Climate Changes Reflected in the Carbon and Oxygen Isotope Composition of Holocene Carbonates of Lake Tere-Khol, Tyva (Southern Siberia)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The bottom sediments of Lake Tere-Khol, located in the southeast of the Sayano-Tuvinian Highlands, contain a detailed archive of landscape and climatic changes throughout the Holocene. Situated at the boundary between South Siberia and Central Asia, this region marks a transitional zone in terms of the factors driving hydroclimatic changes during the Holocene. To the north and west, the western transport of Atlantic air masses exerted a significant influence, while to the south and east, the Asian-Pacific monsoon circulation prevailed. Reconstructing Holocene climate changes in this region is crucial for understanding atmospheric circulation shifts across the Eurasian continent’s interior. Stable isotope analyses in lake carbonates were conducted to evaluate Holocene moisture fluctuations. The water of Lake Tere-Khol is notably enriched in 18O by 6–8‰ and ²H by 50–60‰ compared to its inflowing streams and rivers, indicating a strongly evaporative water body. This suggests that variations in δ18O (14.1 to 20.0‰ SMOW) and their positive correlation with δ¹³C variations (–5.8 to 4.2‰ PDB) in the dispersed carbonate material of Holocene lake sediments primarily reflect shifts in the hydrological regime. Positive δ18O and δ¹³C excursions correspond to periods of aridification, while negative excursions indicate phases of relative humidity. Three primary humidity epochs were identified in the Holocene. These include a relatively dry phase from the onset of the Holocene until 9.8 ka BP and from 4.4 ka BP to the present, with a humid phase in between, spanning from 9.8 to 4.4 ka BP. Superimposed on these major trends were second-order humidity changes, with variability and the amplitude of fluctuations notably intensifying in the latter half of the Holocene, after approximately 6 ka BP. The wettest interval occurred between 5.2 and 4.4 ka BP, while a sharp and substantial shift towards arid conditions around 4.4 ka BP stands out as the most significant hydroclimatic event of the Holocene. The driest periods were observed between 4.2 and 3.1 ka BP and from 1.9 to 0.1 ka BP. At the turn of the eras around 2 ka BP and in the past century, short episodes of relative wetting interrupted these dry conditions. This late Holocene aridification trend points to a weakening of the Pacific monsoon and a reduction in its reach into Eurasia’s interior, which aligns with cooling trends observed in the latter part of the Holocene.

Texto integral

Acesso é fechado

Sobre autores

B. Pokrovskiy

Geological Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: pokrov@ginras.ru
Rússia, Moscow

A. Panin

Institute of Geography, Russian Academy of Sciences

Email: pokrov@ginras.ru
Rússia, Moscow

Bibliografia

  1. Безрукова Е.В., Тарасов П.Е., Кулагина Н.В., Абзаева А.А., Летунова П.П., Кострова С.С. Палинологическое исследование донных отложений озера Котокель (район озера Байкал) // Геология и геофизика. 2011. Т. 52. № 4. С. 586–595.
  2. Борисова О.К., Константинов Е.А., Панин А.В., Полякова Е.И., Успенская О.Н. Короткопериодные климатические колебания второй половины голоцена по данным комплексных исследований осадков оз. Тере-Холь // LXXIV Герценовские чтения. Т. 1. СПб.: РГПУ им. А.И. Герцена, 2021. С. 332–337.
  3. Брезгунов В.С., Нечаев В.В., Романов В.В., Ферронский В.И. Исследование генезиса и динамики вод бассейнов крупных озер с помощью природных изотопов // Водные ресурсы. 1980. Т. 1. С. 108–120.
  4. Вайнштейн С.И. Древний Пор-Бажин // Советская этнография. 1964. № 6. С. 103–114.
  5. Кострова С.С., Майер Х., Чаплыгин Б., Безрукова Е.В. Изотопные характеристики озера Котокель // Вестник ИрГТУ. 2012. № 9 (68). С. 62–68.
  6. Лящевская М.С., Базарова В.Б., Макарова Т.Р. Развитие природной среды и эволюция озера Гнилое (юго-восточное Приморье) за последние 3300 лет // Геоморфология и палеогеография. 2023. Т. 54. № 3. С. 108–123. https://doi.org/10.31857/S2949178923030064
  7. Махнач А.А., Махнач Н.А., Покровский Б.Г. Геохимия стабильных изотопов в платформенном чехле Беларуси. Минск: Беларуская навука, 2022. 373 с.
  8. Панин А.В., Аржанцева И.А. Загадки Пор-Бажина // Живописная Россия. 2010. № 6. С. 14–19.
  9. Панин А.В., Бронникова М.А., Успенская О.Н., Фузеина Ю.Н., Шеремецкая Е.Д., Селезнева Е.В., Константинов Е.А., Магрицкий Д.В., Ланг А. Палеоклимат, палеогидрология и палеокриогенез на юго-востоке Саяно-Тувинского нагорья в позднеледниковье и голоцене (по результатам изучения истории озера Тере-Холь) // Бюлл. Комиссии по изучению четвертичного периода. 2012. № 72. С. 104–121.
  10. Покровский Б.Г., Завьялов П.О., Буякайте М.И., Ижицкий А.С., Петров О.Л., Курбаниязов А.К., Шиманович В.М. Геохимия изотопов О, Н, C, S и Sr в водах и осадках Аральского бассейна // Геохимия. 2017. № 11. С. 1053–1066.
  11. Разжигаева Н.Г., Ганзей Л.А., Гребенникова Т.А., Мохова Л.М., Чаков В.В., Копотева Т.А., Климин М.А., Симонова Г.В. Проявление глобальных похолоданий позднего голоцена на морском побережье юга Дальнего Востока России // Геоморфология и палеогеография. 2023. Т. 54. № 1. С. 112–130. https://doi.org/10.31857/S2949178923010115
  12. Разжигаева Н.Г., Ганзей Л.А., Гребенникова Т.А., Пономарев В.И., Афанасьев В.В., Горбунов А.О., Климин М.А. Повторяемость сильных паводков на Западном Сахалине и интенсивность циклогенеза в среднем–позднем голоцене // Геоморфология и палеогеография. 2024. Т. 55. № 2. С. 173-190. https://doi.org/10.31857/S2949178924020091
  13. Скляров Е.В., Солотчина Э.П., Вологина Е.Г., Изох О.П., Кулагина Н.В., Орлова Л.А., Склярова О.А., Солотчин П.А., Столповская В.Н., Ухова Н.Н. Климатическая история голоцена Западного Прибайкалья в карбонатной осадочной летописи озера Холбо-Нур // Докл. АН. 2010а. Т. 431. № 5. С. 668–674.
  14. Скляров Е.В., Солотчина Э.П., Вологина Е.Г., Игнатова Н.В., Изох О.П., Кулагина Н.В., Склярова О.А., Солотчин П.А., Столповская В.Н., Ухова Н.Н., Федоровский В.С., Хлыстов О.М. Детальная летопись климата голоцена из карбонатного разреза соленого озера Цаган-Тырм (Западное Прибайкалье) // Геология и геофизика. 2010б. Т. 51. № 3. С. 303–328.
  15. Солотчина Э.П., Скляров Е.В., Солотчин П.А., Вологина Е.Г., Столповская В.Н., Склярова О.А., Ухова Н.Н. Реконструкция климата голоцена на основе карбонатной осадочной летописи малого соленого озера Верхнее Белое (Западное Забайкалье) // Геология и геофизика. 2012. Т. 53. № 12. С. 1756–1775.
