Non-invasive optical methods (spectrometry, thermal imaging) when determining nitrogen deficiency and the physiological state of wheat in the field conditions

Cover Page

Cite item

Full Text

Abstract

The reflection spectra and leaf surface temperature were measured in a field experiment when growing wheat of the Daria variety in the field conditions of the Menkovo experimental station of the Agrophysical Research Institute. The plants were vegetated at different levels of nitrogen nutrition (0–200 kg/ha in increments of 40 kg/ha). Fertilizers were applied in 2 stages: 2/3 of the dose of nitrogen (nitrogen strip) before sowing and 1/3 (ammonium nitrate) at the stage of completion of tillering. The analysis of the diffuse reflection indices of the leaf surface revealed a close positive relationship between the chlorophyll index (ChlRI) and a close negative relationship between the photochemical reflection index (PRI) and the dose of nitrogen fertilizers applied at the early stages of nitrogen deficiency, when there are no visible symptoms of plant oppression. The reflection indices SIPI, R800, ARI and FRI, in addition to assessing the nitrogen supply of plants, can be useful in assessing the specific response of plants to the action of various stressors, for example, to a deficiency of soil moisture or a lack of soil nitrogen. The use of thermal imaging made it possible to assess the transpiration activity of wheat plants depending on the level of nitrogen nutrition and its change during the day.

Full Text

Restricted Access

About the authors

Dmitryi V. Rusakov

Agrophysical Research Institute

Author for correspondence.
Email: rdv_vgsha@mail.ru
ORCID iD: 0000-0001-8753-4440

