Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies
- Authors: Yenkoyan K.1, Ounanian Z.2, Mirumyan M.3, Hayrapetyan L.1, Zakaryan N.4, Sahakyan R.5, Bjørklund G.6
-
Affiliations:
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi
- Neuroscience Laboratory, Cobrain Center,, Yerevan State University
- Neuroscience Laboratory, Cobrain Center,, Yerevan State Medical University after M. Heratsi
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi
- Department of Biochemistry,, Yerevan State Medical University after M. Heratsi,
- Department of Research,, Council for Nutritional and Environmental Medicine
- Issue: Vol 31, No 12 (2024)
- Pages: 1485-1511
- Section: Anti-Infectives and Infectious Diseases
- URL: https://journals.eco-vector.com/0929-8673/article/view/644229
- DOI: https://doi.org/10.2174/0109298673252910230920151332
- ID: 644229
Cite item
Full Text
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
About the authors
Konstantin Yenkoyan
Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi
Author for correspondence.
Email: info@benthamscience.net
Zadik Ounanian
Neuroscience Laboratory, Cobrain Center,, Yerevan State University
Email: info@benthamscience.net
Margarita Mirumyan
Neuroscience Laboratory, Cobrain Center,, Yerevan State Medical University after M. Heratsi
Email: info@benthamscience.net
Liana Hayrapetyan
Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi
Email: info@benthamscience.net
Naira Zakaryan
Department of Biochemistry, Yerevan State Medical University after M. Heratsi
Email: info@benthamscience.net
Raisa Sahakyan
Department of Biochemistry,, Yerevan State Medical University after M. Heratsi,
Email: info@benthamscience.net
Geir Bjørklund
Department of Research,, Council for Nutritional and Environmental Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Correction and republication: Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(45), 1279. doi: 10.15585/mmwr.mm6745a7 PMID: 30439872
- Tillmann, J.; Uljarevic, M.; Crawley, D.; Dumas, G.; Loth, E.; Murphy, D.; Buitelaar, J.; Charman, T.; Ahmad, J.; Ambrosino, S.; Auyeung, B.; Baumeister, S.; Beckmann, C.; Bourgeron, T.; Bours, C.; Brammer, M.; Brandeis, D.; Brogna, C.; de Bruijn, Y.; Chakrabarti, B.; Cornelissen, I.; Acqua, F.D.; Dumas, G.; Ecker, C.; Faulkner, J.; Frouin, V.; Garcés, P.; Goyard, D.; Hayward, H.; Hipp, J.; Johnson, M.H.; Jones, E.J.H.; Kundu, P.; Lai, M-C.; Dardhuy, X.L.; Lombardo, M.; Lythgoe, D.J.; Mandl, R.; Mason, L.; Meyer-Lindenberg, A.; Moessnang, C.; Mueller, N.; ODwyer, L.; Oldehinkel, M.; Oranje, B.; Pandina, G.; Persico, A.M.; Ruggeri, B.; Ruigrok, A.; Sabet, J.; Sacco, R.; Toro, R.; Tost, H.; Waldman, J.; Williams, S.C.R.; Wooldridge, C.; Zwiers, M.P. Dissecting the phenotypic heterogeneity in sensory features in autism spectrum disorder: A factor mixture modelling approach. Mol. Autism, 2020, 11(1), 67. doi: 10.1186/s13229-020-00367-w PMID: 32867850