  16. Солотчина Э.П., Скляров Е.В., Солотчин П.А., Вологина Е.Г., Склярова О.А., Ухова Н.Н. Голоценовая осадочная летопись озера Большое Алгинское, Западное Забайкалье: связь с палеоклиматом // Докл. АН. 2013. Т. 449. № 1. С. 80–86. https://doi.org/10.7868/S0869565213070220
  17. Солотчина Э.П., Скляров Е.В., Солотчин П.А., Замана Л.В., Даниленко И.В., Склярова О.А., Татьков П.Г. Аутигенное карбонатообразование в озерах Еравнинской группы (Западное Забайкалье): отклик на изменения климата голоцена // Геология и геофизика. 2017. Т. 58. № 11. С. 1749–1763. https://doi.org/10.15372/GiG20171109
  18. Arzhantseva I., Inevatkina O., Zav’yalov V., Panin A., Modin I., Ruzanova S., Härke H. Por-Bajin: an enigmatic site of the Uighurs in Southern Siberia // European Archaeologist. 2011. № 35. P. 6–11.
  19. Aucour A., Sheppard S.M.F., Guyomar O., Wattelet J. Use of 13C to trace origin and cycling of inorganic carbon in the Rhône River system // Chem. Geol. 1999. V. 159. P. 87–105.
  20. Borisova O.K., Panin A.V. Multicentennial climatic changes in the Tere-Khol Basin, Southern Siberia, during the Late Holocene // Geography, Environment, Sustainability. 2019. V. 12. № 2. P. 148–161. https://doi.org/10.24057/2071-9388-2018-64.
  21. Bahr A., Arz H.W., Lamy F., Wefer G. Late Glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells // Earth Planet. Sci. Lett. 2006. V. 241. P. 863–875.
  22. Berkelhammer M.B., Sinha A., Stott L. et al. An abrupt shift in the Indian Monsoon 4000 years ago // Geophys. Monograph Ser. 2012. V. 198. P. 75–88.
  23. Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. V. 6. P. 457–474.
  24. Chacko T., Deines P. Theoretical calculation of oxygen isotope fractionation factors in carbonate systems // Geochim. Cosmochim. Acta. 2008. V. 72 P. 3642–3660.
  25. Chen Q., Cheng X., Cai Y., Luo Q., Zhang J., Tang L., Hu Y., Ren J., Wang P., Wang Y., Zhang Y., Xue G., Zhou J., Cheng H., Edwards R.L., Hong Z. Asian summer monsoon changes inferred from a stalagmite δ18O record in Central China During the Last Glacial Period // Front. Earth Sci. 2022. V. 10. № 863829. https://doi.org/10.3389/feart.2022.863829
  26. Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. P. 1702–1703.
  27. Dansgaard W. Stable isotope in precipitation // Tellus. 1964. V. 16. P. 436–468.
  28. Deines P., Langmuir D., Harmon R.S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters // Geochim. Cosmochim. Acta. 1974. V. 38. P. 1147–1164.
  29. Dykoski C.A., Edwards R.L., Cheng H., Yuan D., Cai Y., Zhang M. et al. A high-resolution, absolute-dated Holocene and Deglacial Asian monsoon record from Dongge Cave, China // Earth Planet. Sci. Lett. 2005. V. 233 (1–2). P. 71–86. https://doi.org/10.1016/j.epsl.2005.01.036
  30. Fricke H.C., O’Neil J.R. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time // Earth Planet. Sci. Lett. 1999. V. 170. P. 181‒196.
  31. Friedman I., O’Neil J.R. Compilation of stable isotope fractionation factors of geochemical interest // Data of Geochemistry. 6th Wash. D.C. U.S. Gov. Print. Office, 1977. 116 p.
  32. Gibbard P.L., Head M.J. Geologic Time Scale 2020. V. 2. Pt. IV. Geologic Periods: The Quaternary Period. Ch. 30. Elsevier, 2020. P. 1217–1255.
  33. Gonfiantini R. Environmental isotopes in lake studies // Fritz P., Fontes J.-Ch. (eds.). Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier, 1986. P. 113–168. https://doi.org/10.1016/B978-0-444-42225-5.50008-5
  34. Graven H., Allison C., Etheridge D., Hammer S., Keeling R., Levin I., Meijer H.A J., Rubino M., Tans P., Trudinger C., Vaughn B., White J. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6 // Geosci. Model Dev. 2017. V. 10. P. 4405–4417.
  35. Hammarlund D., Barnekow L., Birks H.J.B., Buchardt B., Edwards T.W.D. Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden // The Holocene. 2002. V. 12. P. 339–351.
