УДК 551.73

СОСТАВ И ВОЗРАСТ ПОРОД ОБЛАСТЕЙ СНОСА ДЛЯ НИЖНЕ-СРЕДНЕКЕМБРИЙСКИХ (?) ТЕРРИГЕННЫХ ОТЛОЖЕНИЙ ЕРНИЧЕНСКОЙ ТОЛЩИ АРГУНСКОГО МАССИВА, ВОСТОЧНАЯ ЧАСТЬ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА

© 2023 г. Ю. Н. Смирнова^{1, *}, А. В. Куриленко², В. Б. Хубанов²

¹ Институт геологии и природопользования ДВО РАН, Благовещенск, Россия
² Геологический институт им. Н.Л. Добрецова СО РАН, Улан-Удэ, Россия
*e-mail: smirnova@ascnet.ru
Поступила в редакцию 18.06.2022 г.
После доработки 10.11.2022 г.
Принята к публикации 21.12.2022 г.

Приведены результаты минералого-геохимических исследований песчаников и алевролитов ерниченской толщи аргунской серии Аргунского континентального массива, а также U–Pb (LA-ICP-MS) датирования зерен детритового циркона из них. Установлено, что наиболее молодая группа детритового циркона характеризуется возрастом 549–570 млн лет с пиком на кривой относительной вероятности возрастов циркона 566 млн лет. Это позволяет предполагать, что нижняя возрастная граница их накопления приходится на границу эдиакария и палеозоя. По результатам U–Pb (LA-ICP-MS) датирования зерен циркона выявлено, что в песчаниках ерниченской толщи доминирующая часть цирконов характеризуется нео- и палеопротерозойскими значениями возраста. Их источниками, по-видимому, послужили нео- и палеопротерозойские магматические и метаморфические образования, широко распространенные в пределах Аргунского континентального массива. В свою очередь, геохимические особенности терригенных пород ерниченской толщи, в совокупности с присутствием в изученных образцах плохо сортированных и слабоокатанных обломков пород, а также с наличием прослоев гравелитов в составе толщи, свидетельствуют об их накоплении в обстановке, связанной с субдукционными процессами.

Ключевые слова: Аргунский массив, ранний и средний кембрий, ерническая толща, терригенные породы, геохимия, U–Pb данные

DOI: 10.31857/S0869592X23050071, EDN: WIKASF

введение

В строении Центрально-Азиатского складчатого пояса принимают участие континентальные массивы и разделяющие их орогенные пояса (Моссаковский и др., 1993; Парфенов и др., 2003 и др.). В восточной части Центрально-Азиатского складчатого пояса одним из наиболее крупных массивов является Аргунский, который на северо-западе граничит с Монголо-Охотским орогенным поясом, а на юго-востоке отделен от Бурея-Цзямусинского массива Южно-Монгольско-Хинганским орогенным поясом (рис. 1а).

Для создания модели формирования Центрально-Азиатского складчатого пояса необходимо проведение комплексных исследований осадочных комплексов, играющих важную роль в его строении. Такие исследования в последние годы проведены нами в пределах восточной части Аргунского континентального массива (Смирнова и др., 2013, 2016, 2017; Смирнова, Сорокин, 2019). В результате получена информация о геодинамических обстановках накопления осадочных пород в фанерозое, а также реконструированы этапы тектономагматической активности в рассматриваемом регионе. В то же время наименее изученными являются толщи осадочных пород в северозападной части Аргунского массива. Комплексные исследования выполнены лишь для верхнепротерозойских отложений даурской и быркинской серий (Смирнова, Дриль, 2022; Смирнова и др., 2022).

Разная степень изученности строения Аргунского континентального массива в настоящий момент не позволяет провести корреляцию осадочных комплексов и, соответственно, затрудняет разработку общей геодинамической модели его формирования. В этой связи представляется актуальным проведение минералого-геохимических исследований нижнепалеозойских осадочных пород северо-западной части Аргунского массива в пределах Восточного Забайкалья, а также U–Pb датирование детритовых цирконов из них. Объектами данного исследования являются условно нижне-среднекембрийские терригенные отложения (песчаники и алевролиты) ерниченской толщи, включаемые в состав аргунской серии (рис. 16).

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТОВ ИССЛЕДОВАНИЯ

Согласно региональной стратиграфической схеме Приаргунья (Решения..., 1994), отложения нижней части аргунской серии в Газимуро-Аргунской подзоне Аргунского массива выделены в быстринскую свиту и ерниченскую толщу, выходы которых имеют преимущественно блоковое строение.

В составе быстринской свиты преобладают доломиты светло-серого, белого, реже сиреневатои дымчато-серого цвета, с массивной, изредка пятнистой и крустификационной текстурой, а также органогенные известняки серого и темносерого цвета. Для свиты характерны редкие прослои кремнистых, кремнисто-глинистых, глинистых и углисто-серицитовых сланцев, кварцевых и карбонатных песчаников, алевролитов, мергелей и фосфатоносных пород. Мошность свиты до 2800 м (рис. 1в). Прямых соотношений с образованиями, интерпретируемыми как подстилающие (белетуйская свита), не обнаружено. Соотношение пачек внутри свиты дискуссионно. Однозначно датированы концом атдабанского века-началом ботомского века лишь слои со скелетной фауной в средней части свиты (Куриленко и др., 2002). По решению Межведомственного стратиграфического комитета свита в целом отвечает томмотскому-ботомскому векам (Озерский, Винниченко, 2015).

Отложения ерниченской толщи прослеживаются от бассейна р. Уров на юге до бассейна рек Шилка, Газимур и Будюмкан на севере (Козлов и др., 2010: Шивохин и др., 2010). Стратотип толщи находится на левобережье р. Аргунь в ее среднем течении, на водоразделе рек Поперечный Зерентуй и Гидаринский Зерентуй, в верховье пади Ерничная. Толща мощностью 1000 м представлена полимиктовыми и кварцевыми песчаниками, алевролитами, аргиллитами с горизонтами гравелитов, кварцитов и доломитов (рис. 1в). Контакты с быстринской свитой в большинстве случаев осложнены тектоническими нарушениями. Толща не содержит ископаемых остатков, на геологической карте масштаба 1 : 1000000 ее возраст принят условно ранне-среднекембрийским (Шивохин и др., 2010).

Согласно существующим геодинамическим моделям, формирование венд-нижнепалеозойских осадочных комплексов Аргунского массива происходило в пределах окраинно-континентального моря (Шивохин и др., 2010; Гордиенко и др., 2019).

В настоящей публикации приведены результаты петрографических и геохимических исследований фаунистически не охарактеризованных терригенных пород ерниченской толщи, отобранных в бассейне р. Уров (рис. 16), а также результаты U—Pb датирования зерен детритового циркона из них. Эти исследования направлены на уточнение нижней возрастной границы накопления осадочных пород ерниченской толщи, реконструкцию палеогеодинамических обстановок их формирования и выявление основных источников сноса исходного материала.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ ИССЛЕДОВАНИЙ

Содержания породообразующих элементов в породах определены рентгенофлуоресцентным методом в Институте геологии и природопользования ДВО РАН (г. Благовещенск) на рентгеновском спектрометре Pioneer 4S. Концентрации микроэлементов определены методом ICP-MS на квадрупольном ICP масс-спектрометре NexION 300D в ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН (г. Иркутск).

Выделение детритовых цирконов произведено в минералогической лаборатории Института геологии и природопользования ДВО РАН с применением тяжелых жидкостей. Непосредственно U-Рb датирование детритовых цирконов выполнено в ЦКП "Геоспектр" Геологического института им. Н.Л. Добрецова СО РАН (г. Улан-Удэ) на одноколлекторном магнитно-секторном массспектрометре с индуктивно связанной плазмой Element XR (Termo Scientific), оснащенном устройством лазерной абляции UP-213 (New Wave Research). Детально описание аналитических процедур приведено в публикации (Хубанов и др., 2016). Диаметр лазерного пучка составлял 30 мкм при плотности потока энергии ~4.5 Дж/см². Массспектрометром измеряли сигналы следующих изотопов: в режиме счета "Counting" – ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb; в аналоговом режиме – ²³²Th, ²³⁸U. Сигнал ²³⁵U рассчитывали из сигнала ²³⁸U, основываясь на постоянстве современного значения их отношения ($^{238}U/^{235}U = 137.88$). Съемку осуществляли в скоростном режиме электростатического сканирования (E-scan). В течение одного измерения проводили 800 сканирований. В качестве внешнего стандарта измеряли эталонные цирконы 91500 (1065 млн лет; Wiedenbeck et al., 1995), в качестве контрольного образца – эталоны Plešovice (337 млн лет; Sláma et al., 2008) и GJ-1 (608 млн лет: Jackson et al., 2004).