- Yenkoyan, K.; Grigoryan, A.; Fereshetyan, K.; Yepremyan, D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav. Brain Res., 2017, 331, 92-101. doi: 10.1016/j.bbr.2017.04.038 PMID: 28499914
- Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA, 2011, 306(18), 2001-2010. doi: 10.1001/jama.2011.1638 PMID: 22068992
- Wang, Z.; Hong, Y.; Zou, L.; Zhong, R.; Zhu, B.; Shen, N.; Chen, W.; Lou, J.; Ke, J.; Zhang, T.; Wang, W.; Miao, X. Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2014, 165(2), 192-200. doi: 10.1002/ajmg.b.32222 PMID: 24453138
- Turrigiano, G.G.; Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci., 2004, 5(2), 97-107. doi: 10.1038/nrn1327 PMID: 14735113
- Guang, S.; Pang, N.; Deng, X.; Yang, L.; He, F.; Wu, L.; Chen, C.; Yin, F.; Peng, J. Synaptopathology involved in autism spectrum disorder. Front. Cell. Neurosci., 2018, 12, 470. doi: 10.3389/fncel.2018.00470 PMID: 30627085
- Rizzolatti, G.; Fabbri-Destro, M. Mirror neurons: From discovery to autism. Exp. Brain Res., 2010, 200(3-4), 223-237. doi: 10.1007/s00221-009-2002-3 PMID: 19760408
- Kelleher, R.J., III; Bear, M.F. The autistic neuron: Troubled translation? Cell, 2008, 135(3), 401-406. doi: 10.1016/j.cell.2008.10.017 PMID: 18984149
- Takumi, T.; Tamada, K. CNV biology in neurodevelopmental disorders. Curr. Opin. Neurobiol., 2018, 48, 183-192. doi: 10.1016/j.conb.2017.12.004 PMID: 29331932
- Argyropoulos, A.; Gilby, K.L.; Hill-Yardin, E.L. Studying autism in rodent models: Reconciling endophenotypes with comorbidities. Front. Hum. Neurosci., 2013, 7, 417. doi: 10.3389/fnhum.2013.00417 PMID: 23898259
- Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics, 2022, 19(1), 248-262. doi: 10.1007/s13311-022-01183-1 PMID: 35029811
- Bourgeron, T. The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harb. Symp. Quant. Biol., 2007, 72(1), 645-654. doi: 10.1101/sqb.2007.72.020 PMID: 18419324
- Gogolla, N.; LeBlanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord., 2009, 1(2), 172-181. doi: 10.1007/s11689-009-9023-x PMID: 20664807
- Cellot, G.; Cherubini, E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr., 2014, 2, 70. doi: 10.3389/fped.2014.00070 PMID: 25072038
- Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698. doi: 10.1016/j.neuron.2015.07.033 PMID: 26291155
- Bjorklund, G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp., 2013, 73(2), 225-236. PMID: 23823984
- Campbell, M.; Rapoport, J.L.; Simpson, G.M. Antipsychotics in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 1999, 38(5), 537-545. doi: 10.1097/00004583-199905000-00015 PMID: 10230185
- Chopko, T.C.; Lindsley, C.W. Classics in chemical neuroscience: Risperidone. ACS Chem. Neurosci., 2018, 9(7), 1520-1529. doi: 10.1021/acschemneuro.8b00159 PMID: 29695153
- Vardanyan, R. Piperidine-Based Drug Discovery; Elsevier, 2017.
