The effect of chronic stress and TAAR1 knockout on behavior characteristics of mice in tests assessing depressive-like behavior
- Authors: Vinogradova E.P.1, Aleksandrov A.Y.1, Belyakov D.V.1, Dmitrieva E.S.1, Stankevich L.N.1, Aleksandrov A.A.1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 111, No 7 (2025)
- Pages: 1198-1210
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.eco-vector.com/0869-8139/article/view/691429
- DOI: https://doi.org/10.7868/S2658655X25070122
- EDN: https://elibrary.ru/mvyrla
- ID: 691429
Cite item
Full Text
Abstract
About the authors
E. P. Vinogradova
Saint Petersburg State University
Email: e.vinogradova@spbu.ru
St. Petersburg, Russia
A. Y. Aleksandrov
Saint Petersburg State UniversitySt. Petersburg, Russia
D. V. Belyakov
Saint Petersburg State UniversitySt. Petersburg, Russia
E. S. Dmitrieva
Saint Petersburg State UniversitySt. Petersburg, Russia
L. N. Stankevich
Saint Petersburg State UniversitySt. Petersburg, Russia
A. A. Aleksandrov
Saint Petersburg State UniversitySt. Petersburg, Russia
References
- Kemp J, Lickel J, Deacon B (2014) Effects of a chemical imbalance causal explanation on individuals' perceptions of their depressive symptoms. Behav Res Ther 56: 47–52. https://doi.org/10.1016/j.brat.2014.02.009
- Gainetdinov R, Hoener M, Berry M (2018) Trace Amines and Their Receptors. Pharmacol Rev 70(3): 549–620. https://doi.org/10.1124/pr.117.015305
- Rutigliano G, Accorroni A, Zucchi R (2018) The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol 8: 987. https://doi.org/10.3389/fphar.2017.00987
- Rutigliano G, Zucchi R (2020) Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 40(2): 239–255. https://doi.org/10.1007/s10571-019-00743-y
- Виноградова ЕП, Симон ЮА, Александров АЮ, Князева ВМ, Станкевич ЛН, Козырева АВ, Александров АА (2023) У самок мышей нокаутов по гену TAAR1 отсутствует ранний поведенческий ответ на острый иммобилизационный стресс. Росс физиол журн им ИМ Сеченова 109(11): 1650–1664. [Vinogradova E, Simon Yu, Aleksandrov A, Stankevich L, Knyazeva V, Aleksandrov A (2023) Mice Lacking TAAR1 Show No Early Behavioral Response to Acute Restraint Stress109(11): 1650–1664. (In Russ)] / https://doi.org/10.31857/S0869813923110122
- Nestler E, Hyman S (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10): 1161–1169. https://doi.org/10.1038/nn.2647
- Ménard C, Hodes G, Russo S (2016) Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 321: 138–162. https://doi.org/10.1016/j.neuroscience.2015.05.053
- Flint J, Kendler K (2014) The genetics of major depression. Neuron 81(3): 484–503. https://doi.org/10.1016/j.neuron.2014.01.027
- Cheng Y, Rodriguiz R, Murthy S, Senatorov V, Thouennon E, Cawley N, Aryal D, Ahn S, Lecka-Czernik B, Wetsel W, Loh Y (2015) Neurotrophic factor-α1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry 20: 744–754. https://doi.org/10.1038/mp.2014.136
- Jung Y, Hong S, Ma S, Hwang J, Kim J, Lee J, Seo J, Lee S, Jang C (2014) Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomol Ther (Seoul) 22(5): 453–459. https://doi.org/10.4062/biomolther.2014.058
- Kudryavtseva N, Bakshtanovskaya I, Koryakina L (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 38(2): 315–320. https://doi.org/10.1016/0091-3057(91)90284-9
- Kigar S, Cuarenta A, Zuniga C, Chang L, Auger A, Bakshi V (2024) Brain, behavior, and physiological changes associated with predator stress-An animal model for trauma exposure in adult and neonatal rats. Front Mol Neurosci 29(17): 1322273. https://doi.org/10.3389/fnmol.2024.1322273
- Rajbhandari A, Baldo B, Bakshi V (2015) Predator stress-induced CRF release causes enduring sensitization of basolateral amygdala norepinephrine systems that promote PTSD-like startle abnormalities. J Neurosci 35: 14270–14285. https://doi.org/10.1523/JNEUROSCI.5080-14.2015
- Tseng Y, Zhao B, Ding H, Liang L, Schaefke B, Wang L (2023) Systematic evaluation of a predator stress model of depression in mice using a hierarchical 3D-motion learning framework. Transl Psychiatry 13(1): 178. https://doi.org/10.1038/s41398-023-02481-8
- Figueiredo H, Bodie B, Tauchi M, Dolgas C, Herman J (2003) Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144: 5249–5258. https://doi.org/10.1210/en.2003-0713
- Belzung C, El Hage W, Moindrot N, Griebel G (2001) Behavioral and neurochemical changes following predatory stress in mice. Neuropharmacology 41: 400–408. https://doi.org/10.1016/s0028-3908(01)00072-7
- Маланьина Т (2013) Химические сигналы хищника провоцируют хронический эмоциональный стресс у домовых мышей. Cовр пробл науки образов 1: 337. [Malanina T (2013) Predator chemical signals induced chronic emotional stress in house mouse. Modern Probl Sci Educ: 337. (In Russ)].