  36. Kendall C., Doctor D.H. Stable isotope applications in hydrologic studies // Treatise on Geochemistry. Elsevier Science, 2004. V. 5. Pt. 11. P. 319–364.
  37. Kim S.-T., O’Neil J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates // Geochim. Cosmochim. Acta. 1997. V. 61. P. 3461–3475.
  38. Kuitems M., Panin A., Scifo A., Arzhantseva I., Kononov Y., Doeve P., Neocleous A., Dee M. Radiocarbon-based approach capable of subannual precision resolves the origins of the site of Por-Bajin // PNAS. 2020. V. 117 (25). P. 14038–14041.
  39. Lemke G., Sturm M. δ18O and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey): preliminary results // Dalfes, H.N., Kukla, G., Weiss, H. (eds). Third Millennium BC Climate Change and Old World Collapse. NATO ASI Series. V. 49. 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60616-8_29
  40. Leng M.J., Marshall J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives // Quatern. Sci. Rev. 2004. V. 23. P. 811–831.
  41. Leng M.J., Jones M.D., Frogley M.R., Eastwood W.J., Kendrick C.P., Roberts C.N. Detrital carbonate influences on bulk oxygen and carbon isotope composition of lacustrine sediments from the Mediterranean // Global and Planetary Change. 2010. V. 71. P. 175–182.
  42. Liu X.Q., Shen J., Wang S.M., Wang Y.B., Liu W.G. Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial // Chinese Sci. Bull. 2007. V. 52. № 4. P. 539–544.
  43. Lynch-Stieglitz J., Stocker T.F., Broecker W.S., Fairbanks R.G. The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling // Global Biogeochem. Cycles. 1995. V. 9. P. 653–665.
  44. Ma X., Wei Z., Wang Y., Wang G., Zhang T., He W., Yu X., Ma H., Zhang P., Li S., Wei J., Fan Q. Reconstruction of climate changes based on δ18Ocarb on the Northeastern Tibetan Plateau: a 16.1-cal kyr BP record from Hurleg Lake // Front. Earth Sci. 2021. V. 9. 745972. https://doi.org/10.3389/feart.2021.745972.
  45. Mayer B., Schwark L. A 15,000-year stable isotope record from sediments of Lake Steisslingen, Southwest Germany // Chem. Geol. 1999. V. 161. P. 315–337.
  46. Narantsetseg Ts., Krivonogov S.K., Oyunchimeg Ts., Uugantsetseg B., Burr G.S., Tomurhuu D., Dolgorsuren Kh. Late Glacial to Middle Holocene climate and environmental changes as recorded in Lake Dood sediments, Darhad Basin, northern Mongolia // Quatern. Int. 2013. V. 311. P. 12–24. https://doi.org/10.1016/j.quaint.2013.08.043
  47. Ogg J.G. Integrated global stratigraphy and geologic timescales, with some future directions for stratigraphy in China // Earth-Sci. Rev. 2019. V. 189. P. 6–20.
  48. Orkhonselenge A., Komatsu G., Uuganzaya M. Middle to late Holocene sedimentation dynamics and paleoclimatic conditions in the Lake Ulaan basin, southern Mongolia // Géomorphologie: Relief, Processus, Environnement. 2018. V. 24. № 4. P. 351–363. https://doi.org/10.4000/geomorphologie.12219
  49. Pokrovsky O.S., Manasypov R.M., Loiko S., Shirokova L.S., Krickov I.A., Pokrovsky B.G., Kolesnichenko L.G., Kopysov S.G., Zemtzov V.A., Kulizhsky S.P., Vorobyev S.N., Kirpotin S.N. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers // Biogeosciences. 2015. V. 12. P. 6301–6320.
  50. Prokopenko A.A., Bonvento V.J. Carbonate stable isotope signals in the 1-Ma sedimentary record of the HDP-04 drill core from Lake Hovsgol, NW Mongolia // Quatern. Int. 2009. V. 201. P. 53–64. https://doi.org/10.1016/j.quaint.2009.02.009
  51. Qiang M., Song L., Jin Y., Li Y., Liu L., Zhang J., Zhao Y., Chen F. A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: hydroclimatic evolution and changes in atmospheric circulation // Quatern. Sci. Rev. 2017. V. 62. P. 72–87.
  52. Quay P., Sonnerup R., Westby T., Stutsman J., McNichol A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake // Global Biogeochem. Cycles. 2003. V. 17. P. 1004.