- Robert, L. Cross-discipline team leader review memo. 2012. Available From: https://www.accessdata.fda.gov/drugsatfda_docs/summary_review/2008/021817se1-001_SUMR.pdf
- Kent, J.M.; Kushner, S.; Ning, X.; Karcher, K.; Ness, S.; Aman, M.; Singh, J.; Hough, D. Risperidone dosing in children and adolescents with autistic disorder: A double-blind, placebo-controlled study. J. Autism Dev. Disord., 2013, 43(8), 1773-1783. doi: 10.1007/s10803-012-1723-5 PMID: 23212807
- Kent, J.M.; Hough, D.; Singh, J.; Karcher, K.; Pandina, G. An open-label extension study of the safety and efficacy of risperidone in children and adolescents with autistic disorder. J. Child Adolesc. Psychopharmacol., 2013, 23(10), 676-686. doi: 10.1089/cap.2012.0058 PMID: 24350813
- Jesner, O.S.; Aref-Adib, M.; Coren, E. Risperidone for autism spectrum disorder. Cochrane Libr., 2007, 2010(1), CD005040. doi: 10.1002/14651858.CD005040.pub2 PMID: 17253538
- West, L.; Waldrop, J. Risperidone use in the treatment of behavioral symptoms in children with autism. Pediatr. Nurs., 2006, 32(6), 545-549. PMID: 17256292
- Kim, J.-W.; Seung, H.; Kim, K. C.; Gonzales, E. L. T.; Oh, H. A.; Yang, S. M.; Ko, M. J.; Han, S.-H.; Banerjee, S.; Shin, C. Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81. doi: 10.1016/j.neuropharm.2016.09.014
- Raasch, W.; Schäfer, U.; Chun, J.; Dominiak, P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br. J. Pharmacol., 2001, 133(6), 755-780. doi: 10.1038/sj.bjp.0704153 PMID: 11454649
- Uzbay, T.; Goktalay, G.; Kayir, H.; Eker, S.S.; Sarandol, A.; Oral, S.; Buyukuysal, L.; Ulusoy, G.; Kirli, S. Increased plasma agmatine levels in patients with schizophrenia. J. Psychiatr. Res., 2013, 47(8), 1054-1060. doi: 10.1016/j.jpsychires.2013.04.004 PMID: 23664672
- Esnafoglu, E.; İrende, İ. Decreased plasma agmatine levels in autistic subjects. J. Neural Transm., 2018, 125(4), 735-740. doi: 10.1007/s00702-017-1836-2 PMID: 29302750
- Silverman, J.M.; Brunet, Y.R.; Cascales, E.; Mougous, J.D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol., 2012, 66(1), 453-472. doi: 10.1146/annurev-micro-121809-151619 PMID: 22746332
- Lee, K.; Mills, Z.; Cheung, P.; Cheyne, J.E.; Montgomery, J.M. The role of zinc and NMDA receptors in autism spectrum disorders. Pharmaceuticals, 2022, 16(1), 1. doi: 10.3390/ph16010001 PMID: 36678498
- Vatankhah Ardestani, S.S.; Karahmadi, M.; Tarrahi, M.J.; Omranifard, V.; Farzaneh, B. Efficacy of memantine as adjunct therapy for autism spectrum disorder in children aged 14 years. Adv. Biomed. Res., 2018, 7(1), 131. doi: 10.4103/abr.abr_100_18 PMID: 30320040
- Soorya, L.V.; Fogg, L.; Ocampo, E.; Printen, M.; Youngkin, S.; Halpern, D.; Kolevzon, A.; Lee, S.; Grodberg, D.; Anagnostou, E. Neurocognitive outcomes from memantine: A pilot, double-blind, placebo-controlled trial in children with autism spectrum disorder. J. Child Adolesc. Psychopharmacol., 2021, 31(7), 475-484. doi: 10.1089/cap.2021.0010 PMID: 34543081
- Aman, M.G.; Findling, R.L.; Hardan, A.Y.; Hendren, R.L.; Melmed, R.D.; Kehinde-Nelson, O.; Hsu, H.A.; Trugman, J.M.; Palmer, R.H.; Graham, S.M.; Gage, A.T.; Perhach, J.L.; Katz, E. Safety and efficacy of memantine in children with autism: Randomized, placebo-controlled study and open-label extension. J. Child Adolesc. Psychopharmacol., 2017, 27(5), 403-412. doi: 10.1089/cap.2015.0146 PMID: 26978327
