čech, J. Statistical approach for identification of mechanical properties of individual phases based on indentation data / J. Čech, P. Haušild, A. Materna, J. Matějíček // Materiaux et Techniques. 2017. V.105. №1. P.105 https://doi.org/10.1051/mattech/2016041
- Haušild, P. Some issues in relations between microstructure and indentation measurements / P. Haušild, A. Materna, L. Kocmanová, J. Matějíček // Solid State Phenomena. 2017. V.258. P.131–136. DOI : 10.4028/www.scientific.net/SSP.258.131.
- Kocmanová, L. Investigation of indentation parameters near the interface between two materials / L. Kocmanová, P. Haušild, A. Materna, J. Matějíček // Key Eng. Mater. 2015. V.662. P.31–34. DOI : 10.4028/www.scientific.net/KEM.662.31.
- Chikova, O.A. Measuring the nanohardness of commercial submicrocrystalline aluminum alloys produced by dynamic pressing / O.A. Chikova, E.V. Shishkina, A.N. Petrova, I.G. Brodova // Phys. Metals Metallography. 2014. V.115(5). P.523–528. DOI : 10.1134/S0031918X14050044.
- Oliver, W.C. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / W.C. Oliver, G.M. Pharr // J. Mater. Res. 1992. V.7. P.1564–1583. https://doi.org/10.1557/JMR.1992.1564
- Орешко, Е.И. Исследование пластической деформации металла методом индентирования / Е.И. Орешко, Н.О. Яковлев, В.С. Ерасов, Д.А. Уткин // Зав. лаб. Диагностика материалов. 2022. T.88(2). C.64–70. https://doi.org/10.26896/1028-6861-2022-88-2-64-70 – (Oreshko, E.I. Study of the plastic deformation of metals by indentation method / E.I. Oreshko, N.O. Yakovlev, V.S. Erasov, D.A. Utkin // Indust. Lab. Diagnostics of Mater. 2022. V.88(2). P.64–70. https://doi.org/10.26896/1028-6861-2022-88-2-64-70)
- Булычев, С.И. Новые параметры подобия при переходе от диаграмм вдавливания к диаграммам растяжения / С.И Булычев., А.Н. Кравченков // Зав. лаб. Диагностика материалов. 2014. Т.80. №2. С.49–54. – (Bulychev, S.I. New similarity parameters in transition from indentation diagrams to tensile diagrams / S.I. Bulychev, A.N. Kravchenkov // Indust. Lab. Diagnostics of Mater. 2014. V.80. №2. P.49–54.)
- Matyunin, V.M. Converting the instrumented indentation diagrams of a dall indenter into the stress–strain curves for metallic structural materials / V.M. Matyunin, A.Y. Marchenkov, P.V. Volkov [et al.] // Inorg. Mater. 2023. V.59. P.1515–1523. https://doi.org/10.1134/S0020168523150116
- Butt, H.-J. Force measurements with the atomic force microscope : Technique, interpretation, and applications / H.-J. Butt, B. Cappella, M. Kapp // Surface Sci. Reports. 2005. V.59(1–6). P.1–152. https://doi.org/10.1016/j.surfrep.2005.08.003
- Ritasalo, R. Spark plasma sintering of submicron-sized Cu-powder-Influence of processing parameters and powder oxidization on microstructure and mechanical properties / R. Ritasalo, M.E. Cura, X.W. Liu [et al.] // Mater. Sci. Eng. A. 2010. V.527. №10–11. P.2733–2737. DOI : 10.1016/j.msea.2010.01.008.
- Ritasalo, R. Microstructural and mechanical characteristics of Cu-Cu2O composites compacted with pulsed electric current sintering and hot isostatic pressing / R. Ritasalo, M.E. Cura, X.W. Liu [et al.] // Composites. Pt.A : Appl. Sci. Manufacturing. 2013. V.45. P.61–69. https://doi.org/10.1016/j.compositesa.2012.09.003
- Horrigan, V.M. The solubility of oxygen in solid copper / V.M. Horrigan // Met. Trans. A. 1977. V.8. P.785–787. https://doi.org/10.1007/BF02664788
- Zhang, Z.H. Ultrafine-grained copper prepared by spark plasma sintering process / Z.H. Zhang, F.C. Wang, L. Wang, S.K. Li // Mater. Sci. Eng. A. 2008. V.476 (1–2). P.201–205. https://doi.org/10.1016/j.msea.2007.04.107
- Rohrer Gregory S. Introduction to grains, phases, and interfaces–an interpretation of microstructure / Rohrer Gregory S. // Trans. AIME. 1948. V.175. P.15–51. by C.S. Smith. Met. Mater. Trans. A. 2010. V.41(5). P.1063–1100. DOI : 10.1007/s11661-010-0215-5.