Обработку первичных сигналов и расчет изотопных отношений проводили с помощью программы Glitter (Griffin et al., 2008), конвертацию в excel-формат и расчет значений концентраций U, Th и U/Th – с помощью программы Gtail (автор М.Д. Буянтуев, ГИН СО РАН), построение графиков – с помощью excel-макроса Isoplot (Ludwig, 2008). Поправку на нерадиогенный свинец не проводили. Относительные погрешности измерения изотопных отношений в контрольных образцах варьировали в пределах: 1.0-3.7% для ²⁰⁷Pb/²³⁵U и ²⁰⁷Pb/²⁰⁶Pb, 0.7–1.3% для ²⁰⁶Pb/²³⁸U. При этом значения средневзвешенных конкордантных возрастов цирконов Plešovice и GJ-1, определенных LA-ICP-MS методом (по 12 измерений каждого контрольного эталона), составили 338 ± 2 и 601 ± 3 млн лет соответственно. Для стандартов GJ-1 и Plešovice средневзвешенные значения возраста по отношениям ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U составляют $630 \pm 23, 599 \pm 3,$ 605 ± 4 млн лет и 366 ± 24 , 337 ± 2 , 340 ± 3 млн лет соответственно. Для анализа выбирали зерна циркона без микротрещин и включений.

Для построения кривых относительной вероятности возраста зерен детритового циркона использовали конкордантные оценки возрастов. Пики для кривой относительной вероятности возрастов зерен циркона рассчитывали с помощью программы AgePick (Gehrels, 2007).

ОСНОВНЫЕ МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД

Среди терригенных пород ерниченской толщи нами были изучены песчаники и алевролиты. Песчаники серого цвета, с псаммитовой мелкозернистой, реже мелко-среднезернистой структурой и массивной текстурой. Песчаники состоят из обломков кварца (30–45%), полевых шпатов (до 20%) и глинистых минералов (5–7%). Реже встречаются слюдистые, углеродисто-слюдисто-кварцевые и слюдисто-кварцевые сланцы (5–15%). Обломочный материал имеет угловатую и слабоокатанную форму. Цемент гидрослюдисто-кварцевый, контактово-порового типа. Акцессорные минералы: циркон, апатит, гранат, гидроокислы железа и рудные минералы.

Алевролиты зеленовато-серого и темно-серого цвета, с алевритовой структурой и массивной текстурой. Обломки угловатой и слабоокатанной формы, характеризуются плохой сортировкой. Среди них преобладают кварц (10–30%), полевые шпаты (до 10%) и глинистые минералы (до 15%). Кроме того, в них присутствует обломочный материал, представленный серицит-кварцевыми, углеродисто-слюдисто-кварцевыми и слюдистыми сланцами (до 5%), а также карбонатными породами (до 3%). Единичны обломки вулканических пород. Цемент гидрослюдисто-кварцевого состава, базального типа. Среди акцессорных минералов выявлены циркон, апатит, гранат, рудные минералы и гидроокислы железа.

На классификационной диаграмме $log(SiO_2/Al_2O_3)-log(Fe_2O_3/K_2O)$ (Herron, 1988) фигуративные точки состава алевролитов ерниченской толщи расположены, за исключением одного образца, в поле сланцев. Песчаники характеризуются наибольшей вариативностью значений соотношения SiO_2/Al_2O_3 и соответствуют преимущественно аркозам и субаркозам (рис. 2a, табл. 1).

На диаграмме ($Fe_2O_3 + FeO + MgO + MnO + TiO_2$)—SiO₂—($Al_2O_3 + CaO + Na_2O + K_2O$) (Коссовская, Тучкова, 1988) доминирующая часть точек состава алевролитов исследуемой толщи локализуются компактно в поле пород полимиктового состава (рис. 26). Для песчаников характерны более высокие содержания SiO₂, которые типичны для пород кварцевого и олигомиктового состава.

По величине гидролизатного модуля (ГМ = $= (Al_2O_3 + TiO_2 + Fe_2O_3 + FeO + MnO)/SiO_2)$ (Юдович, Кетрис, 2000) песчаники ерниченской толщи соответствуют богатым кварцем породам – силитам (ГМ = 0.11-0.27), а алевролиты близки к

Рис. 1. (а) Положение исследуемого объекта в структуре восточной части Центрально-Азиатского складчатого пояса (тектоническая основа по (Парфенов и др., 2003)), (б) геологическая схема северо-западной части Аргунского континентального массива (по (Козлов и др., 2010; Шивохин и др., 2010), с изменениями авторов) и (в) сводная стратиграфическая колонка осадочных пород аргунской серии (по (Шивохин и др., 2010)).

^{1 –} положение объекта исследований; 2 – супертеррейны (континентальные массивы): АР – Аргунский, БЦ – Бурея-Цзямусинский, в том числе террейны: Буреинский (БЦ(Б)), Малохинганский (БЦ(М)), Ханкайский (БЦ(Х)); 3 – палеозойские–раннемезозойские складчатые пояса (ЮМ – Южно-Монгольско-Хинганский, МО – Монголо-Охотский, СЛ – Солонкерский, ВД – Вундурмиао); 4 – позднеюрско-раннемеловые орогенные пояса; 5 – граница Газимуро-Аргунской структурно-формационной зоны; 6 – кайнозойские рыхлые отложения; 7 – осадочные и вулканогенно-осадочные породы нижнемеловой тургинской свиты; 8 – вулканические породы раннемелового абагайтуйского комплекса; 9 – юрские осадочные и вулканогенно-осадочные породы; 10 – мезозойские гранитоиды; 11 – пермские и пермско-раннетриасовые граниты, гранодиориты, монцодиориты и граносиениты; 12 – габбро, габбро-диориты, диориты и монцодиориты раннепермского ундинского комплекса; 13, 14 – нижнепалеозойские осадочные породы аргунской серии: 13 – ерниченской толщи, 14 – быстринской свиты; 15 – условно вендские метаосадочные породы белётуйской свиты быркинской серии; 16 – раннепротерозойские метаморфические образования ишагинского комплекса; 17 – разломы; 18 – места отбора образцов для геохимических исследований и их номера; 19 – известняки; 20 – доломиты; 21 – алевролиты; 22 – песчаники; 23 – гравелиты; 24 – место отбора образца для U–Pb датирования зерен детритового циркона и его номер.

Рис. 2. Диаграммы (a) $\log(SiO_2/Al_2O_3) - \log(Fe_2O_3/K_2O)$ (Herron, 1988), (б) F-Q-L (Коссовская, Тучкова, 1988) для терригенных пород ерниченской толщи аргунской серии Аргунского континентального массива. 1 – алевролиты, 2 – песчаники, отобранные в бассейне р. Уров. Сокращения на рис. 26: $F = Fe_2O_3 + FeO + MgO + MnO + TiO_2$, $Q = SiO_2$, $L = Al_2O_3 + CaO + Na_2O + K_2O$. Поля песчаников: I – кварцевых, II – олигомиктовых, III – полимиктовых, IV – вулканокластитовых.

сиаллитам (ГМ = 0.32-0.46) (табл. 1). Значения фемического модуля (ФМ = (Fe₂O₃ + FeO + MnO + + MgO)/SiO₂) в песчаниках ерниченской толщи ниже (0.03-0.09), чем в алевролитах (0.07-0.18). Такие вариации ГМ и ФМ, вероятно, связаны с уменьшением в составе алевролитов обломков кварцевого состава и с возрастанием содержания глинистого материала.

По величине модуля общей нормативной щелочности или "полевошпатового индикатора" (HKM = $(Na_2O + K_2O)/Al_2O_3$) алевролиты рассматриваемой толщи соответствуют нормальнощелочным породам (HKM = 0.28–0.30). В песчаниках, в связи с возрастанием в их составе количества обломков полевых шпатов, отмечаются более высокие значения HKM (до 0.57), характерные для повышенно-щелочных пород.

В терригенных породах ерниченской толщи суммарные концентрации лантаноидов изменяются в широком диапазоне от 127 до 236 мкг/г (табл. 2). В них отмечается четко проявленная отрицательная европиевая аномалия (Eu/Eu* = 0.60–0.67). Породы различаются лишь по характеру распределения редкоземельных элементов (рис. 3а). Так, для алевролитов характерны более пологие спектры лантаноидов ([La/Yb]_n = 2.63-5.35), по сравнению с таковыми в песчаниках ([La/Yb]_n = = 6.35-12.45).