  53. Rasmussen S.O., Bigler M., Blockley S.P., Blunier T., Buchardt S.L., Clausen H.B., Cvijanovic I., Dahl-Jensen D., Johnsen S.J., Fischer H., Gkinis V., Guillevic M., Hoek W.Z., Lowe J.J., Pedro J.B., Popp T., Seierstad I.K., Steffensen J.P., Svensson A.M., Vallelonga P., Vinther B.M., Walker M.J.C., Wheatley J.J., Winstrup M.A. Stratigraphic framework for abrupt climatic changes during the last Glacial Period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy // Quatern. Sci. Rev. 2014. V. 106. P. 14–28.https://doi.org/10.1016/j. quascirev.2014.09.00
  54. Ricketts R.D., Johnson T.C., Brown E.T., Rasmussen K.A., Romanovsky V.V. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracods. Palaeogeography, Palaeoclimatology, Palaeoecology. 2001. V. 176. P. 207-227. https://doi.org/10.1016/S0031-0182(01)00339-X
  55. Shan S., Luo C., Qi Y., Cai W.-J., Sun S., Fan D., Wang X. Carbon isotopic and lithologic constraints on the sources and cycling of inorganic carbon in four large rivers in China: Yangtze, Yellow, Pearl, and Heilongjiang // J. Geophys. Research: Biogeosciences. 2021. V. 126. e2020JG005901.
  56. Sundquist E.T., Visser K. The geological history of the carbon cycle // Treatise on Geochemistry. V. 8. Biogeochemistry. Ed. Schlesinger W.H. Oxford, UK: Elsevier-Pergamon, 2003. P. 425–72.
  57. Talbot M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates // Chem. Geol. Isotope Geosci. Sect. 1990. V. 80. P. 261–279.
  58. Von Grafenstein U., Erlernkeuser H., Brauer A., Jouzel J., Johnsen S.J. A Mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. // Science. 1999a. V. 284. P. 1654–1657.
  59. Von Grafenstein U., Erlernkeuser H., Trimborn P. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies // Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999b. V. 148. P. 133–152.
  60. Walker M., Johnsen S., Rasmussen S.O., Popp T., Steffensen J.P., Gibbard P., Hoek W., Lowe J., Andrews J., Bjorck S., Cwynar L., Hughen K., Kershaw P., Kromer B., Litt T., Lowe D.J., Nakagawa T., Newnham R., Schwander J. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records // J. Quatern. Sci. 2009. V. 24. P. 3–17.
  61. Walker M.J.C., Berkelhammer M., Björck S., Cwynar L.C., Fisher D.A., Long A.J., Lowe J.J., Newnham R.M., Rasmussen S.O., Weiss H. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a Working Group of INTIMATE (Integration of ice-core marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy) // J. Quatern. Sci. 2012. V. 27. P. 649–659.
  62. Watanabe T., Minoura K., Nara F.W., Shichi K., Horiuchi K., Kakegawa T., Kawai T. Last glacial to post glacial climate change in continental Asia inferred from multi-proxy records (geochemistry, clay mineralogy, and paleontology) from Lake Hovsgol, northwest Mongolia // Global and Planetary Change. 2012. V. 88–89. P. 53–63.
  63. Zhang C., Zhang W., Feng Z., Mischke S., Gao X., Gao D., Sun F. Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012. V. 15. P. 75–86.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Bathymetric map of the lake. A table with the location of the sampling points. 1 – well Pb-21; 2-4 – sampling points for isotopic composition of water: 2 – Lake. Tere-Khol, 3 – the Saldam river flowing out of the lake, 4 – rivers and streams flowing into the lake. The inset shows the location of the lake on the map of Asia. Tere-Khol (1) and some other lakes mentioned in the text: 2-4 – Baikal and Transbaikalia: 2 – Upper White, 3 – Tsagan-Tyrm, 4 – Kotokel, Buryatia; 5 – Gun Nuur, Northern Mongolia; 6-8 – Northern Tibet: 6 – Kukunor, or Qinghai (Qinghai), 7 – Genggahai (Genggahai), 8 – Harleg (Hurleg); 9 – Issyk-Kul, Northern Tien Shan; 10 – Van, Turkey, Asia Minor.