- Diamond D, Campbell А, Park C, Woodson J, Conrad C, Bachstetter A, Mervis R (2006) Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus 16: 571–576. https://doi.org/10.1002/hipo.20188
- Morrow B, Redmond A, Roth R, Elsworth J (2000) The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat. Brain Res 864(1): 146–151. https://doi.org/10.1016/s0006-8993(00)02174-0
- Cryan J, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29: 571–625. https://doi.org/10.1016/j.neubiorev.2005.03.009
- Can A, Dao D, Arad M, Terrillion C, Piantadosi S, Gould T (2012) The mouse forced swim test. J Vis Exp 59: e3638. https://doi.org/10.3791/3638
- Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The Forced Swim Test as a Model of Depressive-like Behavior. J Vis Exp 97: e52587. https://doi.org/10.3791/52587
- Oka T, Oka K, Hori T (2001) Mechanisms and mediators of psychological stress-induced rise in core temperature. Psychosom Med 63(3): 476–486. https://doi.org/10.1097/00006842-200105000-00018
- Herborn K, Graves J, Jerem P, Evans N, Nager R, McCafferty D, McKeegan D (2015) Skin Temperature Reveals the Intensity of Acute Stress. Physiol Behav 152: 225–230. https://doi.org/10.1016/j.physbeh.2015.09.032
- Симон Ю, Виноградова Е, Козырева А, Александров А, Князева В, Станкевич Л, Маркина А, Иоффе В, Александров А (2024) Влияние нокаута гена TAAR1 на характеристики поведения мышей в тесте Порсолта и в приподнятом крестообразном лабиринте. Вестн Томск гос универ Биология 68: 157–172. [Simon Y, Vinogradova E, Kozyreva A, Aleksandrov A, Knyazeva V, Stankevich L, Markina A, Ioffe V, Aleksandrov A (2024) Effect of TAAR1 knockout on behavioural characteristics of mice in the forced swim test and in the elevated plus maze test. Tomsk State Univer J Biol 68: 157–172. (In Russ)]. https://doi.org/10.17223/19988591/6819
- Rahi V, Kumar P (2021) Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 81 (2): 107–124. https://doi.org/10.1002/jdn.10089
- Raony Í, Domith I, Lourenco M, Paes-de-Carvalho R, Pandolfo P (2022) Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Progr Neuro-Psychopharmacol Biol Psychiatry 13(1): 178. https://doi.org/10.1038/s41398-023-02481-8
- Leo D, Gainetdinov R (2013) Transgenic mouse models for ADHD. Cell Tissue Res 354 (1): 259–271. https://doi.org/ 10.1007/s00441-013-1639-1
- Revel F, Moreau J, Gainetdinov R, Ferragud A, Vel´azquez-S´anchez C, Sotnikova T, Hoener M (2012) Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry 72(11): 934–942. https://doi.org/10.1016/j.biopsych.2012.05.014
- Eur Convention for the Protection of Vertebrate Animals Used for Experimentation and other Scientific Purposes 1986.
Supplementary files