- Modi, M.E.; Young, L.J. D-cycloserine facilitates socially reinforced learning in an animal model relevant to autism spectrum disorders. Biol. Psychiatry, 2011, 70(3), 298-304. doi: 10.1016/j.biopsych.2011.01.026 PMID: 21481844
- Minshawi, N.F.; Wink, L.K.; Shaffer, R.; Plawecki, M.H.; Posey, D.J.; Liu, H.; Hurwitz, S.; McDougle, C.J.; Swiezy, N.B.; Erickson, C.A. A randomized, placebo-controlled trial of d-cycloserine for the enhancement of social skills training in autism spectrum disorders. Mol. Autism, 2016, 7(1), 2. doi: 10.1186/s13229-015-0062-8 PMID: 26770664
- Burket, J.A.; Benson, A.D.; Tang, A.H.; Deutsch, S.I. d-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res. Bull., 2013, 96, 62-70. doi: 10.1016/j.brainresbull.2013.05.003 PMID: 23685206
- Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol., 2022, 9, 781327. doi: 10.3389/fcell.2021.781327 PMID: 35198562
- Braat, S.; DHulst, C.; Heulens, I.; De Rubeis, S.; Mientjes, E.; Nelson, D.L.; Willemsen, R.; Bagni, C.; Van Dam, D.; De Deyn, P.P.; Kooy, R.F. The GABA A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle, 2015, 14(18), 2985-2995. doi: 10.4161/15384101.2014.989114 PMID: 25790165
- Silverman, J.L.; Pride, M.C.; Hayes, J.E.; Puhger, K.R.; Butler-Struben, H.M.; Baker, S.; Crawley, J.N. GABAB receptor agonist r-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology, 2015, 40(9), 2228-2239. doi: 10.1038/npp.2015.66 PMID: 25754761
- Mahdavinasab, S.M.; Saghazadeh, A.; Motamed-Gorji, N.; Vaseghi, S.; Mohammadi, M.R.; Alichani, R.; Akhondzadeh, S. Baclofen as an adjuvant therapy for autism: A randomized, double-blind, placebo-controlled trial. Eur. Child Adolesc. Psychiatry, 2019, 28(12), 1619-1628. doi: 10.1007/s00787-019-01333-5 PMID: 30980177
- Tan, T.; Wang, W.; Xu, H.; Huang, Z.; Wang, Y.T.; Dong, Z. Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission. Front. Cell. Neurosci., 2018, 12, 46. doi: 10.3389/fncel.2018.00046 PMID: 29541022
- Desarkar, P.; Rajji, T.K.; Ameis, S.H.; Blumberger, D.M.; Lai, M.C.; Lunsky, Y.; Daskalakis, Z.J. Assessing and stabilizing atypical plasticity in autism spectrum disorder using rTMS: Results from a proof-of-principle study. Clin. Neurophysiol., 2022, 141, 109-118. doi: 10.1016/j.clinph.2021.03.046 PMID: 34011467
- Enticott, P.G.; Barlow, K.; Guastella, A.J.; Licari, M.K.; Rogasch, N.C.; Middeldorp, C.M.; Clark, S.R.; Vallence, A.M.; Boulton, K.A.; Hickie, I.B.; Whitehouse, A.J.O.; Galletly, C.; Alvares, G.A.; Fujiyama, H.; Heussler, H.; Craig, J.M.; Kirkovski, M.; Mills, N.T.; Rinehart, N.J.; Donaldson, P.H.; Ford, T.C.; Caeyenberghs, K.; Albein-Urios, N.; Bekkali, S.; Fitzgerald, P.B. Repetitive transcranial magnetic stimulation (rTMS) in autism spectrum disorder: Protocol for a multicentre randomised controlled clinical trial. BMJ Open, 2021, 11(7), e046830. doi: 10.1136/bmjopen-2020-046830 PMID: 34233985
- Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Front. Cell. Neurosci., 2018, 12, 355. doi: 10.3389/fncel.2018.00355 PMID: 30356897
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; Lemonnier, E.; Lozovaya, N.; Burnashev, N.; Ben-Ari, Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, 343(6171), 675-679. doi: 10.1126/science.1247190 PMID: 24503856