Как следует из табл. 2 и рис. 36, алевролиты ерниченской толщи характеризуются близкоровыми содержаниями большинства элементов-примесей, при незначительном обогащении Со, V, Ni, Cr. В песчаниках концентрации микроэлементов близки к таковым в верхней континентальной коре. Отчетливый дефицит в песчаниках и алевролитах типичен лишь для Sr (рис. 36).

РЕЗУЛЬТАТЫ U–РЬ ДАТИРОВАНИЯ ДЕТРИТОВЫХ ЦИРКОНОВ

Из песчаника ерниченской толщи (обр. Ю-129) было выделено 120 зерен детритового циркона. Для 87 зерен получены конкордантные оценки возраста. Большинство зерен циркона (66 зерен) характеризуется неопротерозойскими значениями возраста (549-960 млн лет) с пиками на кривой относительной вероятности возрастов циркона 566, 732, 791, 867 и 942 млн лет (рис. 4). Наиболее молодые зерна циркона (7 зерен) характеризуются эдиакарским возрастом (549-570 млн лет). Значимая группа циркона (59 зерен) имеет значения возрастов от 636 до 960 млн лет. Мезопротерозойские (1049-1479 млн лет) и палеопротерозойские (1686–2347 млн лет) значения возрастов типичны для 5 и 15 зерен циркона соответственно, с пиками на кривой относительной вероятности возрастов зерен циркона 1767, 1835 и 1889 млн лет. Неои мезопротерозойские цирконы дипирамидальнопризматической формы. Для палеопротерозойских зерен циркона характерны как дипирамидальные, так и окатанные формы. Наиболее древ-

модули SiO ₂ TiO ₂	HO-129			WWWWWW ANT					daara t	
SiO ₂ TiO ₂		HO-129-1	HO-129-2	HO-129-3	HO-129-4	HO-129-5	HO-132-4	HO-132-1	HO-132-2	HO-132-3
TiO ₂	74.78	77.36	84.26	78.77	85.22	86.08	71.15	62.05	60.71	61.48
	0.86	0.89	0.28	0.86	0.60	0.44	0.78	1.02	0.96	0.96
Al_2O_3	10.41	10.39	6.95	9.42	6.92	5.88	14.14	18.77	19.78	19.66
${\rm Fe_2O_3^*}$	5.99	4.46	3.08	3.94	2.10	2.79	4.31	5.93	6.62	5.55
MnO	0.04	0.09	0.02	0.01	0.01	0.03	0.03	0.02	0.03	0.02
MgO	0.61	0.60	0.41	0.60	0.37	0.38	1.90	2.43	2.41	2.48
CaO	0.03	0.02	0.07	0.07	0.07	0.07	0.23	0.19	0.29	0.18
Na_2O	0.18	0.17	0.49	0.10	0.07	0.07	0.18	0.20	0.17	0.20
K_2O	4.30	4.30	3.45	4.10	3.21	2.85	3.69	4.98	5.29	5.25
P_2O_5	0.08	0.10	0.06	0.08	0.06	0.07	0.12	0.16	0.14	0.20
П.п.п.	2.26	2.04	1.25	1.83	1.20	1.19	3.11	3.97	4.08	4.02
Сумма	99.54	100.42	100.32	99.78	99.83	99.85	99.64	99.72	100.48	100.00
ΓM	0.23	0.20	0.12	0.18	0.11	0.11	0.27	0.42	0.45	0.43
ФМ	0.09	0.07	0.04	0.06	0.03	0.04	0.09	0.14	0.15	0.13
HKM	0.43	0.43	0.57	0.45	0.47	0.50	0.27	0.28	0.28	0.28
Компоненты,					Алевр	олиты				
модули	HO-132-5	HO-132-6	HO-132-7	HO-132-8	HO-127	HO-127-1	HO-127-2	HO-127-3	HO-127-4	HO-127-5
SiO ₂	62.94	59.88	61.43	63.13	61.98	69.30	65.47	63.33	64.37	63.38
TiO ₂	06.0	0.94	0.94	0.92	1.11	1.12	1.10	1.04	1.08	0.97
Al ₂ O ₃	15.75	17.91	17.82	15.94	20.99	17.20	18.14	17.54	20.34	16.21
$\mathrm{Fe_2O_3^*}$	8.55	8.74	8.28	8.50	5.91	3.94	6.46	9.38	4.51	10.69
MnO	0.04	0.02	0.02	0.03	0.01	0.01	0.01	0.01	0.01	0.02
MgO	1.74	2.23	2.13	1.83	0.78	0.64	0.66	0.62	0.71	0.60
CaO	0.66	0.37	0.13	0.58	0.05	0.06	0.05	0.05	0.05	0.05
Na_2O	0.18	0.20	0.19	0.19	0.36	0.25	0.33	0.26	0.35	0.23
K ₂ 0	4.39	4.94	4.92	4.42	5.94	4.83	4.98	4.87	5.59	4.56
P_2O_5	0.13	0.13	0.13	0.13	0.08	0.08	0.11	0.14	0.07	0.10
П.п.п.	3.92	3.83	3.59	3.81	3.20	2.51	2.99	3.41	2.96	2.85
Сумма	99.20	99.19	99.58	99.48	100.41	99.94	100.3	100.65	100.03	99.66
ΓM	0.40	0.46	0.44	0.40	0.45	0.32	0.39	0.44	0.40	0.44
ФМ	0.16	0.18	0.17	0.16	0.11	0.07	0.11	0.16	0.08	0.18
HKM	0.29	0.29	0.29	0.29	0.30	0.30	0.29	0.29	0.29	0.30

СОСТАВ И ВОЗРАСТ ПОРОД ОБЛАСТЕЙ СНОСА

Таблица 1. Содержания основных петрогенных компонентов и значения петрохимических модулей в терригенных породах ерниченской толци аргун-

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31

I № 5 2023

103

СМИРНОВА и др.

Variation		Алевр	олиты			Песчаники	
компоненты	Ю-132-1	Ю-132-3	Ю-132-7	Ю-132-8	Ю-129	Ю-129-1	Ю-132-4
Rb	120	116	132	125	118	96	93
Sr	26	30	40	86	91	308	31
Ва	326	400	444	571	456	555	408
La	20.64	18.37	24.45	25.40	46.36	21.93	22.09
Ce	52.29	48.09	57.89	59.96	103.23	53.21	54.41
Pr	7.09	6.65	7.46	7.46	12.26	6.77	7.02
Nd	29.25	27.75	29.36	29.39	45.80	26.45	28.23
Sm	6.13	6.37	5.85	6.26	8.13	5.19	5.75
Eu	1.22	1.59	1.18	1.34	1.45	0.96	1.15
Gd	5.50	8.34	5.46	5.79	6.19	4.05	5.02
Tb	0.84	1.42	0.83	0.88	0.78	0.53	0.69
Dy	5.29	9.30	5.59	5.44	4.78	3.26	4.21
Но	1.10	1.83	1.08	1.08	0.92	0.62	0.82
Er	3.23	5.29	3.40	3.23	2.69	1.72	2.37
Tm	0.46	0.76	0.49	0.48	0.39	0.26	0.37
Yb	3.25	4.74	3.30	3.22	2.53	1.69	2.36
Lu	0.50	0.74	0.52	0.51	0.40	0.26	0.35
Y	20	36	22	23	24	12	17
Th	14.81	13.58	14.10	13.46	12.90	9.16	11.52
U	2.99	3.01	2.43	2.43	1.97	1.78	1.94
Zr	253	231	210	206	252	305	214
Hf	7.73	6.79	7.30	6.96	7.90	9.21	5.41
Nb	23	22	20	18	17	18	17
Та	1.69	1.59	1.52	1.43	1.22	1.28	1.28
Zn	90	75	71	74	45	46	62
Co	61	36	18	29	11	11	17
Ni	72	74	52	61	23	24	42
Sc	19	21	19	21	6	10	15
V	132	132	116	109	54	51	79
Cr	116	109	104	120	73	63	76
Pb	6	10	5	10	7	14	5
Eu/Eu*	0.62	0.67	0.63	0.66	0.60	0.61	0.64
[La/Yb] _n	4.32	2.63	5.04	5.35	12.45	8.80	6.35
ΣREE	137	141	147	150	236	127	135

Таблица 2. Микроэлементный состав (мкг/г) терригенных пород ерниченской толщи аргунской серии Аргунско-го континентального массива

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 № 5 2023

Рис. 3. График распределения лантаноидов (а) и спайдер-диаграмма (б) для терригенных пород ерниченской толщи аргунской серии Аргунского континентального массива. Условные обозначения см. на рис. 2. Состав хондрита по (McDonough, Sun, 1995). Состав верхней континентальной коры по (Тейлор, МакЛеннан, 1988).

