Modern Synthetic Substitute of Bone Tissue

Cover Page


Cite item

Full Text

Abstract

Potentialities of synthetic bone substitutes application in vertebrology, especially in cervical spine surgery is demonstrated. From 2010 to 2011 thirty seven patients (21 — 70 years) with spine injuries and degenerative diseases were operated on. During surgical intervention subtotal resection of cervical vertebra body was performed. BoneMedik-S block of appropriate size was inserted into the defect. In all cases the final step of operation was stable fixation of segment by metal plate and screws. It was shown that modern synthetic biomaterials for substitution of bone tissue defects enabled to shorten the volume of surgical intervention and contributed to the formation of natural spongy human bone structure at minimum terms.

Full Text

Современный синтетический заменитель костной ткани в хирургии шейного отдела позвоночника
×

About the authors

K. T Meskhi

Email: meskhi@inbox.ru

A. G Aganesov

References

  1. Barradas A.M., Yuan H., van Blitterswijk C.A., Habi- bovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms //Eur. Cell. Mater. — 2011. — Vol. 21. — P. 407-429
  2. Damien C.J., Parsons J.R. Bone graft and bone graft substitutes: a review of current technology and applications //J. Appl. Biomater. — 1991. — Vol. 2, N 3. — P. 187-208
  3. Daculsi G., LeGeros R.Z., Heughebaert M. et al. Formation on carbonate apatite crystals after implantation of calcium phosphate ceramics //Calcif. Tissue Int. — 1990. • Vol. 46. — P. 20-27.
  4. Fan H.S., Ikoma T., Tanaka J., Zhang X.D. Surface structural biomimetics and the osteoinduction of calcium phosphate biomaterials //J. Nanosci Nanetechnol. • 2007. — Vol. 7, N 3. — P. 808-813.
  5. Fellah B.H., Gauthier O., Weiss P. et al. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model //Biomaterials. — 2008. — Vol. 29, N 9. • P. 1177-1188.
  6. Habibovic P., Yuan H., van der Valk C.M. et al. 3D microenvironment as essential element for osteoinduction by biomaterials //Biomaterials. — 2005. — Vol. 26, N 17. — P. 3565-3575.
  7. Heinemann S., Gelinsky M., Worch H., Hanke T. Resorb- able bone substitution materials: An overview of commercially available materials and new approaches in the field of composites //Orthopade. — 2011. — Bd. 40, N 9. — S. 761-773.
  8. Kasai Y., Takegami R., Uchida A. et al. Show all Mixture ratios of local bone to artificial bone in lumbar posterolateral fusion //J. Spinal Disord. Tech. — 2003. — Vol. 16, N 1. — P. 31-37.
  9. Kasten P., Beyen I., Niemeyer P. et al. Porosity and pore size of â-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study //Acta Biomater. — 2008. — Vol. 4, N 6. — P. 1904-1915.
  10. Li J., Wang Z., Zhang Y. Study on the research progress of artificial osteoconductive materials //Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. — 2006. — Vol. 2, N 1. — P. 81-84.
  11. Li Y.B., Klein C.P., Zhang X., de Groot K. Formation of a bone apatite-like layer on the surface of porous hy- droxyapatite ceramics //Biomaterials. — 1994. — Vol. 15, N 10. — P. 835-841.
  12. Nihouannen D.L., Daculsi G., Saffarzadeh A. et al. Ec- topic bone formation by microporous calcium phosphate ceramic particles sheep muscles //Bone. — 2005. — Vol. 36. — P. 1086 — 1093.
  13. Nihouannen D.L., Saffarzadeh A., Gauthier O. et al. Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite / /J. Mater. Sci. Mater. Med. — 2008. — Vol. 19, N 2. — P. 667-675.
  14. Osborn J.F. The Biological profile of hydroxyapatite ceramic with respect to the cellular dynamics of animal and human soft tissue and mineralized tissue under unloaded and loaded conditions //Biomaterials Degra- dation/ Eds. M.A. Barbosa — New York, 1991. — P. 185-225.
  15. Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral //J. Bone Jt Surg. (Am.). — 1991. — Vol. 73, N 5. — P. 692-703.
  16. Theler J.M. Bone tissue substitutes and replacements / /Curr. Opin. Infect. Dis. — 2011. — Vol. 19, N 4. — P. 317-321.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies