Neural interfaces: applications, innovative approaches, biocompatibility, biomimetics
- 作者: Zemlyanskov M.S.1, Arsentiev K.A.1, Shtol V.S.1, Konovalova S.P.1, Grinevich V.P.1, Musienko P.E.1,2,3
-
隶属关系:
- Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and Technology
- Institute of Translational Biomedicine, Saint Petersburg State University
- Life Improvement by Future Technologies Center “LIFT”
- 期: 卷 111, 编号 8 (2025)
- 页面: 1404-1438
- 栏目: REVIEW
- URL: https://journals.eco-vector.com/0869-8139/article/view/691447
- DOI: https://doi.org/10.7868/S2658655X25080081
- EDN: https://elibrary.ru/naxygo
- ID: 691447
如何引用文章
详细
作者简介
M. Zemlyanskov
Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: zemlyanskov.ms@talantiuspeh.ru
Sirius Federal District, Russia
K. Arsentiev
Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and TechnologySirius Federal District, Russia
V. Shtol
Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and TechnologySirius Federal District, Russia
S. Konovalova
Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and TechnologySirius Federal District, Russia
V. Grinevich
Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and TechnologySirius Federal District, Russia
P. Musienko
Department of Neurobiology, Center for Genetics and Life Sciences, Sirius University of Science and Technology; Institute of Translational Biomedicine, Saint Petersburg State University; Life Improvement by Future Technologies Center “LIFT”
Email: musienko.pe@talantiuspeh.ru
Sirius Federal District, Russia; St. Petersburg, Russia; Moscow, Russia
参考
- Li H, Wang J, Fang Y (2023) Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsyst Nanoeng 9: 4. https://doi.org/10.1038/s41378-022-00444-5
- Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: Past, present and future. Trends Neurosci 29: 536–546. https://doi.org/10.1016/j.tins.2006.07.004
- Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. https://journals.physiology.org/doi/epdf/10.1152/physrev.00027.2016. Accessed 21 July 2025
- Valeriani D, Santoro F, Ienca M (2022) The present and future of neural interfaces. Front Neurorobot 16. https://doi.org/10.3389/fnbot.2022.953968
- Caldwell DJ, Ojemann JG, Rao RPN (2019) Direct Electrical Stimulation in Electrocorticographic Brain–Computer Interfaces: Enabling Technologies for Input to Cortex. Front Neurosci 13. https://doi.org/10.3389/fnins.2019.00804
- Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347. https://doi.org/10.1126/science.1246501
- Tian F, Yu J, Wang W, Zhao D, Cao J, Zhao Q, Wang F, Yang H, Wu Z, Xu J, Lu B (2023) Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes. J Colloid Interface Sci 638: 339–348. https://doi.org/10.1016/j.jcis.2023.01.146
- Wan C, Pei M, Shi K, Cui H, Long H, Qiao L, Xing Q, Wan Q (2024) Toward a Brain–Neuromorphics Interface. Adv Mater 36. https://doi.org/10.1002/adma.202311288
- Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y (2020) The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Adv Sci 7. https://doi.org/10.1002/advs.202001116
- Natalucci V, Marmondi F, Biraghi M, Bonato M (2023) The Effectiveness of Wearable Devices in Non-Communicable Diseases to Manage Physical Activity and Nutrition: Where We Are? Nutrients 15: 913. https://doi.org/10.3390/nu15040913
- Rommelfanger NJ, Keck CH, Chen Y, Hong G (2021) Learning from the brain’s architecture: Bioinspired strategies towards implantable neural interfaces. Curr Opin Biotechnol 72: 8–12. https://doi.org/10.1016/j.copbio.2021.07.020
- Khuntia PK, Manivannan PV (2023) Review of Neural Interfaces: Means for Establishing Brain–Machine Communication. SN Comput Sci 4. https://doi.org/10.1007/s42979-023-02160-x
- Bril EV, Shaderkina AI, Efimochkina SM, Litavrin AI, Kuznetsova MA (2024) Invasive neurointerfaces – fields of their application. Russ J Telemed E-Health 10(2): 27–42. https://doi.org/10.29188/2712-9217-2024-10-2-27-42
- Mihaylova Y, Pozdeeva A, Leukhin A, Toschev A, Talanov M, Vallverdú J, Suleimanova A (2023) Neuro-Interfaces Review. J Artif Intell Conscious 10: 15–25. https://doi.org/10.1142/s270507852230002x
- Lee T, Je M (2021) Multimodal Neural Interface Circuits for Diverse Interaction with Neuronal Cell Population in Human Brain. IEEE Trans Circuits Syst II Express Briefs 68: 574–580. https://doi.org/10.1109/tcsii.2020.3046451
- Wang Y, Zhu H, Yang H, Argall AD, Luan L, Xie C, Guo L (2018) Nano functional neural interfaces. Nano Res 11: 5065–5106. https://doi.org/10.1007/s12274-018-2127-4
- Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S (2020) Multimaterial and multifunctional neural interfaces: From surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 8: 6624–6666. https://doi.org/10.1039/d0tb00872a
- Xu J (2024) Optimizing Brain-Computer Interfaces through Spiking Neural Networks and Memristors. Highlights Sci Eng Technol 85: 184–190. https://doi.org/10.54097/yk9r3d87
- Zhang M, Tang Z, Liu X, Van Der Spiegel J (2020) Electronic neural interfaces. Nat Electron 3: 191–200. https://doi.org/10.1038/s41928-020-0390-3
- (2024) Principles and Advancements of Microelectrode Arrays in Brain-Machine Interfaces. In: Biomedical Engineering. IntechOpen. http://dx.doi.org/10.5772/intechopen.113875
- Adewole DO, Serruya MD, Wolf JA, Cullen DK (2019) Bioactive Neuroelectronic Interfaces. Front Neurosci 13. https://doi.org/10.3389/fnins.2019.00269
- Tang X, Shen H, Zhao S, Li N, Liu J (2023) Flexible brain–computer interfaces. Nat Electron 6: 109–118. https://doi.org/10.1038/s41928-022-00913-9
- Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126: 1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001
- Humpston C, Garrison J, Orlov N, Aleman A, Jardri R, Fernyhough C, Allen P (2020) Real-Time Functional Magnetic Resonance Imaging Neurofeedback for the Relief of Distressing Auditory-Verbal Hallucinations: Methodological and Empirical Advances. Schizophr Bull 46: 1409–1417. https://doi.org/10.1093/schbul/sbaa103
- Calabria F, Leporace M, Cimini A, Ricci M, Travascio L, Bagnato A (2023) Positron Emission Tomography Molecular Imaging of the Major Neurodegenerative Disorders: Overview and Pictorial Essay, from a Nuclear Medicine Center’s Perspective. J Integr Neurosci 22. https://doi.org/10.31083/j.jin2206172
- Ou Y, Buchanan AM, Witt CE, Hashemi P (2019) Frontiers in electrochemical sensors for neurotransmitter detection: Towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal Methods 11: 2738–2755. https://doi.org/10.1039/c9ay00055k
- Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21: 5–10. https://doi.org/10.1016/j.conb.2010.08.004
- Scheffler IE (2001) Mitochondria make a comeback. Adv Drug Deliv Rev 49: 3–26. https://doi.org/10.1016/s0169-409x(01)00123-5
- Sim JY, Haney MP, Park SI, McCall JG, Jeong J-W (2017) Microfluidic neural probes: In vivo tools for advancing neuroscience. Lab Chip 17: 1406–1435. https://doi.org/10.1039/c7lc00103g
- Kang YN, Chou N, Jang J-W, Choe HK, Kim S (2021) A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. Microsyst Nanoeng 7. https://doi.org/10.1038/s41378-021-00295-6
- Cho W, Yoon S, Chung TD (2023) Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication. Chem Sci 14: 4463–4479. https://doi.org/10.1039/d3sc00338h
- Boulingre M, Portillo-Lara R, Green RA (2023) Biohybrid neural interfaces: Improving the biological integration of neural implants. Chem Commun 59: 14745–14758. https://doi.org/10.1039/d3cc05006h
- Bordbar-Khiabani A, Gasik M (2022) Smart Hydrogels for Advanced Drug Delivery Systems. Int J Mol Sci 23: 3665. https://doi.org/10.3390/ijms23073665
- Warden MR, Cardin JA, Deisseroth K (2014) Optical Neural Interfaces. Annu Rev Biomed Eng 16: 103–129. https://doi.org/10.1146/annurev-bioeng-071813-104733
- Khan H, Khadka R, Sultan MS, Yazidi A, Ombao H, Mirtaheri P (2024) Unleashing the potential of fNIRS with machine learning: Classification of fine anatomical movements to empower future brain-computer interface. Front Hum Neurosci 18. https://doi.org/10.3389/fnhum.2024.1354143
- Tang F, Yan F, Zhong Y, Li J, Gong H, Li X (2024) Optogenetic Brain–Computer Interfaces. Bioengineering 11: 821. https://doi.org/10.3390/bioengineering11080821
- Park Y, Park S-Y, Eom K (2021) Current Review of Optical Neural Interfaces for Clinical Applications. Micromachines 12: 925. https://doi.org/10.3390/mi12080925
- Li X, Xiong H, Rommelfanger N, Xu X, Youn J, Slesinger PA, Hong G, Qin Z (2021) Nanotransducers for wireless neuromodulation. Matter 4: 1484–1510. https://doi.org/10.1016/j.matt.2021.02.012
- Kumari P, Milojkovic A, Kozielski K (2025) Analysis of wireless powering modes for nanotransducer-mediated neuromodulation. Curr Opin Biomed Eng 33: 100562. https://doi.org/10.1016/j.cobme.2024.100562
- Kang P, Li X, Liu Y, Shiers SI, Xiong H, Giannotta M, Dejana E, Price TJ, Randrianalisoa J, Nielsen SO, Qin Z (2019) Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia. ACS Nano 13: 12487–12499. https://doi.org/10.1021/acsnano.9b01993
- Jiang Y, Huang Y, Luo X, Wu J, Zong H, Shi L, Cheng R, Zhu Y, Jiang S, Lan L, Jia X, Mei J, Man H-Y, Cheng J-X, Yang C (2021) Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers. Matter 4: 654–674. https://doi.org/10.1016/j.matt.2020.11.019
- Xiong H, Li X, Kang P, Perish J, Neuhaus F, Ploski JE, Kroener S, Ogunyankin MO, Shin JE, Zasadzinski JA, Wang H, Slesinger PA, Zumbuehl A, Qin Z (2020) Near-Infrared Light Triggered-Release in Deep Brain Regions Using Ultra-photosensitive Nanovesicles. Angew Chem Int Ed 59: 8608–8615. https://doi.org/10.1002/anie.201915296
- Tian H, Xu K, Zou L, Fang Y (2022) Multimodal neural probes for combined optogenetics and electrophysiology. iScience 25: 103612. https://doi.org/10.1016/j.isci.2021.103612
- Gurke J, Naegele TE, Hilton S, Pezone R, Curto VF, Barone DG, List-Kratochvil EJW, Carnicer-Lombarte A, Malliaras GG (2022) Hybrid fabrication of multimodal intracranial implants for electrophysiology and local drug delivery. Mater Horiz 9: 1727–1734. https://doi.org/10.1039/d1mh01855h
- Habelt B, Wirth C, Afanasenkau D, Mihaylova L, Winter C, Arvaneh M, Minev IR, Bernhardt N (2021) A Multimodal Neuroprosthetic Interface to Record, Modulate and Classify Electrophysiological Biomarkers Relevant to Neuropsychiatric Disorders. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.770274
- Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, Xue Y, Ausra J, Wang X, Li R, Wu G, Vázquez-Guardado A, Xie Y, Xie Z, Ostojich D, Peng D, Sun R, Wang B, Yu Y, Leshock JP, Qu S, Su C-J, Shen W, Hang T, Banks A, Huang Y, Radulovic J, Gutruf P, Bruchas MR, Rogers JA (2019) Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci U S A 116: 21427–21437. https://doi.org/10.1073/pnas.1909850116
- Zou L, Tian H, Guan S, Ding J, Gao L, Wang J, Fang Y (2021) Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nat Commun 12. https://doi.org/10.1038/s41467-021-26168-0
- Service RF (2015) A soft approach kick-starts cybernetic implants. Science 347: 114–114. https://doi.org/10.1126/science.347.6218.114
- Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres RF, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Vörös J, Micera S, Suo Z, Courtine G, Lacour SP (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347: 159–163. https://doi.org/10.1126/science.1260318
- Choi J, Kim S-M, Ryu R-H, Kim S-P, Sohn J (2018) Implantable Neural Probes for Brain-Machine Interfaces? Current Developments and Future Prospects. Exp Neurobiol 27: 453–471. https://doi.org/10.5607/en.2018.27.6.453
- Du J, Wang L, Shi Y, Zhang F, Hu S, Liu P, Li A, Chen J (2020) Optimized CNT-PDMS Flexible Composite for Attachable Health-Care Device. Sensors 20: 4523. https://doi.org/10.3390/s20164523
- Afanasenkau D, Kalinina D, Lyakhovetskii V, Tondera C, Gorsky O, Moosavi S, Pavlova N, Merkulyeva N, Kalueff AV, Minev IR, Musienko P (2020) Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng 4: 1010–1022. https://doi.org/10.1038/s41551-020-00615-7
- Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY (2018) A Materials Roadmap to Functional Neural Interface Design. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201701269
- Kim Y, Jung S-D, Koo H, Kim MS (2018) Fabrication of Multi-Electrode Array with Iridium Oxide-Electrodeposited on Indium-Tin Oxides Nanowires. Front Cell Neurosci 12. https://doi.org/10.3389/conf.fncel.2018.38.00107
- Kunori N, Takashima I (2015) A transparent epidural electrode array for use in conjunction with optical imaging. J Neurosci Methods 251: 130–137. https://doi.org/10.1016/j.jneumeth.2015.05.018
- Blagojevic A, Seche W, Choi H, Davis SL, Elyahoodayan S, Caputo GA, Lowe TC, Tavousi P, Shahbazmohamadi S, Amini S (2024) Hierarchical Surface Restructuring of Ultra-Thin Electrodes and Microelectrode Arrays for Neural Interfacing with Peripheral and Central Nervous Systems. Adv Mater Interfaces 11. https://doi.org/10.1002/admi.202400017
- Meyer RD, Cogan SF, Nguyen TH, Rauh RD (2001) Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 9: 2–11. https://doi.org/10.1109/7333.918271
- Chan F, Syu H, Wang T, Tang Z, Huang C, Lee J, Burnouf T, Hu S, Chen P, Huang W (2021) Iridium Oxide Nanoparticle–Protein Corona Neural Interfaces with Enhanced Electroactivity and Bioactivity Enable Electrically Manipulatable Physical and Chemical Neuronal Activation. Adv Mater Interfaces 8. https://doi.org/10.1002/admi.202100694
- Bati ASR, Sutanto AA, Hao M, Batmunkh M, Yamauchi Y, Wang L, Wang Y, Nazeeruddin MK, Shapter JG (2021) Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Rep Phys Sci 2: 100598. https://doi.org/10.1016/j.xcrp.2021.100598
- Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A (2023) Graphene- and MXene-based materials for neuroscience: Diagnostic and therapeutic applications. Biomater Sci 11: 6687–6710. https://doi.org/10.1039/d3bm01114c
- Rahman M, Al Mamun MS (2024) Future prospects of MXenes: Synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv 6: 367–385. https://doi.org/10.1039/d3na00874f
- Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2. https://doi.org/10.1038/nenergy.2017.105
- Wang Y, Hartung JE, Goad A, Preisegger MA, Chacon B, Gold MS, Gogotsi Y, Cohen-Karni T (2023) Photothermal Excitation of Neurons Using MXene: Cellular Stress and Phototoxicity Evaluation. Adv Healthc Mater 9: 4. https://doi.org/10.1002/adhm.202302330
- Baz Khan KR, Al-Othman A, Al-Nashash H, Al-Sayah M (2023) Mxene/Polydimethylsiloxane (PDMS) Based Implantable and Flexible Bioelectrodes for Neural Sensing. In: 2023 Advances in Science and Engineering Technology International Conferences (ASET). IEEE. Dubai, United Arab Emirates. 1–4.
- Xiao M, Li X, Pifferi S, Pastore B, Liu Y, Lazzarino M, Torre V, Yang X, Menini A, Tang M (2022) 2D MXene interfaces preserve the basal electrophysiology of targeted neural circuits. Nanoscale 14: 10992–11002. https://doi.org/10.1039/d2nr01542k
- Diedkova K, Pogrebnjak AD, Kyrylenko S, Smyrnova K, Buranich VV, Horodek P, Zukowski P, Koltunowicz TN, Galaszkiewicz P, Makashina K, Bondariev V, Sahul M, Čaplovičová M, Husak Y, Simka W, Korniienko V, Stolarczyk A, Blacha-Grzechnik A, Balitskyi V, Zahorodna V, Baginskiy I, Riekstina U, Gogotsi O, Gogotsi Y, Pogorielov M (2023) Polycaprolactone–MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c22780.
- Wang H, Li S, Lu H, Zhu M, Liang H, Wu X, Zhang Y (2023) Carbon-Based Flexible Devices for Comprehensive Health Monitoring. Small Methods 7. https://doi.org/10.1002/smtd.202201340
- Lu Y, Liu X, Kuzum D (2018) Graphene-based neurotechnologies for advanced neural interfaces. Curr Opin Biomed Eng 6: 138–147. https://doi.org/10.1016/j.cobme.2018.06.001
- Rastogi SK, Raghavan G, Yang G, Cohen-Karni T (2017) Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress. Nano Lett 17: 3297–3301. https://doi.org/10.1021/acs.nanolett.7b01215
- Yang H, Qian Z, Wang J, Feng J, Tang C, Wang L, Guo Y, Liu Z, Yang Y, Zhang K, Chen P, Sun X, Peng H (2022) Carbon Nanotube Array-Based Flexible Multifunctional Electrodes to Record Electrophysiology and Ions on the Cerebral Cortex in Real Time. Adv Funct Mater 32. https://doi.org/10.1002/adfm.202204794
- Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M (2015) Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano 9: 4465–4474. https://doi.org/10.1021/acsnano.5b01060
- Tang C, Xie S, Wang M, Feng J, Han Z, Wu X, Wang L, Chen C, Wang J, Jiang L, Chen P, Sun X, Peng H (2020) A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic–brain interfaces. J Mater Chem B 8: 4387–4394. https://doi.org/10.1039/d0tb00508h