нее зерно циркона имеет неоархейский конкордантный возраст (2652 \pm 16 млн лет), а наиболее молодое зерно циркона — эдиакарский возраст (549 \pm 8 млн лет).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Прежде всего рассмотрим результаты геохимических исследований терригенных пород ерниченской толщи, несущие в себе важную информацию о палеогеодинамических обстановках осадконакопления и составе исходных (материнских) пород.

Положение фигуративных точек состава пород ерниченской толщи на диаграмме Zr/Sc—Th/Sc (рис. 5а) вдоль линии тренда, определяемого исходным составом пород в областях размыва, свидетельствует о том, что рассматриваемые отложения являются породами "first cycle" с преобладанием в их составе петрогенных обломков. В этой связи проведение анализа макро- и микроэлементного состава пород для определения источников сноса кластического материала и реконструкции палеогеодинамической обстановки формирования является информативным.

Положение фигуративных точек состава терригенных пород ерниченской толщи на диаграмме La/Sc—Th/Co (рис. 5б) позволяет нам предполагать, что в области сноса доминировали породы кислого состава. На диаграммах Rb—K (рис. 5в) и Th—La—Sc (рис. 5г) точки состава терригенных пород исследуемой толщи локализуются в полях значений, характерных для осадочных пород, сформированных за счет пород не только кислого, но и среднего состава. Данный вывод также подтверждается особенностями распределения редкоземельных элементов в изученных породах (см. выше).

Для реконструкции палеогеодинамической обстановки накопления терригенных пород ерни-

	l	l	J
-			
		Invinit Ida /	
		11-01-000V	-
2		INTERCOL MONOTION PUBLICA PUBLICATION INTERCOL	

Возраст, млн лет Изотопные отношения Таблица 3. U-Pb (LA-ICP-MS) данные массива

	* *	21	* *		*	*			*	*	*	*		*	*	*	*	*		*	*	* *	*	*	*	*	*	*	*	*	*
	D	20	-0.7	-6.0	-3.9	-0.3	-9.0	-19.9	0.2	-5.8	-4.0	-5.5	-17.9	-2.1	2.2	0.6	-0.7	-5.0	-3.6	-9.1	-9.5	-1.7	1.1	1.4	0.6	-4.5	-3.0	-7.2	-2.4	-1.6	-9.3
	±2σ	19	16		10	16			11	10	8	8		16	10	11	8	11		11	11	11	12	12	15	11	13	6	20	11	9
	CA	18	1900	DISCORDANT	865	2652	DISCORDANT	DISCORDANT	858	724	570	567	DISCORDANT	1772	734	791	558	784	DISCORDANT	739	787	161	792	865	1296	793	902	636	1837	790	570
	$\pm 1\sigma$	17	12	10	9	16	10	9	9	5	4	4	10	11	5	9	4	9	13	9	6	6	6	6	6	6	7	5	12	6	4
Puet, w	∩ _{8€7} /9d ₉₀₇	16	1894	1653	860	2647	1571	879	859	723	570	566	1571	1755	736	792	558	782	2018	736	784	161	793	867	1299	791	900	634	1821	789	568
3	$\pm 1\sigma$	15	8	7	5	8	7	9	9	8	9	5	8	8	9	9	9	7	6	8	8	8	8	7	×	7	8	9	10	7	6
	$\bigcap_{SEZ}/9d_{LOZ}$	14	1900	1698	869	2651	1638	942	857	733	574	572	1722	1771	732	790	558	792	2055	754	805	794	790	863	1295	800	908	645	1841	792	579
	±1σ	13	21	20	24	19	21	24	25	35	34	30	20	22	27	26	32	30	21	34	33	33	34	29	25	29	31	31	24	30	35
	9d ₂₀₇ /9d ₉₀₇	12	1908	1758	895	2656	1727	1097	857	768	594	599	1914	1793	720	787	562	823	2094	810	866	805	784	855	1291	828	928	683	1865	802	626
	Rho	11	0.77	0.84	0.78	0.81	0.79	0.73	0.74	0.53	0.56	0.62	0.80	0.77	0.70	0.71	0.59	0.62	0.76	0.54	0.56	0.57	0.55	0.64	0.70	0.63	0.58	0.60	0.67	0.62	0.56
	±1σ	10	0.0025	0.0021	0.0010	0.0037	0.0020	0.0011	0.0010	0.0009	0.0007	0.0007	0.0020	0.0023	0.0009	0.0010	0.0007	0.0010	0.0027	0.0010	0.0010	0.0010	0.0011	0.0011	0.0017	0.0010	0.0012	0.0008	0.0026	0.0010	0.0008
	∩ _{8€7} /9d ₉₀₇	6	0.3416	0.2922	0.1427	0.5078	0.2760	0.1460	0.1425	0.1187	0.0924	0.0917	0.2760	0.3129	0.1210	0.1307	0.0904	0.1289	0.3675	0.1210	0.1293	0.1305	0.1309	0.1439	0.2232	0.1305	0.1498	0.1034	0.3264	0.1303	0.0921
	±lσ	8	0.0524	0.0365	0.0125	0.1139	0.0367	0.0152	0.0130	0.0156	0.0104	0.0092	0.0404	0.0453	0.0110	0.0121	0.0095	0.0146	0.0646	0.0165	0.0171	0.0166	0.0175	0.0162	0.0281	0.0147	0.0198	0.0115	0.0600	0.0150	0.0112
	Ω_{SEZ}/Pd_{LOZ}	7	5.4951	4.3270	1.3531	12.6070	4.0183	1.5298	1.3265	1.0590	0.7603	0.7563	4.4537	4.7228	1.0557	1.1771	0.7325	1.1809	6.5666	1.1018	1.2092	1.1861	1.1771	1.3389	2.5805	1.1988	1.4442	0.8869	5.1288	1.1815	0.7686
	±Ισ	9	0.0014	0.0012	0.0008	0.0021	0.0012	0.0009	0.0008	0.0011	0.0009	0.0009	0.0014	0.0013	0.0008	0.0008	0.0009	0.0010	0.0016	0.0011	0.0011	0.0010	0.0011	0.0010	0.0011	0.0009	0.0011	0.0009	0.0016	0.0010	0.0010
	9d ₂₀₇ /9d ₉₀₇	5	8.5664	9.3078	14.5317	5.5517	9.4666	13.1547	14.8029	15.4408	16.7483	16.7154	8.5401	9.1309	15.7929	15.3049	17.0024	15.0422	7.7130	15.1327	14.7350	15.1675	15.3216	14.8111	11.9217	15.0009	14.2931	16.0682	8.7712	15.1927	16.5049
	U/Th	4	0.9	6.1	2.5	1.6	2.2	2.0	3.1	1.6	1.3	1.2	1.2	7.3	1.1	3.0	1.5	3.4	2.6	1.2	0.8	4.0	1.1	3.2	5.3	4.2	3.0	1.8	1.7	2.2	2.0
	U, AKT/T	3	116	953	709	100	321	321	477	104	186	300	841	232	550	617	274	212	220	131	131	203	130	325	806	396	258	410	194	559	566
	Th, MKT/T	2	130	156	288	61	143	159	152	99	147	241	689	32	512	208	179	62	85	109	169	51	117	103	153	94	86	226	114	257	285
	Номер анализа	1	HO-129/001	HO-129/002	HO-129/004	HO-129/005	HO-129/006	HO-129/007	HO-129/008	HO-129/009	HO-129/010	HO-129/011	HO-129/012	HO-129/013	HO-129/014	HO-129/015	HO-129/016	HO-129/017	HO-129/018	HO-129/019	HO-129/020	HO-129/021	HO-129/023	HO-129/025	HO-129/026	HO-129/027	HO-129/028	HO-129/029	HO-129/030	HO-129/031	HO-129/032

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 **№** 5 2023

СМИРНОВА и др.