- Akbarpour, M.R. Fabrication, characterization and mechanical properties of hybrid composites of copper using nanoparticulates of SiC and carbon nanotubes / M.R. Akbarpour, E. Salahi, F.A. Hesari [et al.] // Mater. Sci. Eng. A. 2013. V.572. P.83–90. https://doi.org/10.1016/j.msea.2013.01.01
- Tian, B. Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion strengthened copper base composite / B. Tian, P. Liu, K. Song [et al.] // Mater. Sci. Eng. A. 2006. V.435–436. P.705–710. DOI : 10.1016/j.msea.2006.07.129.
- Zheng, Y.G. Model-based simulation of normal grain growth in a two-phase nanostructured system / Y.G. Zheng, C. Lu, Y-W. Mai [et al.] // Sci. Tech. Adv. Mater. 2006. V.7. P.812–818. DOI : 10.1002/adma.201104714.
- Fan, D. Numerical simulation of Zener pinning with growing second-phase particles / D. Fan, L-Q. Chen, S-P.P. Chen // J. Amer. Ceramic Soc. 1998. V.81(3). P.526–532. https://doi.org/10.1111/j.1151-2916.1998.tb02370.x
- El-Khozondar, R. Microstructural simulation of grain growth in two-phase polycrystalline materials / R. El-Khozondar, H. El-Kohonzar, G. Gottstein, A.Rollet // Egyptian J. Solids. 2006. V.29 (1). P.35–47.
- Solomatov, V.S. Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems / V.S. Solomatov, El- R. Khozondar, V. Tikare // Phys. Earth and Planetary Interiors. 2002. V.129. P.265–282. DOI : 10.1016/S0031-9201(01)00295-3.
- Flores, E. Effect of clustering of precipitates on grain growth / E. Flores, J.M. Cabrera, J.M. Prado // Met. Mater. Trans. A. 2004. V.35. P.1097–1103. https://doi.org/10.1007/s11661-004-0035-6
- Srivatsan, T.S. Microstructure and hardness of copper powders consolidated by plasma pressure compaction / T.S. Srivatsan, B.G. Ravi, A.S. Naruka [et al.] // J. Mater. Eng. Perform. 2001. V.10(4). P.449–455. DOI : 10.1361/105994901770344872.
- Das, D. Mechanical properties of bulk ultra fine-grained copper / D. Das, A. Samanta, P.P. Chattopadhyay // Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2006. V.36(2). P.221–225. https://doi.org/10.1080/15533170500524769
- Han, Z. Dry sliding tribological behavior of nanocrystalline and conventional polycrystalline copper / Z. Han, L. Lu, K. Lu // Tribology Lett. 2006. V.21. P.47–52. DOI : 10.1007/s11249-005-9007-2.
- Tkachuk, G.A. Investigation into the microstructure and mechanical properties in submicrovolumes of LS591-A brass / G.A. Tkachuk, V.A. Maltsev, O.A. Chikova // Russian J. Non-Ferrous Metals. 2019. V.60(5). P.517–523. https://doi.org/10.3103/S1067821219050171
- Ritasalo, R. Thermal stability of PECS-compacted Cu-composites / R. Ritasalo, U. Kanerva, Hannula // Key Eng. Mater. 2013. V.527. P.113–118. DOI : 10.4028 S-P./www.scientific.net/KEM.527.113.
- Tabor, D. The hardness of metals / D. Tabor. – Oxford : Clarendon Press, 1951. 175 p.
- Hwang, S.J. Compressive yield strength of the nanocrystalline Cu with Al2O3 dispersoid / S.J. Hwang // J. Alloys Comp. 2011. V.509 (5). P.2355–2359. DOI : 10.1016/j.jallcom.2010.11.017.
- Guo, M. Relationship between microstructure, properties and reaction conditions for Cu-TiB2 alloys prepared by in situ reaction / M. Guo, K. Shen, M. Wang // Acta Materialia. 2009. V.57. P.4568–4579. DOI : 10.1016/j.matchemphys.2012.11.014.
- Lee, J. Microstructure and properties of titanium dispersed Cu alloys fabricated by spray forming / J. Lee, J.Y. Jung, E-S. Lee [et al.] // Mater. Sci. Eng. A. 2000. V.277. P.274–283. https://doi.org/10.1016/S0921-5093(99)00551-1
- Chikova, O.A. Structure and nanomechanical characteristics of Al-Cu-Mg-Si alloy with partly liquated grain boundaries upon heat treatment / O.A. Chikova, P.L. Reznik, B.V. Ovsyannikov // Phys. Metals and Metallography. 2016. V.117(12). P.1245–1250. DOI : 10.1134/S0031918X16120036.
- Chikova, O.A. Measurement of young’s modulus and hardness of Al-50 wt % Sn alloy phases using nanoindentation / O.A.Chikova, E.V. Shishkina, A.N. Konstantinov // Phys. Metals and Metallography. 2013. V.114(7). P.616–622. DOI : 10.1134/S0031918X1307003X.
- Belomestnykh, V. N. Behavior of poisson’s ratio in the crystal Cu2O / V.N. Belomestnykh, E.G. Soboleva // Appl. Mech. Mater. Trans. Tech. Publ. Ltd. 2014. V.682. P.170–173. https://doi.org/10.4028/www.scientific.net/amm.682.170
Supplementary files