- Nimbalkar S, Castagnola E, Balasubramani A, Scarpellini A, Samejima S, Khorasani A, Boissenin A, Thongpang S, Moritz C, Kassegne S (2018) Ultra-Capacitive Carbon Neural Probe Allows Simultaneous Long-Term Electrical Stimulations and High-Resolution Neurotransmitter Detection. Sci Rep 8. https://doi.org/10.1038/s41598-018-25198-x
- Zhang J, Liu X, Xu W, Luo W, Li M, Chu F, Xu L, Cao A, Guan J, Tang S, Duan X (2018) Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Lett 18: 2903–2911. https://doi.org/10.1021/acs.nanolett.8b00087
- Gong Q, Yu Y, Kang L, Zhang M, Zhang Y, Wang S, Niu Y, Zhang Y, Di J, Li Q, Zhang J (2022) Modulus-Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Adv Funct Mater 32. https://doi.org/10.1002/adfm.202107360
- Lee G, Ray E, Yoon H-J, Genovese S, Choi YS, Lee M-K, Şahin S, Yan Y, Ahn H-Y, Bandodkar AJ, Kim J, Park M, Ryu H, Kwak SS, Jung YH, Odabas A, Khandpur U, Ray WZ, MacEwan MR, Rogers JA (2022) A bioresorbable peripheral nerve stimulator for electronic pain block. Sci Adv 8. https://doi.org/10.1126/sciadv.abp9169
- Zeng Q, Huang Z (2023) Challenges and Opportunities of Implantable Neural Interfaces: From Material, Electrochemical and Biological Perspectives. Adv Funct Mater 33. https://doi.org/10.1002/adfm.202301223
- Barshutina MN, Kirichenko SO, Wodolajsky VA, Lopachev AV, Barshutin SN, Gorsky OV, Deriabin KV, Sufianov AA, Bulgin DV, Islamova RM, Tkachev AG, Musienko PE (2022) PDMS-CNT composite for soft bioelectronic neuronal implants. Compos Part B Eng 247: 110286. https://doi.org/10.1016/j.compositesb.2022.110286
- Liu W, Han K, Sun M, Wang J (2019) Enhancement and control of neuron adhesion on polydimethylsiloxane for cell microengineering using a functionalized triblock polymer. Lab Chip 19: 3162–3167. https://doi.org/10.1039/c9lc00736a
- Kuddannaya S, Bao J, Zhang Y (2015) Enhanced In Vitro Biocompatibility of Chemically Modified Poly(dimethylsiloxane) Surfaces for Stable Adhesion and Long-term Investigation of Brain Cerebral Cortex Cells. ACS Appl Mater Interfaces 7: 25529–25538. https://doi.org/10.1021/acsami.5b09032
- Stankova N, Nikolov A, Iordanova E, Yankov G, Nedyalkov N, Atanasov P, Tatchev D, Valova E, Kolev K, Armyanov S, Karashanova D, Fukata N (2021) New Approach toward Laser-Assisted Modification of Biocompatible Polymers Relevant to Neural Interfacing Technologies. Polymers 13: 3004. https://doi.org/10.3390/polym13173004
- Aurand ER, Usmani S, Medelin M, Scaini D, Bosi S, Rosselli FB, Donato S, Tromba G, Prato M, Ballerini L (2018) Nanostructures to Engineer 3D Neural-Interfaces: Directing Axonal Navigation toward Successful Bridging of Spinal Segments. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201700550
- Ryu J, Qiang Y, Chen L, Li G, Han X, Woon E, Bai T, Qi Y, Zhang S, Liou J, Seo KJ, Feng B, Fang H (2024) Multifunctional Nanomesh Enables Cellular-Resolution, Elastic Neuroelectronics. Adv Mater(36): e2403141. https://doi.org/10.1002/adma.202403141
- Zátonyi A, Borhegyi Zs, Srivastava M, Cserpán D, Somogyvári Z, Kisvárday Z, Fekete Z (2018) Functional brain mapping using optical imaging of intrinsic signals and simultaneous high-resolution cortical electrophysiology with a flexible, transparent microelectrode array. Sens Actuators B Chem 273: 519–526. https://doi.org/10.1016/j.snb.2018.06.092
- Kuzum D, Takano H, Shim E, Reed JC, Juul H, Richardson AG, De Vries J, Bink H, Dichter MA, Lucas TH, Coulter DA, Cubukcu E, Litt B (2014) Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 5. https://doi.org/10.1038/ncomms6259
- Hassler C, Von Metzen RP, Ruther P, Stieglitz T (2010) Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res B Appl Biomater 93B: 266–274. https://doi.org/10.1002/jbm.b.31584
- Takei A, Tsukamoto S, Komazaki Y, Kusaka Y, Kuribara K, Yoshida M (2020) Stretchable and durable Parylene/PEDOT:PSS/Parylene multi-layer induced by plastic deformation for stretchable device using functionalized PDMS. AIP Adv 10. https://doi.org/10.1063/1.5135046
- Qiang Y, Artoni P, Seo KJ, Culaclii S, Hogan V, Zhao X, Zhong Y, Han X, Wang P-M, Lo Y-K, Li Y, Patel HA, Huang Y, Sambangi A, Chu JSV, Liu W, Fagiolini M, Fang H (2018) Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci Adv 4. https://doi.org/10.1126/sciadv.aat0626
- Dong R, Wang L, Li Z, Jiao J, Wu Y, Feng Z, Wang X, Chen M, Cui C, Lu Y, Jiang X (2024) Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation. ACS Nano 18: 1702–1713. https://doi.org/10.1021/acsnano.3c10028
- Karimi-Soflou R, Shabani I, Karkhaneh A (2023) Enhanced neural differentiation by applying electrical stimulation utilizing conductive and antioxidant alginate-polypyrrole/poly-l-lysine hydrogels. Int J Biol Macromol 237: 124063. https://doi.org/10.1016/j.ijbiomac.2023.124063
- Vijayavenkataraman S, Kannan S, Cao T, Fuh JYH, Sriram G, Lu WF (2019) 3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00266
- Shrestha S, Shrestha BK, Joong OK, Park CH, Kim CS (2021) Para-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: A potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. Biomater Sci 9: 1691–1704. https://doi.org/10.1039/d0bm01034k
- Garrudo FFF, Mikael PE, Rodrigues CAV, Udangawa RW, Paradiso P, Chapman CA, Hoffman P, Colaço R, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC (2021) Polyaniline-polycaprolactone fibers for neural applications: Electroconductivity enhanced by pseudo-doping. Mater Sci Eng C 120: 111680. https://doi.org/10.1016/j.msec.2020.111680