Продолжение
ë.
Таблица

	* *	21	*	*	* *	* *	*	* *	*		* *	* *	*	* *	* *	* *	* *	*	*	*	* *	* *	* *	* *	*	* *				* *	* *	
	D	20	-4.4	0.8	-1.2	-3.6	-0.2	-1.9	7.3	-11.2	5.4	-8.5	-0.3	-2.2	-8.6	1.5	-2.0	-7.4	0.7	-5.7	0.2	-2.0	-1.3	-1.0	8.4	-5.5	-10.5	-11.0	-10.1	-0.9	1.5	-18.2
	±2σ	19	13	12	12	19	11	21	12	1	12	8	23	22	14	13	12	12	19	13	17	12	13	26	6	16		14	16	31	15	10 -
	CA	18	938	801	800	1479	791	1751	788	DISCORDANT	062	549	1763	1815	878	820	818	783	1385	825	947	726	827	1878	568	960	DISCORDANT	782	835	2347	825	541
лн ле	±1σ	17	7	6	6	10	9	12	9	17	6	4	13	13	7	7	9	6	11	7	6	9	7	15	5	8	13	7	8	18	7	5
раст, м	∩ _{8€7} /9d ₉₀₇	16	934	801	799	1467	791	1741	791	2429	792	548	1762	1803	874	821	817	781	1387	823	948	726	827	1874	568	958	1581	779	833	2341	826	540
Boal	±1σ	15	8	6	7	10	7	11	6	12	×	7	12	12	11	10	8	6	12	10	14	10	10	15	8	13	15	11	13	17	12	6
	Ω_{SEZ}/qd_{LOZ}	14	946	799	801	1489	161	1756	777	2599	781	558	1763	1822	897	817	821	796	1382	836	947	729	830	1883	559	975	1661	804	858	2352	822	563
	±1σ	13	29	36	30	27	30	26	36	24	35	36	30	28	39	38	34	37	31	37	47	42	40	33	42	42	35	41	49	33	45	45
	9d ₂₀₇ /9d ₉₀₇	12	977	795	809	522	793	175	737	135	751	599	767	844	956	809	834	843	377	873	946	741	838	893	524	014	766	875	927	363	814	660
	Rho	11	0.63	0.53	0.62	0.62	0.61	0.62	0.53	0.62	0.54	0.54	0.57	0.59 1	0.49	0.51	0.56	0.52	0.56	0.52	0.44	0.48	0.49	0.52	0.49	0.47	0.50	0.48	0.43	0.49 2	0.46	0.46
	±lσ	10	0.0012	0.0011	0.0011	0.0021	0.0010	0.0025	0.0011	0.0038	0.0011	0.0007	0.0027	0.0027	0.0013	0.0012	0.0011	0.0011	0.0020	0.0012	0.0016	0.0011	0.0012	0.0031	0.0008	0.0015	0.0026	0.0012	0.0014	0.0041	0.0013	0.0008
вина	∩ ₈₆₂ /9d ₉₀₂	6	0.1559	0.1323	0.1320	0.2555	0.1306	0.3100	0.1306	0.4576	0.1308	0.0888	0.3143	0.3228	0.1452	0.1358	0.1352	0.1287	0.2400	0.1361	0.1583	0.1192	0.1369	0.3374	0.0922	0.1602	0.2779	0.1285	0.1379	0.4379	0.1367	0.0874
ie orhoille	±lσ	8	0.0192	0.0188	0.0154	0.0432	0.0153	0.0596	0.0183	0.1583	0.0178	0.0113	0.0700	0.0701	0.0255	0.0210	0.0189	0.0199	0.0442	0.0214	0.0342	0.0198	0.0233	0.0938	0.0135	0.0326	0.0770	0.0233	0.0308	0.1726	0.0262	0.0151
13отопны	Ω _{\$\$\$7} /9d ₂₀₇	7	1.5396	1.1964	1.2016	3.3342	1.1799	4.6356	1.1492	1.9273	1.1583	0.7323	4.6778	5.0143	1.4192	1.2364	1.2453	1.1910	2.9010	1.2778	1.5403	1.0504	1.2637	5.3860	0.7347	1.6112	4.1351	1.2072	1.3286	9.1384	1.2471	0.7412
1	±1σ	9	0.0010	0.0011	0.0010	0.0014	0.0010	0.0016	0.0011	0.0028	0.0011	0.0010	0.0018	0.0017	0.0014	0.0012	0.0011	0.0012	0.0015	0.0012	0.0016	0.0013	0.0013	0.0021	0.0011	0.0016	0.0021	0.0014	0.0017	0.0030	0.0015	0.0013
	9d ₂₀₇ /9d ₉₀₇	5	13.9548	15.2426	15.1411	10.5619	15.2539	9.2168	15.6637	5.2874	15.5611	16.7083	9.2585	8.8722	14.0970	15.1370	14.9609	14.8974	11.4018	14.6801	14.1664	15.6384	14.9336	8.6345	17.2938	13.7058	9.2629	14.6655	14.3037	6.6042	15.1039	16.2409
	U/Th	4	3.1	1.9	6.8	2.0	8.8	1.4	4.6	2.2	1.5	1.3	1.6	1.3	1.2	1.3	6.8	1.8	2.1	3.5	4.2	1.7	1.1	0.8	0.8	2.9	0.7	2.1	1.1	0.8	2.0	2.6
	U, MKT/T	3	604	144	664	228	937	290	270	164	378	413	91	351	102	160	474	260	450	302	70	185	194	105	507	181	109	236	109	100	150	950
	Th, tkr/r	2	198	76	98	114	106	214	59	76	249	322	58	278	88	119	70	149	214	86	17	108	172	140	637	62	155	112	101	120	73	360
	Номер анализа _М	1	HO-129/033	HO-129/034	HO-129/035	HO-129/036	HO-129/037	HO-129/038	HO-129/039	HO-129/040	HO-129/041	HO-129/042	HO-129/043	HO-129/044	HO-129/045	HO-129/046	HO-129/047	HO-129/048	HO-129/049	HO-129/050	HO-129/051	HO-129/052	HO-129/053	HO-129/056	HO-129/057	HO-129/058	HO-129/059	HO-129/060	HO-129/062	HO-129/063	HO-129/064	HO-129/065

СОСТАВ И ВОЗРАСТ ПОРОД ОБЛАСТЕЙ СНОСА 107

	* *	21	*	*		*	* *	* *	*		*	* *		*		* *	* *	* *	* *	* *		* *								
	D	20	-2.9	-5.2	-29.1	-3.3	5.5	-5.2	-0.8	-8.1	-1.8	-3.1	-16.3	1.7	-24.7	-7.9	0.7	-7.2	-2.1	-3.8	-17.5	-2.9	-0.2	4.0	-3.0	-4.7	2.4	1.5	-9.4	-4.9
	±2σ	19	16	15		15	15	17	15		16	29	14	15		16	12	20	18	18	12	18	32	16	18	18	19	17	17	19
T	CA	18	872	870	DISCORDANT	798	797	873	782	DISCORDANT	824	1715	721	794	DISCORDANT	770	561	1049	876	860	553	873	1686	781	795	830	906	797	783	868
лн ле	±1σ	17	8	×	11	8	7	8	٢	14	8	16	7	8	5	8	9	10	6	6	9	6	17	8	6	6	10	6	6	10
раст, м	Ω_{857}/qd_{907}	16	872	868	1230	797	799	872	782	1580	823	1708	718	794	509	769	562	1045	876	859	553	872	1685	782	795	829	907	798	782	867
Bo3	±1σ	15	13	12	15	13	12	14	12	18	13	19	12	13	10	15	11	17	15	16	13	15	22	14	17	16	17	16	17	18
	Ω_{SEZ}/qd_{LOZ}	14	878	881	1426	804	787	885	783	1640	827	1732	752	790	540	786	560	1071	880	868	576	879	1686	773	801	840	900	794	803	879
	±1σ	13	47	44	37	49	47	49	47	40	47	43	48	49	52	57	55	50	54	56	63	54	50	57	64	60	58	60	64	65
	9d ₂₀₇ /9d ₉₀₇	12	898	916	1734	824	757	920	788	1719	838	1762	858	781	676	835	558	1126	895	893	670	868	1688	752	820	870	886	786	863	912
	Rho	11	0.44	0.46	0.47	0.43	0.45	0.43	0.45	0.46	0.44	0.45	0.44	0.44	0.43	0.40	0.42	0.42	0.41	0.41	0.39	0.42	0.42	0.41	0.39	0.40	0.40	0.40	0.39	0.39
	±1σ	10	0.0014	0.0014	0.0020	0.0013	0.0013	0.0015	0.0013	0.0027	0.0014	0.0031	0.0012	0.0013	0.0009	0.0014	0.0010	0.0019	0.0016	0.0016	0.0010	0.0016	0.0034	0.0014	0.0016	0.0016	0.0017	0.0015	0.0015	0.0017
ения	∩ _{8€7} /9d ₉₀₇	6	0.1448	0.1441	0.2101	0.1317	0.1319	0.1448	0.1290	0.2778	0.1362	0.3034	0.1178	0.1312	0.0822	0.1267	0.0910	0.1760	0.1455	0.1425	0.0895	0.1448	0.2988	0.1289	0.1312	0.1373	0.1511	0.1317	0.1289	0.1440
ые отнош	±lσ	8	0.0309	0.0285	0.0610	0.0280	0.0256	0.0327	0.0257	0.0873	0.0282	0.1038	0.0249	0.0273	0.0168	0.0318	0.0184	0.0469	0.0359	0.0366	0.0225	0.0359	0.1160	0.0305	0.0368	0.0368	0.0401	0.0338	0.0372	0.0431
Изотопні	$\Omega_{SEZ}/9d_{LOZ}$	7	1.3755	1.3806	3.0721	1.2074	1.1713	1.3907	1.1620	4.0287	1.2575	4.5055	1.0980	1.1779	0.7029	1.1682	0.7366	1.8716	1.3800	1.3507	0.7631	1.3758	4.2615	1.1420	1.2007	1.2869	1.4269	1.1861	1.2043	1.3768
	±lσ	9	0.0016	0.0015	0.0022	0.0016	0.0015	0.0017	0.0015	0.0024	0.0016	0.0026	0.0016	0.0016	0.0015	0.0019	0.0015	0.0020	0.0018	0.0019	0.0019	0.0018	0.0029	0.0018	0.0021	0.0020	0.0020	0.0019	0.0022	0.0022
	9d ₂₀₇ /9d ₉₀₇	5	14.5055	14.3823	9.4266	15.0289	15.5203	14.3541	15.2962	9.5019	14.9272	9.2813	14.7916	15.3457	16.1231	14.9509	17.0271	12.9598	14.5264	14.5381	16.1702	14.5033	9.6635	15.5585	15.0634	14.7028	14.5930	15.3073	14.7554	14.4100
	U/Th	4	0.5	1.3	0.9	1.1	4.7	1.3	9.3	1.3	10.8	2.8	3.8	1.2	0.9	1.5	2.9	3.6	1.0	1.5	1.2	3.8	1.6	2.3	0.9	4.9	8.2	2.3	1.7	0.8
	U, MKT/T	3	153	334	1002	185	254	186	626	456	474	190	983	587	706	85	689	305	212	134	122	459	136	639	93	281	714	524	119	105
	Th, mkr/r	2	281	252	1132	167	54	140	67	360	44	68	262	502	781	57	237	84	210	92	102	122	82	281	66	58	87	229	70	125
	Номер анализа	1	HO-129/066	HO-129/067	HO-129/068	HO-129/069	HO-129/070	HO-129/071	HO-129/072	HO-129/073	HO-129/074	HO-129/075	HO-129/076	HO-129/077	HO-129/079	HO-129/080	HO-129/081	HO-129/082	HO-129/083	HO-129/084	HO-129/085	HO-129/086	HO-129/088	HO-129/089	HO-129/090	HO-129/091	HO-129/092	HO-129/093	HO-129/094	HO-129/095
							CT	РАТ	гиі	ГРА	Φŀ	1Я.	ΓЕ	ол	ОГ	ИЧ	EC	KA	як	OP	РЕЛ	яц	ия		гом	31	N	í⊵ 5	2	023