Candidate of Sciences in Agriculture, Senior Researcher

Russian Federation, Saint-Petersburg

Elena V. Kanash

Agrophysical Research Institute

Email: ykanash@yandex.ru
ORCID iD: 0000-0002-8214-8193

Doctor of Sciences in Biology, Chief Researcher

Russian Federation, Saint-Petersburg

Yuriy V. Chesnokov

Agrophysical Research Institute

Email: yuv_chesnokov@agrophys.ru
ORCID iD: 0000-0002-1134-0292

Corresponding Member of RAS, Doctor of Sciences in Biology, Director

Russian Federation, Saint-Petersburg

References

  1. Dobrowski S.Z., Pushnik J.C., Zarco-Tejada P.J., Ustin S.L. Simple reflectance indices track heat and water-stress induced changes in steady-state chlorophyll fluorescence at the canopy level. Remote Sensing of Environment. 2005;97(3):403–414. doi: 10.1016/j.rse.2005.05.006.
  2. Rosso P.H., Pushnik J.C., Lay M., Ustin S.L. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environmental Pollution. 2005;137(2):241–252. doi: 10.1016/j.envpol.2005.02.025.
  3. Kanash E.V., Panova G.G., Blokhina S.Yu. Optical criteria for assessment of efficiency and adaptogenic characteristics of biologically active preparations. Acta Horticulturae. 2013;1009(ISHS):37–44. doi: 10.17660/ActaHortic.2013.1009.2.
  4. Graeff S., Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy. 2003;19(4):611–618. doi: 10.1016/S1161-0301(03)00007-8.
  5. Kanash E.V., Osipov Y.A. Optical signals of oxidative stressin crops physiological state diagnostics. Precision Agriculture Wageningen. Netherlands; 2009. P. 81–89. doi: 10.3920/978-90-8686-664-9.
  6. Yakushev V., Kanash E., Rusakov D., Blokhina S. Specific and non-specific changes in optical characteristics of spring wheat leaves under nitrogen and water deficiency. Advances in Animal Biosciences: Precision Agriculture. 2017;8(02):229–232. doi: 10.1017/S204047001700053X.
  7. Yakushev V.P., Kanash E.V. Evaluation of wheat nitrogen status by colorimetric characteristics of crop canopy presented in digital images. Journal of Agricultural Informatics. 2016;7(1):65–74. doi: 10.17700/JAI.2016.7.1.268.
  8. Sims D.A., Gamon J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment. 2002;81(2/3):337–354. doi: 10.1016/S0034-4257(02)00010-X.
  9. Merzlyak M.N., Solovchenko A.E., Smagin A.I., Gitelson A.A. Apple flavonols during fruit adaptation to solar radiation: spectral features and techniques for non-destructive assessment. Russian Journal of Plant Physiology. 2005;162(2):151–160. doi: 10.1016/j.jplph.2004.07.002.
  10. Penuelas J., Baret F., Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica. 1995;31:221–230.
  11. Gamon J., Penuelas J., Field C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment. 1992;41(1):35–44.
  12. Rusakov D.V., Kanash E.V. Spectral characteristics of leaves diffuse reflection in conditions of soil drought: a study of soft spring wheat cultivars of different drought resistance. Plant Soil and Environment. 2022;68(3):137–145. doi: 10.17221/483/2021-PSE.
  13. Xu H., Ying Y. Application of infrared thermal imaging in the identification of citrus on trees. Journal of Infrared and Millimeter Waves. 2004;23:353–356.
  14. Möller M., Alchanatis V., Cohen Y., Meron M., Tsipris J., Ostrovsky V. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany. 2007;58:827–838. doi: 10.1093/jxb/erl115.
  15. Xu J., Lv Y., Liu X., Dalson T., Yang S., Wu J. Diagnosing Crop Water Stress of Rice using Infrared Thermal Imager under Water Deficit Condition. International Journal of Agriculture and Biology. 2015;18:565–572. doi: 10.17957/IJAB/15.0125.
  16. Ghazouani H., Capodici. F. Ciraolo G., Maltese A., Rallo G., Provenzano G. Potential of Thermal Images and Simulation Models to Assess Water and Salt Stress: Application to Potato Crop in Central Tunisia. Chemical Engineering Transactions. 2017;58:709–714. doi: 10.3303/CET1758119.
  17. García-Tejero I.F., Rubio A.E., Viñuela I., Hernández A., Gutiérrez-Gordillo S., Rodríguez-Pleguezuelo C.R., Durá-n-Zuazo V.H. Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies. Agricultural Water Management. 2018;208:176–186. doi: 10.1016/j.agwat.2018.06.002.
  18. Vieira G.H.S., Ferrarezi R.S. Use of Thermal Imaging to Assess Water Status in Citrus Plants in Greenhouses. Horticulturae. 2021;7(8):249. doi: 10.3390/horticulturae7080249.
  19. Trentin R., Zolnier S., Ribeiro A., Steidle Neto A.J. Transpiration and leaf temperature of sugarcane under different matric potential values. Engenharia Agricola. 2011;31(6):1085–1095. doi: 10.1590/s0100-69162011000600006.
  20. Gardner B.R., Blad B.L., Watts D.G. Plant and air temperatures in differentially irrigated corn. Agricultural Meteorology. 1981;25:207–217.
  21. Jackson R.D. Canopy temperature and crop water stress. Advances in Irrigaton. 1982:43–85. doi: 10.1016/b978-0-12-024301-3.50009-5.
  22. Testi L., Goldhamer D.A., Iniesta F., Salinas M. Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrigation Science. 2008;26:395–405. doi: 10.1007/s00271-008-0104-5.
  23. Grant O.M., Tronina L., Jones H.G., Chaves M.M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany. 2007;58:815–825. doi: 10.1093/jxb/erl153.
  24. Reynolds M.P., Dreccer F., Trethowan R. Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany. 2007;58:177–186. doi: 10.1093/jxb/erl250.
  25. Leinonen N., Jones H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany. 2004;55(401):1423–1431. doi: 10.1093/JXB/ERH146.
  26. Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant Breeding and Drought in C3 Cereals: What Should We Breed For? Annals of Botany. 2002;89:925–940. doi: 10.1093/AOB/MCF049.
  27. Chesnokov Y.V., Kanash E.V., Mirskaya G.V., Kocherina N.V., Rusakov D.V., Lohwasser U., Börner A. QTL mapping of diffuse reflectance indices of leaves in hexaploid bread wheat (Triticum aestivum L.). Russian Journal of Plant Physiology. 2019;66:77–86. doi: 10.1134/S1021443719010047.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chlorophyll reflectance index (ChlRI) of wheat leaves depending on the dose of applied nitrogen fertilizers. The ChlRI values ​​obtained at the stages of tillering (ChlRIk), tube emergence (ChlRIт), flowering (ChlRIц) and milk ripeness (ChlRIмs) are given.

Download (36KB)
3. Fig. 2. Photochemical reflectance index (PRImod) of wheat leaves depending on the dose of applied nitrogen fertilizers. The PRImod values ​​obtained at the tillering (PRIk), booting (PRIt), flowering (PRIc) and milk ripeness (PRIms) stages are presented.

Download (34KB)
4. Fig. 3. Visible and infrared image of the vegetation cover formed by spring wheat plants of the Darya variety at the BBCN stage 25–27 – completion of tillering at a dose of nitrogen fertilizers N0 (upper row), N80 (middle row) and N160 (lower row)

Download (386KB)
5. Fig. 4. Correlation dependence between the temperature of the wheat vegetation cover and the dose of nitrogen fertilizers applied in the morning hours (10 am). The linear regression equation and the determination coefficient are given. The reliability of the linear relationship is p = 0.0001

Download (20KB)
6. Fig. 5. Correlation dependence between the temperature of the wheat vegetation cover and the dose of nitrogen fertilizers applied during daylight hours (14 h). The linear regression equation and the determination coefficient are given. The reliability of the linear relationship is p = 0.024

Download (21KB)

Copyright (c) 2025 Russian Academy of Sciences