- Tourchi Moghadam MT, Cysewska K (2024) Electrical Interface Parameters of PEDOT:PSS: Effect of Electrodeposition Charge Evaluated Under Body Conditions for Neural Electrode Applications. J Electrochem Soc 171: 075502. https://doi.org/10.1149/1945-7111/ad6074
- Yan M, Wang L, Wu Y, Liao X, Zhong C, Wang L, Lu Y (2023) Conducting Polymer-Hydrogel Interpenetrating Networks for Improving the Electrode–Neural Interface. ACS Appl Mater Interfaces 15: 41310–41323. https://doi.org/10.1021/acsami.3c07189
- Hayat U, Raza A, Bilal M, Iqbal HMN, Wang J-Y (2022) Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 67: 103014. https://doi.org/10.1016/j.jddst.2021.103014
- Dai Y, Lu T, Shao M, Lyu F (2022) Recent advances in PLLA-based biomaterial scaffolds for neural tissue engineering: Fabrication, modification, and applications. Front Bioeng Biotechnol 10. https://doi.org/10.3389/fbioe.2022.1011783
- Shang L, Huang Z, Pu X, Yin G, Chen X (2019) Preparation of Graphene Oxide-Doped Polypyrrole Composite Films with Stable Conductivity and Their Effect on the Elongation and Alignment of Neurite. ACS Biomater Sci Eng 5: 1268–1278. https://doi.org/10.1021/acsbiomaterials.8b01326
- Shen W, Das S, Vitale F, Richardson A, Ananthakrishnan A, Struzyna LA, Brown DP, Song N, Ramkumar M, Lucas T, Cullen DK, Litt B, Allen MG (2018) Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces. Microsyst Nanoeng 4. https://doi.org/10.1038/s41378-018-0030-5
- Ding J, Chen Z, Liu X, Tian Y, Jiang J, Qiao Z, Zhang Y, Xiao Z, Wei D, Sun J, Luo F, Zhou L, Fan H (2022) A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Mater Horiz 9: 2215–2225. https://doi.org/10.1039/d2mh00533f
- Cui Y, Zhang F, Chen G, Yao L, Zhang N, Liu Z, Li Q, Zhang F, Cui Z, Zhang K, Li P, Cheng Y, Zhang S, Chen X (2021) A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing. Adv Mater 33. https://doi.org/10.1002/adma.202100221
- Zhou Y, Gu C, Liang J, Zhang B, Yang H, Zhou Z, Li M, Sun L, Tao TH, Wei X (2022) A silk-based self-adaptive flexible opto-electro neural probe. Microsyst Nanoeng 8. https://doi.org/10.1038/s41378-022-00461-4
- Sun T, Wright J, Datta-Chaudhuri T (2020) Ultrasound powered piezoelectric neurostimulation devices: A commentary. Bioelectron Med 6. https://doi.org/10.1186/s42234-020-00052-6
- Han M, Yildiz E, Bozuyuk U, Aydin A, Yu Y, Bhargava A, Karaz S, Sitti M (2024) Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat Commun 15. https://doi.org/10.1038/s41467-024-46245-4
- Portillo-Lara R, Goding JA, Green RA (2021) Adaptive biomimicry: Design of neural interfaces with enhanced biointegration. Curr Opin Biotechnol 72: 62–68. https://doi.org/10.1016/j.copbio.2021.10.004
- Prominski A, Tian B (2021) Bridging the gap – biomimetic design of bioelectronic interfaces. Curr Opin Biotechnol 72: 69–75. https://doi.org/10.1016/j.copbio.2021.10.005
- Dhobale AV, Adewole DO, Chan AHW, Marinov T, Serruya MD, Kraft RH, Cullen DK (2018) Assessing functional connectivity across 3D tissue engineered axonal tracts using calcium fluorescence imaging. J Neural Eng 15: 056008. https://doi.org/10.1088/1741-2552/aac96d
- Adewole DO, Struzyna LA, Burrell JC, Harris JP, Nemes AD, Petrov D, Kraft RH, Chen HI, Serruya MD, Wolf JA, Cullen DK (2021) Development of optically controlled “living electrodes” with long-projecting axon tracts for a synaptic brain-machine interface. Sci Adv 7: eaay5347. https://doi.org/10.1126/sciadv.aay5347
- Wang T, Wang M, Wang J, Yang L, Ren X, Song G, Chen S, Yuan Y, Liu R, Pan L, Li Z, Leow WR, Luo Y, Ji S, Cui Z, He K, Zhang F, Lv F, Tian Y, Cai K, Yang B, Niu J, Zou H, Liu S, Xu G, Fan X, Hu B, Loh XJ, Wang L, Chen X (2022) A chemically mediated artificial neuron. Nat Electron 5: 586–595. https://doi.org/10.1038/s41928-022-00803-0
- Mazurek KA, Schieber MH (2021) Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. The Neuroscientist 27: 129–142. https://doi.org/10.1177/1073858420936253
- Valle G, Katic Secerovic N, Eggemann D, Gorskii O, Pavlova N, Petrini FM, Cvancara P, Stieglitz T, Musienko P, Bumbasirevic M, Raspopovic S (2024) Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun 15. https://doi.org/10.1038/s41467-024-45190-6
- Fornia L, Puglisi G, Leonetti A, Bello L, Berti A, Cerri G, Garbarini F (2020) Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions. Nat Commun 11. https://doi.org/10.1038/s41467-020-14517-4
- Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK (2019) Deep brain stimulation: Current challenges and future directions. Nat Rev Neurol 15: 148–160. https://doi.org/10.1038/s41582-018-0128-2
- Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, De Hemptinne C (2022) Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 13. https://doi.org/10.3389/fneur.2022.825178
- Sandoval-Pistorius SS, Hacker ML, Waters AC, Wang J, Provenza NR, De Hemptinne C, Johnson KA, Morrison MA, Cernera S (2023) Advances in Deep Brain Stimulation: From Mechanisms to Applications. J Neurosci 43: 7575–7586. https://doi.org/10.1523/jneurosci.1427-23.2023
- Herrington TM, Cheng JJ, Eskandar EN (2016) Mechanisms of deep brain stimulation. J Neurophysiol 115: 19–38. https://doi.org/10.1152/jn.00281.2015
- Zheng XS, Tan C, Castagnola E, Cui XT (2021) Electrode Materials for Chronic Electrical Microstimulation. Adv Healthc Mater 10. https://doi.org/10.1002/adhm.202100119
- Cogan SF (2008) Neural Stimulation and Recording Electrodes. Annu Rev Biomed Eng 10: 275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518
- Butovas S, Schwarz C (2003) Spatiotemporal Effects of Microstimulation in Rat Neocortex: A Parametric Study Using Multielectrode Recordings. J Neurophysiol 90: 3024–3039. https://doi.org/10.1152/jn.00245.2003