108

Таблица 3. Продолжение

СМИРНОВА и др.

		* *	21	*		* *	* *	*	*	*		*		* *	*	* *	*	*	*			* *	*		²³⁵ U)), тность,
		Ω	20	-5.8	-20.6	-1.1	-4.1	-0.3	-0.5	-2.8	-13.2	-0.6	-13.3	-4.1	-6.0	-5.1	-7.2	-9.8	-0.6	-22.5	-18.1	-5.1	9.6–	-20.5	²⁰⁷ Рb/ орданл лчисле
		±2σ	19	18	12	35	25	36	37	38		21		19	19	18	18	20	44	13	23	20	20	19	¹⁵ U)/(¹ диско в и вь
	L	CA	18	797	508	1847	1194	1767	1849	1843	DISCORDANT	897	DISCORDANT	778	801	742	684	792	2050	503	945	829	773	739	²³⁸ U))/(σ(²⁰⁷ Pb/ ²³ Judwig, 2008), D – ятности ширконо
	ллн лет	$\pm 1\sigma$	17	6	9	19	13	19	20	20	20	11	17	10	10	6	6	10	24	9	12	11	10	10	²⁰⁶ Рb// раст (I й верс
	раст, м	∩ _{8€7} /9d ₉₀₇	16	796	507	1845	1191	1767	1848	1837	1878	897	1528	TTT	801	741	683	791	2048	502	942	833	771	734	³⁸ U)/(ый воз гельно
	Bo3	$\pm 1\sigma$	15	17	13	25	22	26	27	28	28	20	27	19	19	19	20	21	32	15	23	21	21	20	⁰⁶ Рb/ ² дантни тноси
		Ω_{SEZ}/qd_{LOZ}	14	808	530	1854	1209	1768	1851	1862	2017	868	1628	785	814	751	695	813	2053	529	1006	845	793	785	= (σ(² κοнкор ивой о
		+1σ	13	63	99	54	60	58	58	58	56	70	61	73	73	75	82	77	64	79	74	78	81	78]: Rho CA – 1 НИЯ Кр
		9d ₂₀₇ /9d ₉₀₇	12	845	634	1865	1242	1772	1857	1891	2164	902	1762	810	852	781	736	877	2060	648	1150	878	856	928	Pb/ ²³⁸ 1 2021); острое
		Rho	11	0.39	0.39	0.40	0.39	0.39	0.39	0.39	0.39	0.38	0.38	0.37	0.38	0.37	0.36	0.37	0.38	0.37	0.37	0.77	0.36	0.37	5U_ ²⁰⁶ n et al., - лля по
		±lσ	10	0.0016	0.0010	0.0039	0.0024	0.0039	0.0041	0.0041	0.0042	0.0019	0.0034	0.0017	0.0017	0.0016	0.0016	0.0018	0.0051	0.0011	0.0021	0.0019	0.0018	0.0017	²⁰⁷ Pb/ ²³ Powerma % (**) -
	ения	∩ _{8€7} /9d ₉₀₇	6	0.1314	0.0818	0.3314	0.2030	0.3153	0.3319	0.3297	0.3383	0.1492	0.2675	0.1281	0.1322	0.1219	0.1118	0.1305	0.3740	0.0810	0.1573	0.1379	0.1271	0.1211	юшений h, 2006; 00) — 100
	le otholl	±1σ	8	0.0369	0.0209	0.1555	0.0702	0.1487	0.1639	0.1695	0.2015	0.0480	0.1316	0.0404	0.0426	0.0386	0.0380	0.0453	0.2363	0.0249	0.0620	0.0481	0.0455	0.0438	ками отн Jerdes, Ze ⁰⁷ Pb) × 10
	Изотопнь	∩ _{\$\$₹7} /9d _{∠07}	7	1.2168	0.6857	5.2054	2.2881	4.7056	5.1909	5.2554	6.2913	1.4203	3.9705	1.1669	1.2285	1.0944	0.9824	1.2271	6.5541	0.6831	1.6925	1.2979	1.1835	1.1668	кду ошиб шения (С т(²⁰⁶ Pb/ ²)
		±lσ	9	0.0021	0.0019	0.0035	0.0026	0.0035	0.0037	0.0038	0.0045	0.0024	0.0037	0.0024	0.0024	0.0024	0.0026	0.0026	0.0048	0.0023	0.0030	0.0026	0.0027	0.0027	яции мез юго отно)/Возрас
		9d ₂₀₇ /9d ₉₀₇	5	14.8841	16.4451	8.7742	12.2244	9.2349	8.8115	8.6461	7.4100	14.4804	9.2848	15.1316	14.8347	15.3440	15.6782	14.6541	7.8640	16.3330	12.8052	14.6453	14.8024	14.2989	нт коррел го или ин ¹⁶ рь/ ²³⁸ U
		U/Th	4	9.7	2.2	1.3	0.8	3.0	1.5	1.6	2.6	1.3	1.2	2.6	4.4	1.6	1.3	2.0	3.0	3.0	5.0	5.5	1.7	4.7	фицие1 16ка то nacт(²⁽
ание		U, MKT/F	3	304	863	248	130	180	358	146	864	185	1233	231	259	459	96	167	90	1027	526	519	154	607	- коэф(ая ошт = (Воз
конч		Th, MKT/T	2	31	400	197	174	60	240	92	337	147	1058	90	58	291	73	82	30	340	104	95	89	129	Rho - ительн как D
Таблица 3. С		Номер анализа	1	HO-129/096	HO-129/098	HO-129/099	HO-129/100	HO-129/102	HO-129/103	HO-129/104	HO-129/105	HO-129/107	HO-129/108	HO-129/109	HO-129/110	HO-129/111	HO-129/112	HO-129/113	HO-129/114	HO-129/116	HO-129/117	HO-129/118	HO-129/119	HO-129/120	Примечание. где о – относ вычислялась

СОСТАВ И ВОЗРАСТ ПОРОД ОБЛАСТЕЙ СНОСА

109

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ том 31 № 5 2023

Рис. 4. Кривая относительной вероятности возрастов зерен детритового циркона (а) и диаграмма с конкордией для неопротерозойских зерен циркона (б) из песчаника ерниченской толщи (обр. Ю-129) аргунской серии Аргунского континентального массива.

