Digital technologies in chemistry and materials science

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article considers the problems and prospects of digitalization of chemical processes and technologies on the background of the global chemical landscape. Special attention is paid to such issues as low speed of data processing, the problem of lost data, knowledge transfer in micro- and low-tonnage chemistry technologies, and the digital cycle of chemical reaction production. Key areas are the application of specialized digital algorithms needed to solve specific problems in chemistry, accelerating data analysis, automating chemical research, creating new approaches to design materials for catalysis, and developing digital tools for science and educational programs. Important practical application is the use of artificial intelligence for scaling of chemical processes and technology transfer into industrial solutions.

全文:

受限制的访问

作者简介

V. Ananikov

Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: al@ioc.ac.ru

академик РАН, заведующий лабораторией металлокомплексных и наноразмерных катализаторов

俄罗斯联邦, Moscow

参考

  1. Анаников В.П., Белецкая И.П., Максимов А.Л. и др. Микротоннажная и малотоннажная химия // Химический эксперт. 2024. № 4 (12). C. 24–31. http://zioc.ru/preprint.012024v1 / Ananikov V.P., Beletskaya I.P., Maksimov A.L., et al. Microtonnage and low-tonnage chemistry // Chemical expert. 2024, no. 4 (12), pp. 24–31. http://zioc.ru/preprint.012024v1
  2. Eremin D.B., Galushko A.S., Boiko D.A. et al. Toward Totally Defined Nanocatalysis: Deep Learning Reveals the Extraordinary Activity of Single Pd/C Particles // J. Am. Chem. Soc. 2022, vol. 144, no. 13, pp. 6071–6079. https://doi.org/10.1021/jacs.2c01283
  3. Galushko A.S., Boiko D.A., Pentsak E.O. et al. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling // J. Am. Chem. Soc. 2023, vol. 145, no. 16, pp. 9092–9103. https://doi.org/10.1021/jacs.3c00645
  4. Ananikov V.P. Top 20 influential AI-based technologies in chemistry // Art.Int.Chem. 2024, no. 2(2), 100075. https://doi.org/10.1016/j.aichem.2024.100075

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian academy of sciences, 2025