- Histed MH, Bonin V, Reid RC (2009) Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation. Neuron 63: 508–522. https://doi.org/10.1016/j.neuron.2009.07.016
- Millard DC, Whitmire CJ, Gollnick CA, Rozell CJ, Stanley GB (2015) Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding. J Neurosci 35: 15702–15715. https://doi.org/10.1523/jneurosci.5045-14.2015
- Neudorfer C, Bhatia K, Boutet A, Germann J, Elias GJb, Loh A, Paff M, Krings T, Lozano AM (2020) Endovascular deep brain stimulation: Investigating the relationship between vascular structures and deep brain stimulation targets. Brain Stimulat 13: 1668–1677. https://doi.org/10.1016/j.brs.2020.09.016
- Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A, Datta A, Sabel BA, Nitsche MA, Loo C, Edwards D, Ekhtiari H, Knotkova H, Woods AJ, Hampstead BM, Badran BW, Peterchev AV (2019) Transcranial electrical stimulation nomenclature. Brain Stimulat 12: 1349–1366. https://doi.org/10.1016/j.brs.2019.07.010
- Reed T, Cohen Kadosh R (2018) Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherit Metab Dis 41: 1123–1130. https://doi.org/10.1007/s10545-018-0181-4
- Oh M, Choi E, Gattas S, Brown N, Hong J, Limbo J, Chan A (2021) Epidural electrical stimulation for spinal cord injury. Neural Regen Res 16: 2367. https://doi.org/10.4103/1673-5374.313017
- Ji X-R, Tang P-F, Wang S, Zhang L-C, Fu H-T, Deng J-H, Xu G-X, Li T (2021) Epidural electrical stimulation effectively restores locomotion function in rats with complete spinal cord injury. Neural Regen Res 16: 573. https://doi.org/10.4103/1673-5374.290905
- Taccola G, Barber S, Horner PJ, Bazo HAC, Sayenko D (2020) Complications of epidural spinal stimulation: Lessons from the past and alternatives for the future. Spinal Cord 58: 1049–1059. https://doi.org/10.1038/s41393-020-0505-8
- Bi X, Lv H, Chen B-L, Li X, Wang X-Q (2015) Effects of transcutaneous electrical nerve stimulation on pain in patients with spinal cord injury: A randomized controlled trial. J Phys Ther Sci 27: 23–25. https://doi.org/10.1589/jpts.27.23
- Pascual-Valdunciel A, Ibáñez J, Rocchi L, Song J, Rothwell JC, Bhatia KP, Farina D, Latorre A (2024) Frequency-Selective Suppression of Essential Tremor via Transcutaneous Spinal Cord Stimulation. Mov Disord 39: 1817–1828. https://doi.org/10.1002/mds.29966
- Miao Y, Chen S, Zhang X, Jin J, Xu R, Daly I, Jia J, Wang X, Cichocki A, Jung T-P (2020) BCI-Based Rehabilitation on the Stroke in Sequela Stage. Neural Plast 2020: 1–10. https://doi.org/10.1155/2020/8882764
- Mokienko OA, Lyukmanov RKh, Bobrov PD, Isaev MR, Ikonnikova ES, Cherkasova АN, Suponeva NA, Piradov MA (2024) Brain-computer interfaces based on near-infrared spectroscopy and electroencephalography registration in post-stroke rehabilitation: a comparative study. Neurol Neuropsychiatry Psychosom 16: 17–23. https://doi.org/10.14412/2074-2711-2024-5-17-23
- Wu C, Wu T, Yang L (2024) Editorial: Photobiomodulation therapy for brain disorders. Front Neurol 15. https://doi.org/10.3389/fneur.2024.1495715
- Lim L (2024) Modifying Alzheimer’s disease pathophysiology with photobiomodulation: Мodel, evidence, and future with EEG-guided intervention. Front Neurol 15. https://doi.org/10.3389/fneur.2024.1407785
- Yokoi Y, Inagawa T, Yamada Y, Matsui M, Tomizawa A, Noda T (2024) A randomized sham-controlled trial of transcranial and intranasal photobiomodulation in Japanese patients with mild cognitive impairment and mild dementia due to Alzheimer’s disease: A protocol. Front Neurol 15. https://doi.org/10.3389/fneur.2024.1371284
- Ko E, Vöröslakos M, Buzsáki G, Yoon E (2024) Dual-color μ-LEDs integrated neural interface for multi-control optogenetic electrophysiology. https://doi.org/10.1101/2024.07.30.605927
- Rubin DB, Ajiboye AB, Barefoot L, Bowker M, Cash SS, Chen D, Donoghue JP, Eskandar EN, Friehs G, Grant C, Henderson JM, Kirsch RF, Marujo R, Masood M, Mernoff ST, Miller JP, Mukand JA, Penn RD, Shefner J, Shenoy KV, Simeral JD, Sweet JA, Walter BL, Williams ZM, Hochberg LR (2023) Interim Safety Profile from the Feasibility Study of the BrainGate Neural Interface System. Neurology 100. https://doi.org/10.1212/wnl.0000000000201707
- Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, Tyler-Kabara EC, Boninger ML, Collinger JL, Gaunt RA (2021) A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372: 831–836. https://doi.org/10.1126/science.abd0380
- Valle G, Alamari AH, Lienkämper R, Downey JE, Sobinov AR, Endsley LJ, Prasad D, Boninger ML, Collinger JL, Warnke PC, Hatsopoulos NG, Miller LE, Gaunt RA, Greenspon CM, Bensmaia SJ (2024) Science 387(6731): 315–322. https://doi.org/10.1126/science.adq5978
- Wang W, Jiang Y, Zhong D, Zhang Z, Choudhury S, Lai J-C, Gong H, Niu S, Yan X, Zheng Y, Shih C-C, Ning R, Lin Q, Li D, Kim Y-H, Kim J, Wang Y-X, Zhao C, Xu C, Ji X, Nishio Y, Lyu H, Tok JB-H, Bao Z (2023) Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380: 735–742. https://doi.org/10.1126/science.ade0086
- Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM (2021) Technology of deep brain stimulation: Current status and future directions. Nat Rev Neurol 17: 75–87. https://doi.org/10.1038/s41582-020-00426-z
- Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am J Psychiatry 163: 1905–1917. https://doi.org/10.1176/ajp.2006.163.11.1905
- Hacker ML, Turchan M, Heusinkveld LE, Currie AD, Millan SH, Molinari AL, Konrad PE, Davis TL, Phibbs FT, Hedera P, Cannard KR, Wang L, Charles D (2020) Deep brain stimulation in early-stage Parkinson disease: Five-year outcomes. Neurology 95. https://doi.org/10.1212/wnl.0000000000009946
- Johnson KA, Cagle JN, Lopes JL, Wong JK, Okun MS, Gunduz A, Shukla AW, Hilliard JD, Foote KD, De Hemptinne C (2023) Globus pallidus internus deep brain stimulation evokes resonant neural activity in Parkinson’s disease. Brain Commun 5. https://doi.org/10.1093/braincomms/fcad025
- Sheth SA, Bijanki KR, Metzger B, Allawala A, Pirtle V, Adkinson JA, Myers J, Mathura RK, Oswalt D, Tsolaki E, Xiao J, Noecker A, Strutt AM, Cohn JF, McIntyre CC, Mathew SJ, Borton D, Goodman W, Pouratian N (2022) Deep Brain Stimulation for Depression Informed by Intracranial Recordings. Biol Psychiatry 92: 246–251. https://doi.org/10.1016/j.biopsych.2021.11.007
- Jobst BC, Kapur R, Barkley GL, Bazil CW, Berg MJ, Bergey GK, Boggs JG, Cash SS, Cole AJ, Duchowny MS, Duckrow RB, Edwards JC, Eisenschenk S, Fessler AJ, Fountain NB, Geller EB, Goldman AM, Goodman RR, Gross RE, Gwinn RP, Heck C, Herekar AA, Hirsch LJ, King-Stephens D, Labar DR, Marsh WR, Meador KJ, Miller I, Mizrahi EM, Murro AM, Nair DR, Noe KH, Olejniczak PW, Park YD, Rutecki P, Salanova V, Sheth RD, Skidmore C, Smith MC, Spencer DC, Srinivasan S, Tatum W, Van Ness P, Vossler DG, Wharen RE, Worrell GA, Yoshor D, Zimmerman RS, Skarpaas TL, Morrell MJ (2017) Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 58: 1005–1014. https://doi.org/10.1111/epi.13739
- Peltola J, Colon AJ, Pimentel J, Coenen VA, Gil-Nagel A, Gonçalves Ferreira A, Lehtimäki K, Ryvlin P, Taylor RS, Ackermans L, Ardesch J, Bentes C, Bosak M, Burneo JG, Chamadoira C, Elger CE, Erőss L, Fabo D, Faulkner H, Gawlowicz J, Gharabaghi A, Iacoangeli M, Janszky J, Järvenpää S, Kaufmann E, Kho KH, Kumlien E, Laufs H, Lettieri C, Linhares P, Noachtar S, Parrent A, Pataraia E, Patel NK, Peralta AR, Rácz A, Campos AR, Rego R, Ricciuti RA, Rona S, Rouhl RPW, Schulze-Bonhage A, Schuurman R, Sprengers M, Sufianov A, Temel Y, Theys T, Van Paesschen W, Van Roost D, Vaz R, Vonck K, Wagner L, Zwemmer J, Abouihia A, Brionne TC, Gielen F, Boon PAJM, for The MORE Study Group, for The MORE Study Group, Amorim I, Aull-Watschinger S, Balás I, Bóné B, Brown S, Cesaroni E, Cleeren E, Dec-Ćwiek M, Eleopra DrR, Falk D, Franco A, Hackelberg B, Hampel K, Hirsch DrM, Meyne JK, Kovács N, Lang N, Möddel G, Moeller B, Mondani DrM, Nass RD, Novak K, Obszanska DrK, Orlov A, Pietraszko W, Scerrati M, Shapkin A, Skripnikov A, Van Hoylandt A, Viebahn B, Wieszmuellner S, Zamponi N (2023) Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in Drug-Resistant Epilepsy in the MORE Multicenter Patient Registry. Neurology 100. https://doi.org/10.1212/wnl.0000000000206887
- Bewernick B, Schlaepfer TE (2015) Update on Neuromodulation for Treatment-Resistant Depression. F1000Research 4: 1389. https://doi.org/10.12688/f1000research.6633.1
- Deng Z-D, Luber B, McClintock SM, Weiner RD, Husain MM, Lisanby SH (2024) Clinical Outcomes of Magnetic Seizure Therapy vs Electroconvulsive Therapy for Major Depressive Episode: A Randomized Clinical Trial. JAMA Psychiatry 81: 240. https://doi.org/10.1001/jamapsychiatry.2023.4599
- Schulze-Rauschenbach SC, Harms U, Schlaepfer TE, Maier W, Falkai P, Wagner M (2005) Distinctive neurocognitive effects of repetitive transcranial magnetic stimulation and electroconvulsive therapy in major depression. Br J Psychiatry 186: 410–416. https://doi.org/10.1192/bjp.186.5.410
- Koch G, Altomare D, Benussi A, Bréchet L, Casula EP, Dodich A, Pievani M, Santarnecchi E, Frisoni GB (2024) The emerging field of non-invasive brain stimulation in Alzheimer’s disease. Brain 147: 4003–4016. https://doi.org/10.1093/brain/awae292
- Zhou D, Li X, Wei S, Yu C, Wang D, Li Y, Li J, Liu J, Li S, Zhuang W, Li Y, Luo R, Liu Z, Liu J, Xu Y, Fan J, Zhu G, Xu W, Tang Y, Cho RY, Kosten TR, Zhang X-Y (2024) Transcranial Direct Current Stimulation Combined With Repetitive Transcranial Magnetic Stimulation for Depression: A Randomized Clinical Trial. JAMA Netw Open 7: e2444306. https://doi.org/10.1001/jamanetworkopen.2024.44306
- Munshi R, Qadri SM, Zhang Q, Castellanos Rubio I, Del Pino P, Pralle A (2017) Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 6. https://doi.org/10.7554/elife.27069
- Rao S, Chen R, LaRocca AA, Christiansen MG, Senko AW, Shi CH, Chiang P-H, Varnavides G, Xue J, Zhou Y, Park S, Ding R, Moon J, Feng G, Anikeeva P (2019) Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat Nanotechnol 14: 967–973. https://doi.org/10.1038/s41565-019-0521-z
- Gregurec D, Senko AW, Chuvilin A, Reddy PD, Sankararaman A, Rosenfeld D, Chiang P-H, Garcia F, Tafel I, Varnavides G, Ciocan E, Anikeeva P (2020) Magnetic Vortex Nanodiscs Enable Remote Magnetomechanical Neural Stimulation. ACS Nano 14: 8036–8045. https://doi.org/10.1021/acsnano.0c00562
- Kim YJ, Kent N, Vargas Paniagua E, Driscoll N, Tabet A, Koehler F, Malkin E, Frey E, Manthey M, Sahasrabudhe A, Cannon TM, Nagao K, Mankus D, Bisher M, De Nola G, Lytton-Jean A, Signorelli L, Gregurec D, Anikeeva P (2025) Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation. Nat Nanotechnol 20: 121–131. https://doi.org/10.1038/s41565-024-01798-9
- Ye H, Zang J, Zhu J, Arx DV, Pustovalov V, Mao M, Tang Q, Veciana A, Torlakcik H, Zhang E, Sevim S, Sanchis-Gual R, Chen X-Z, Ahmed D, Sanchez-Vives MV, Puigmartí-Luis J, Nelson BJ, Neuhauss SCF, Pané S (2024) Magnetoelectric Microrobots for Spinal Cord Injury Regeneration. https://doi.org/10.1101/2024.08.06.606378
- Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, Cassara AM, Neufeld E, Kuster N, Tsai L-H, Pascual-Leone A, Boyden ES (2017) Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 169: 1029-1041.e16. https://doi.org/10.1016/j.cell.2017.05.024
- Violante IR, Alania K, Cassarà AM, Neufeld E, Acerbo E, Carron R, Williamson A, Kurtin DL, Rhodes E, Hampshire A, Kuster N, Boyden ES, Pascual-Leone A, Grossman N (2023) Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci 26: 1994–2004. https://doi.org/10.1038/s41593-023-01456-8
- Demchenko I, Rampersad S, Datta A, Horn A, Churchill NW, Kennedy SH, Krishnan S, Rueda A, Schweizer TA, Griffiths JD, Boyden ES, Santarnecchi E, Bhat V (2024) Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: A protocol for a randomized sham-controlled trial. Front Neurosci 18. https://doi.org/10.3389/fnins.2024.1390250
- Barshutina MN, Kirichenko SO, Wodolajski VA, Musienko PE (2019) Mechanisms of electrical conductivity in CNT/silicone composites designed for neural interfacing. Mater Lett 236: 183–186. https://doi.org/10.1016/j.matlet.2018.10.090
- Deriabin KV, Kirichenko SO, Lopachev AV, Sysoev Y, Musienko PE, Islamova RM (2022) Ferrocenyl-containing silicone nanocomposites as materials for neuronal interfaces. Compos Part B Eng 236: 109838. https://doi.org/10.1016/j.compositesb.2022.109838
- Li J, Liu Y, Yuan L, Zhang B, Bishop ES, Wang K, Tang J, Zheng Y-Q, Xu W, Niu S, Beker L, Li TL, Chen G, Diyaolu M, Thomas A-L, Mottini V, Tok JB-H, Dunn JCY, Cui B, Pașca SP, Cui Y, Habtezion A, Chen X, Bao Z (2022) A tissue-like neurotransmitter sensor for the brain and gut. Nature 606: 94–101. https://doi.org/10.1038/s41586-022-04615-2
- Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S, Ravier J, Collin T, Coquoz L, Sakr I, Baaklini E, Hernandez-Charpak SD, Dumont G, Buschman R, Buse N, Denison T, Van Nes I, Asboth L, Watrin A, Struber L, Sauter-Starace F, Langar L, Auboiroux V, Carda S, Chabardes S, Aksenova T, Demesmaeker R, Charvet G, Bloch J, Courtine G (2023) Walking naturally after spinal cord injury using a brain–spine interface. Nature 618: 126–133. https://doi.org/10.1038/s41586-023-06094-5
- Bonizzato M, Pidpruzhnykova G, DiGiovanna J, Shkorbatova P, Pavlova N, Micera S, Courtine G (2018) Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat Commun 9. https://doi.org/10.1038/s41467-018-05282-6
- Mekhail NA, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, Pope JE, Hunter CW, Rosen SM, Costandi SJ, Falowski SM, Burgher AH, Gilmore CA, Qureshi FA, Staats PS, Scowcroft J, McJunkin T, Carlson J, Kim CK, Yang MI, Stauss T, Petersen EA, Hagedorn JM, Rauck R, Kallewaard JW, Baranidharan G, Taylor RS, Poree L, Brounstein D, Duarte RV, Gmel GE, Gorman R, Gould I, Hanson E, Karantonis DM, Khurram A, Leitner A, Mugan D, Obradovic M, Ouyang Z, Parker J, Single P, Soliday N (2023) ECAP-controlled closed-loop versus open-loop SCS for the treatment of chronic pain: 36-month results of the EVOKE blinded randomized clinical trial. Reg Anesth Pain Med rapm-2023-104751. https://doi.org/10.1136/rapm-2023-104751
- Massai E, Bonizzato M, De Jesus I, Drainville R, Martinez M (2024) Cortical neuroprosthesis-mediated functional ipsilateral control of locomotion in rats with spinal cord hemisection. eLife 12: RP92940. https://doi.org/10.7554/eLife.92940
- Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S (2013) A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. J Neurosci 33: 19326–19340. https://doi.org/10.1523/jneurosci.1688-13.2013
- Musienko P, Van Den Brand R, Marzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling Specific Locomotor Behaviors through Multidimensional Monoaminergic Modulation of Spinal Circuitries. J Neurosci 31: 9264–9278. https://doi.org/10.1523/jneurosci.5796-10.2011
- Rudroff T (2025) Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution. Brain Res 1850: 149423. https://doi.org/10.1016/j.brainres.2024.149423
- Karpowicz BM, Ali YH, Wimalasena LN, Sedler AR, Keshtkaran MR, Bodkin K, Ma X, Rubin DB, Williams ZM, Cash SS, Hochberg LR, Miller LE, Pandarinath C (2025) Stabilizing brain-computer interfaces through alignment of latent dynamics. Nat Commun 16. https://doi.org/10.1038/s41467-025-59652-y
- Muirhead WR, Layard Horsfall H, Aicardi C, Carolan J, Akram H, Vanhoestenberghe A, Schaefer AT, Marcus HJ (2024) Implanted cortical neuroprosthetics for speech and movement restoration. J Neurol 271: 7156–7168. https://doi.org/10.1007/s00415-024-12604-w
- Wairagkar M, Card NS, Singer-Clark T, Hou X, Iacobacci C, Hochberg LR, Brandman DM, Stavisky SD (2024) An instantaneous voice synthesis neuroprosthesis. Nature 10.1038/s41586-025-09127-3. Advance online publication. https://doi.org/10.1038/s41586-025-09127-3
- Yoo J, Shoaran M (2021) Neural interface systems with on-device computing: Machine learning and neuromorphic architectures. Curr Opin Biotechnol 72: 95–101. https://doi.org/10.1016/j.copbio.2021.10.012
- Valencia D, Leone G, Keller N, Mercier PP, Alimohammad A (2023) Power-efficient in vivo brain-machine interfaces via brain-state estimation. J Neural Eng 20: 016032. https://doi.org/10.1088/1741-2552/acb385
- Pazos S, Zhu K, Villena MA, Alharbi O, Zheng W, Shen Y, Yuan Y, Ping Y, Lanza M (2025) Synaptic and neural behaviours in a standard silicon transistor. Nature 640: 69–76. https://doi.org/10.1038/s41586-025-08742-4
- Milo V, Malavena G, Monzio Compagnoni C, Ielmini D (2020) Memristive and CMOS Devices for Neuromorphic Computing. Materials 13: 166. https://doi.org/10.3390/ma13010166
补充文件