ченской толщи нами использовались дискриминационные диаграммы Co-Th-Zr/10, Sc-Th-Zr/10, Th-La-Sc (Bhatia, Crook, 1986). Большинство точек состава исследуемых отложений на этих диаграммах расположено в поле осадочных пород, накопление которых происходило в обстановке континентальной островной дуги (рис. 6). Активный тектонический режим в период осадконакопления также подтверждается присутствием в составе толщи гравелитов, преобладанием в исследованных образцах песчаников и алевролитов обломков слабоокатанной формы, с плохой степенью сортировки. Такая интерпретация согласуется с интенсивной магматической деятельностью в неопротерозое и раннем палеозое в пределах Аргунского массива, отразившейся в формировании многочисленных массивов гранитоидов (Сорокин, Кудряшов, 2015; Сорокин и др., 2015; Feng et al., 2022 и др.).

Далее обратимся к результатам U–Pb датирования зерен детритового циркона. Как следует из полученных результатов, самая молодая группа циркона из песчаника ерниченской толщи характеризуется возрастом 549—570 млн лет, пик на кривой относительной вероятности возрастов циркона составляет 566 млн лет. Соответственно, нижняя возрастная граница их накопления не древнее рубежа неопротерозоя и кембрия, что в целом согласуется с принятым Е.А. Шивохиным с соавторами (2010) ранне-среднекембрийским возрастом толщи.

Кроме того, проведенные нами исследования позволили установить, что наиболее значимые

Рис. 5. Диаграммы (a) Zr/Sc–Th/Sc (McLennan et al., 1993), (б) La/Sc–Th/Co (Cullers, 2002), (в) Rb–K (Floyd, Leveridge, 1987), (г) Th–La–Sc (Cullers, 2002) для терригенных пород ерниченской толщи аргунской серии Аргунского континентального массива. Условные обозначения см. на рис. 2.

группы детритового циркона из песчаника ерниченской толщи характеризуются нео-, мезо- и палеопротерозойскими значениями возраста. Источниками наиболее древних зерен циркона могли быть массивы палеопротерозойских гранитов и гнейсов, выявленных сравнительно недавно в строении Аргунского массива на сопредельной территории Китая (Sun et al., 2013; Feng et al., 2022). Источниками наиболее молодых неопротерозойских зерен циркона, по-видимому, являются массивы гранитоидов Уртуйского массива с возрастом 784 \pm 7 млн лет, 804 \pm 7 млн лет (Голубев и др., 2010), кварцевых диоритов Усть-Гаринского массива с возрастом 607 \pm 8 млн лет (Соро-

кин и др., 2015), поля кислых вулканитов Гарь-Джелтулакского пояса с возрастом 546 ± 14 млн лет (Сорокин, Кудряшов, 2015), установленные в пределах Аргунского массива. В качестве исходных пород также можно рассматривать неопротерозойские магматические и метаморфические породы Аргунского массива, выявленные на территории Китая. Их возраст, согласно геохронологическим (U–Pb) исследованиям, варьирует от ~957 до ~685 млн лет (Wu et al., 2011; Gou et al., 2013; Tang et al., 2013; Ge et al., 2015; Yang et al., 2017; Li et al., 2018; Liu et al., 2020; Feng et al., 2022 и др.). Вопрос об источниках мезопротерозойских зерен циркона открыт, так как до сих пор в

том 31 № 5 2023

Рис. 6. Диаграммы (а) Co–Th–Zr/10, (б) Sc–Th–Zr/10, (в) Th–La–Sc (Bhatia, Crook, 1986) для терригенных пород ерниченской толщи аргунской серии Аргунского континентального массива.

Условные обозначения см. на рис. 2. Поля, характеризующие обстановки, в которых происходило накопление песчаников: А – океаническая островная дуга, В – континентальная островная дуга, С – активная континентальная окраниа, D – пассивная континентальная окраина.

структуре Аргунского континентального массива не установлены с помощью U–Pb геохронологических исследований образования мезопротерозойского возраста.

выводы

Полученные в ходе исследований результаты позволяют сделать следующие выводы:

1. Особенности химического состава терригенных пород ерниченской толщи в совокупности с ее гранулометрическим составом, а также со слабой степенью окатанности и плохой сортировкой обломочного материала в изученных образцах песчаников и алевролитов позволяют предполагать, что их накопление происходило в обстановке, связанной с субдукционными процессами.

2. Нижняя возрастная граница накопления терригенных пород ерниченской толщи, согласно возрасту наиболее молодой группы детритового циркона, приходится на границу неопротерозоя и палеозоя.

3. Основными источниками исходного материала для отложений ерниченской толщи послужили неопротерозойские и палеопротерозойские магматические и метаморфические образования Аргунского континентального массива.

Благодарности. Авторы выражают глубокую благодарность рецензентам А.Б. Котову, В.П. Ковачу и С.И. Дрилю за ценные советы и замечания. Авторы благодарят сотрудников ЦКП "Амурский центр минералого-геохимических исследований" ИГиП ДВО РАН (Е.Н. Воропаеву, О.Г. Медведеву, В.И. Рождествину, А.С. Сегренёва, Е.С. Сапожник, Е.В. Ушакову), ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН (О.В. Зарубину, Н.В. Брянского, Т.Н. Галкину), а также персонал ЦКП "Геоспектр" ГИН СО РАН (г. Улан-Удэ) за проведение аналитических исследований.

Источники финансирования. Исследования выполнены при поддержке Российского фонда фундаментальных исследований (проект 20-05-00195).

СПИСОК ЛИТЕРАТУРЫ

Голубев В.Н., Чернышев И.В., Котов А.Б., Сальникова Е.Б., Гольцман Ю.В., Баирова Э.Д., Яковлева С.З. Стрельцовский урановорудный район: изотопно-геохронологическая (U–Pb, Rb–Sr и Sm–Nd) характеристика гранитоидов и их место в истории формирования урановых месторождений // Геология рудных месторождений. 2010. Т. 52. № 6. С. 553–571.

Гордиенко И.В., Метелкин Д.В., Ветлужских Л.И. Строение Монголо-Охотского складчатого пояса и проблема выделения Амурского микроконтинента // Геология и геофизика. 2019. Т. 60. № 3. С. 318–341.

Козлов С.А., Богач Г.И., Томбасов И.А., Потемкина Л.В., Пинаева Т.А. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1000000. Серия Алдано-Забайкальская. Лист N-50 (Сретенск). Третье поколение. Отв. ред. Руденко В.Е., Старченко В.В. СПб.: ВСЕГЕИ, 2010.

Коссовская А.Г., Тучкова М.И. К проблеме минералогопетрохимической классификации и генезиса песчаных пород // Литология и полезн. ископаемые. 1988. № 2. С. 8–24.

Куриленко А.В., Котляр Г.В., Кульков Н.П., Раитина Н.И., Ядрищенская Н.Г., Старухина Л.П., Маркович Е.М., Окунева Т.М., Дольник Т.А., Попеко Л.И., Беляева Г.В., Бяков А.С., Башурова Н.Ф., Тимохин А.В., Коровников И.В., Могучева Н.К., Изох Н.Г., Анисимова С.А., Клец Т.В., Иванова Р.М., Стукалина Г.А. Атлас фауны и флоры палеозоя-мезозоя Забайкалья. Новосибирск: Наука, 2002. 714 с.

Моссаковский А.А., Руженцев С.В., Самыгин С.Г., Хераскова Т.Н. Центрально-Азиатский складчатый пояс: геодинамическая эволюция и история формирования // Геотектоника. 1993. № 6. С. 3–33.

Озерский А.Ф., Винниченко Е.Л. Государственная геологическая карта Российской Федерации. Масштаб 1: 200000. Серия Приаргунская. Лист М-50-VI (Бол. Зерентуй). М.: МФ ВСЕГЕИ, 2015.

Парфенов Л.М., Берзин Н.А., Ханчук А.И., Бодарч Г., Беличенко В.Г., Булгатов А.Н., Дриль С.И., Кириллова Г.Л., Кузьмин М.И., Ноклеберг У.Дж., Прокопьев А.В., Тимофеев В.Ф., Томуртогоо О., Янь Х. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7–41.

Решения IV Межведомственного регионального стратиграфического совещания по докембрию и фанерозою юга Дальнего Востока и Восточного Забайкалья. Комплект схем. Хабаровск: ХГГГП, 1994.

Смирнова Ю.Н., Дриль С.И. Геохимия вендских (?) метаосадочных пород быркинской серии Аргунского супертеррейна // Геохимия. 2022. Т. 67. № 5. С. 445–462.