Baixar (672KB)
3. Fig. 2. Paleohydrological and paleoclimatic reconstructions based on lake and coastal deposits of the lake. There is a hole. (a) – lithological column: 1 – loam, 2 – organomineral silt, 3 – organogenic carbonate silt (sapropel), 4 – carbonate silt; (b) is an indicator of the relative abundance of Kd diatoms (see explanations in the text); (c) – local ecozones according to paleoalgological analysis and their paleohydrological interpretation (Panin et al., 2012): 5-8 – lake flow rate: 5 – relatively high (zones II, IV, VI), 6 – relatively low (zones III, V), 7 – very low (zone VII), 8 – alluvial environment (zone I); (d) – paleoclimatic phases of the second half of the Holocene according to spore-pollen analysis (Borisova and Panin, 2019; Borisova et al., 2021): 9-12 – temperature: 9 – warm, 10 – relatively warm, 11 – cool, 12 – cold; 13-16 – humidity: 13 – humid, 14 – relatively humid, 15 – relatively dry, 16 – dry.

Baixar (590KB)
4. Fig. 3. Age model of lake sediments of the Pb21 well according to Table 1, constructed in the R Bacon program.

Baixar (413KB)
5. 4. Isotopic composition of oxygen and hydrogen in water. 1 – Lake Tere-Khol, 2 – the Saldam river flowing out of the lake, 3 – the Kungur-Tuk River flowing into the lake, 4 – small streams and rivers flowing into the lake. The solid line is the global trend of atmospheric precipitation: dD = 8 × d18O + 10 (Craig, 1961), the dotted line is the trend of lake evaporation. There is a hole.

Baixar (75KB)
6. 5. Electron microscopic photographs of carbonate material from bottom sediments of the lake. Tere-Khol, well Pb-21.

Baixar (874KB)
7. 6. Variations in the isotopic composition of carbon and oxygen in the context of Holocene lake sediments. There is a hole. (a) – lithological column (see symbols in Fig. 2); (b, c) – values of d13C and d18O in carbonates, respectively: 1a, 2a – gross samples; 1b, 2b – ostracod shells; (d) – Mg/Ca values in gross carbonate samples; (e) – hydroclimatic periodization according to isotopic data: 3, 5 – first–order events: 3 – wet, 5 – arid; 3-6 – second–order events: 3 – relatively wet, 4 – maximum moisture, 5 - relatively arid, 6 - maximum aridity.

Baixar (415KB)
8. 7. The ratio of the isotopic composition of oxygen (a) and carbon (b) in dispersed carbonate and ostracod shells from one well core sample.

Baixar (140KB)
9. 8. Changes in temperature (a) and precipitation (b) in Kyzyl over the past 80 years (http://www.pogodaiklimat.ru/climate.php .). 1 – average values for the warm season (April–September); 2 – average values for the cold season (October–March).

Baixar (221KB)
10. Fig. 9. The ratio of carbon and oxygen isotopic composition in the gross carbonate samples from the bottom sediments of the lake. There is a hole. 1 is the base of the section, 2 is the Lower Holocene, 3 is the Middle Holocene, and 4 is the Upper Holocene. The arrows show: the values of d18O in calcite in equilibrium with modern lake and modern river water during fractionation of d18O (calcite–H2O) = 28 ± 1%, corresponding to ~25 ± 5 °C (Kim, O'Neil, 1997); the values of d13C in calcite in equilibrium with carbon dioxide of the pre-industrial atmosphere (Sundquist, Visser, 2003; Graven et al., 2017) with fractionation of d13C (CO2–calcite) = 10 ± 0.5% (Deines et al., 1974), corresponding to ~25 ± 5 °C.

Baixar (147KB)
11. 10. Changes in oxygen isotopic composition in carbonates of some lakes of Central Asia in the Holocene. 1 – Tere-Khol (this work); 2 – Upper Beloe, Buryatia (Solotchina et al., 2012); 3 – Tsagan-Tyrm (Sklyarov et al., 2010b); 4 – Kotokel (Kostrova et al., 2012); 5 – Gun Nuur, Northern Mongolia (Zhang et al., 2012); 6 – Qinghai, Tibet, North China (Liu et al., 2007); 7 – Genggai, ibid. (Qiang et al., 2017); 8 – Harleg, ibid. (Ma et al., 2021); 9 – Issyk-Kul, Kyrgyzstan (Ricketts et al., 2001); 10 – Van, Turkey (Lemke and Sturm, 1997). The location of the lakes is shown in Fig. 1. All data has been converted to the SMOW standard. To construct curves 2 and 3, the original radiocarbon dates were calibrated, and the curves from the depth scale were projected onto the time scale by interpolating between the dates.

Baixar (278KB)

Declaração de direitos autorais © Russian academy of sciences, 2025