Смирнова Ю.Н., Сорокин А.А. Возраст и обстановки формирования чаловской серии ордовика Аргунского массива, восточная часть Центрально-Азиатского складчатого пояса // Стратиграфия. Геол. корреляция. 2019. Т. 27. № 3. С. 3–23.

Смирнова Ю.Н., Сорокин А.А., Попеко Л.И., Смирнов Ю.В. Геохимические особенности палеозойских терригенных отложений Ольдойского террейна восточной части Центрально-Азиатского складчатого пояса как отражение геодинамических условий седиментации // Геохимия. 2013. № 4. С. 344–365.

Смирнова Ю.Н., Сорокин А.А., Попеко Л.И. Геохимические особенности, обстановки накопления и источники материала нижнепалеозойских отложений Мамынского террейна Центрально-Азиатского складчатого пояса // Литология и полезн. ископаемые. 2016. № 6. С. 564–582.

Смирнова Ю.Н., Сорокин А.А., Попеко Л.И., Котов А.Б., Ковач В.П. Геохимия и области сноса юрских терригенных отложений Верхнеамурского и Зея-Депского прогибов восточной части Центрально-Азиатского складчатого пояса // Геохимия. 2017. № 2. С. 127–148.

Смирнова Ю.Н., Овчинников Р.О., Смирнов Ю.В., Дриль С.И. Источники кластического материала и условия накопления осадочных пород даурской серии Аргунского континентального массива // Тихоокеанская геология. 2022. Т. 41. № 1. С. 13–31.

Сорокин А.А., Кудряшов Н.М. Первые U-Рb-геохронологические и геохимические данные для поздневендских и раннепалеозойских кислых вулканитов Мамынского террейна (Центрально-Азиатский складчатый пояс) // Докл. АН. 2015. Т. 465. № 4. С. 473-478.

Сорокин А.А., Котов А.Б., Кудряшов Н.М., Ковач В.П. Первые свидетельства проявления эдиакарского магматизма в истории геологического развития Мамынского террейна Центрально-Азиатского складчатого пояса // Тихоокеанская геология. 2015. Т. 34. № 6. С. 3–15.

Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.

Хубанов В.Б., Буянтуев М.Д., Цыганков А.А. U–Pb изотопное датирование цирконов из PZ₃–MZ магматических комплексов Забайкалья методом магнитно-сек-

торной масс-спектрометрии с лазерным пробоотбором: процедура определения и сопоставления с SHRIMP данными // Геология и геофизика. 2016. Т. 57. № 1. С. 241–258.

Шивохин Е.А., Озерский А.Ф., Куриленко А.В., Раитина Н.И., Карасев В.В. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000000. Серия Алдано-Забайкальская. Лист М-50 (Борзя). Третье поколение. Отв. ред. Старченко В.В. СПб.: ВСЕГЕИ, 2010.

Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб.: Наука, 2000. 479 с.

Bhatia M.R., Crook K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins // Contrib. Miner. Petrol. 1986. V. 92. P. 181–193.

Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA // Chem. Geol. 2002. V. 191. Iss. 4. P. 305–327.

Feng Z., Zhang Q., Liu Y., Li L., Jiang L., Zhou J., Li W., Ma Y. Reconstruction of Rodinia supercontinent: evidence from the Erguna Block (NE China) and adjacent units in the eastern Central Asian orogenic Belt // Precambrian Res. 2022. V. 368. 106467.

Floyd P.A., Leveridge B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones // J. Geol. Soc. London. 1987. V. 144. Iss. 4. P. 531–542.

Ge W.C., Chen J.S., Yang H., Zhao G.C., Zhang Y.L., Tian D.X. Tectonic implications of new zircon U–Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing'an Range, NE China // J. Asian Earth Sci. 2015. V. 106. P. 169–185.

Gehrels G.E. AgePick, Available online: https://sites.goo-gle.com/a/laserchron.org/laserchron/home/. 2007.

Gerdes A., Zeh A. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany // Earth Planet. Sci. Lett. 2006. V. 249. Iss. 1–2. P. 47–61.

Gou J., Sun D.Y., Ren Y.S., Liu Y.J., Zhang S.Y., Fu C.L., Wang T.H., Wu P.F., Liu X.M. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: geochronological, geochemical and Hf isotopic evidence // J. Asian Earth Sci. 2013. V. 67–68. P. 114–137.

Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. Glitter: data reduction software for laser ablation ICP-MS // Laser Ablation–ICP-MS in the Earth Sciences. Current practices and outstanding issues. Ed. Sylvester P. Mineralogical Assoc. Canada Short Course Ser. 2008. V. 40. P. 308–314.

Herron M.M. Geochemical classification of terrigenous sands and shales from core or log data // J. Sediment. Petrol. 1988. V. 58. № 5. P. 820–829.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-

mass spectrometry to in situ U–Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.

Li Z.Z., Qin K.Z., Li G.M., Jin L.Y., Song G.X. Neoproterozoic and Early Paleozoic magmatic records from the Chalukou ore district, northern Great Xing'an Range, NE China: implications for tectonic evolution and Mesozoic Mo mineralization // J. Asian Earth Sci. 2018. V. 165. P. 96– 113.

Liu H., Li Y., Wan Z., Lai Ch.-K. Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: insights from magmatic and sedimentary record // Gondwana Res. 2020. V. 88. P. 185–200.

Ludwig K.R. Isoplot 3.6. A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2008. № 4. P. 1–77.

McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.

McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. Geochemical approaches to sedimentation, provenance, and tectonics // Geol. Soc. Am. Spec. Pap. 1993. V. 284. P. 21–40.

Powerman V.I., Buyantuev M.D., Ivanov A.V. A review of detrital zircon data treatment, and launch of a new tool 'Dezirteer' along with the suggested universal workflow // Chem. Geol. 2021. V. 583. 120437.

Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249. P. 1–35.

Sun L.X., Ren B.F., Zhao F.Q., Ji S.P., Geng J.Z. Late Paleoproterozoic magmatic records in the Erguna massif: evidences from the zircon U–Pb dating of granitic gneisses // Geol. Bull. China. 2013. V. 32. P. 341–352.

Tang J., Xu W.L., Wang F., Wang W., Xu M.J., Zhang Y.H. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent // Precambrian Res. 2013. V. 224. P. 597–611.

Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses // Geostandards Newslett. 1995. V. 19. Iss. 1. P. 1–23

Wu F.Y., Sun D.Y., Ge W.C., Zhang Y.B., Grant M.L., Wilde S.A., Jahn B.M. Geochronology of the Phanerozoic granitoids in northeastern China // J. Asian Earth Sci. 2011. V. 41. Iss. 1. P. 1–30.

Yang H., Liu Y., Zheng J., Liang Z., Wang X., Tang X., Su Y. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China // Geol. Bull. China. 2017. V. 36. Iss. 2–3. P. 342–356.

Рецензенты С.И. Дриль, В.П. Ковач, А.Б. Котов

Composition and Age of Sources of the Lower-Middle Cambrian (?) Terrigenous Rocks from The Ernichny Formation in the Argun Massif, Eastern Part of the Central Asian Fold Belt

Yu. N. Smirnova^{*a*, #}, A. V. Kurilenko^{*b*}, and V. B. Khubanov^{*b*}

^a Institute of Geology and Nature Management of FEB RAS, Blagoveshchensk, Russia ^b Geological Institute of SB RAS, Ulan-Ude, Russia [#]e-mail: smirnova@ascnet.ru

The paper presents the results of the mineralogical and geochemical studies of sandstones and siltstones of the Ernichny formation of the Argun series in the Argun continental massif, and the results of U–Pb (LA-ICP-MS) dating for the detrital zircons from these rocks. It is established that the youngest detrital zircons from sandstone of the Ernichny Formation have age of 549-570 Ma. A maximum on the relative probability curve of zircon age corresponds to 566 Ma. These data determine the lower age limit of their accumulation on the border of the Ediacaran and Paleozoic age. According to the results of U–Pb dating of detrital zircons, the majority of detrital zircons from sandstones of Ernichny Formation are characterized by Neo- and Paleoproterozoic ages. The sources of zircons were Neo- and Paleoproterozoic igneous and metamorphic rocks that were widely developed within the Argun continental massif. In turn, the geochemical features of the terrigenous rocks of the Ernichny Formation, together with the presence of the poorly sorted and rounded clastic material in the studied samples, as well as the presence of interlayers of gravelstones, enabled us to establish that they were formed in a subduction-related setting.

Keywords: Argun Massif, Ernichny Formation, Early and Middle Cambrian, terrigenous rocks, geochemistry, U–Pb data