- Parker, K.J.; Oztan, O.; Libove, R.A.; Sumiyoshi, R.D.; Jackson, L.P.; Karhson, D.S.; Summers, J.E.; Hinman, K.E.; Motonaga, K.S.; Phillips, J.M.; Carson, D.S.; Garner, J.P.; Hardan, A.Y. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 8119-8124. doi: 10.1073/pnas.1705521114 PMID: 28696286
- Bernaerts, S.; Boets, B.; Bosmans, G.; Steyaert, J.; Alaerts, K. Behavioral effects of multiple-dose oxytocin treatment in autism: A randomized, placebo-controlled trial with long-term follow-up. Mol. Autism, 2020, 11(1), 6. doi: 10.1186/s13229-020-0313-1 PMID: 31969977
- Bernaerts, S.; Boets, B.; Steyaert, J.; Wenderoth, N.; Alaerts, K. Oxytocin treatment attenuates amygdala activity in autism: A treatment-mechanism study with long-term follow-up. Transl. Psychiatry, 2020, 10(1), 383. doi: 10.1038/s41398-020-01069-w PMID: 33159033
- Yenkoyan, K.; Harutyunyan, H.; Harutyunyan, A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic. Biol. Med., 2018, 123, 85-95. doi: 10.1016/j.freeradbiomed.2018.05.070 PMID: 29782990
- Harutyunyan, A.A.; Harutyunyan, H.A.; Yenkoyan, K.B. Novel probable glance at inflammatory scenario development in autistic pathology. Front. Psychiatry, 2021, 12, 788779. doi: 10.3389/fpsyt.2021.788779 PMID: 35002805
- Manivasagam, T. Role of oxidative stress and antioxidants in autism. In: Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology; Essa, M.; Qoronfleh, M., Eds.; Springer: Cham, 2020; vol 24, pp. 193-206. doi: 10.1007/978-3-030-30402-7_7
- Robea, M.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Ciobica, A.S.; Solcan, C.; Audira, G.; Hsiao, C.D.; Strungaru, S.A.; Vitamin, C. Vitamin C attenuates oxidative stress and behavioral abnormalities triggered by fipronil and pyriproxyfen insecticide chronic exposure on zebrafish juvenile. Antioxidants, 2020, 9(10), 944. doi: 10.3390/antiox9100944 PMID: 33019596
- McGuinness, G.; Kim, Y. Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI J., 2020, 19, 892-903. doi: 10.17179/excli2020-2487 PMID: 33013262
- Abraham, D.A.; Undela, K.; Narasimhan, U.; Rajanandh, M.G. Effect of L-Carnosine in children with autism spectrum disorders: A systematic review and meta-analysis of randomised controlled trials. Amino Acids, 2021, 53(4), 575-585. doi: 10.1007/s00726-021-02960-6 PMID: 33704575
- Hajizadeh-Zaker, R.; Ghajar, A.; Mesgarpour, B.; Afarideh, M.; Mohammadi, M.R.; Akhondzadeh, S. L-Carnosine as an adjunctive therapy to risperidone in children with autistic disorder: A randomized, double-blind, placebo-controlled trial. J. Child Adolesc. Psychopharmacol., 2018, 28(1), 74-81. doi: 10.1089/cap.2017.0026 PMID: 29027815
- Demarquoy, C.; Demarquoy, J. Autism and carnitine: A possible link. World J. Biol. Chem., 2019, 10(1), 7-16. doi: 10.4331/wjbc.v10.i1.7 PMID: 30622681
- Fahmy, S.F.; El-hamamsy, M.H.; Zaki, O.K.; Badary, O.A. l-Carnitine supplementation improves the behavioral symptoms in autistic children. Res. Autism Spectr. Disord., 2013, 7(1), 159-166. doi: 10.1016/j.rasd.2012.07.006
- Guevara-Campos, J.; González-Guevara, L.; Guevara-González, J.; Cauli, O. First case report of primary carnitine deficiency manifested as intellectual disability and autism spectrum disorder. Brain Sci., 2019, 9(6), 137. doi: 10.3390/brainsci9060137 PMID: 31200524
- Shakibaei, F.; Jelvani, D. Effect of adding l-carnitine to risperidone on behavioral, cognitive, social, and physical symptoms in children and adolescents with autism: A randomized double-blinded placebo-controlled clinical trial. Clin. Neuropharmacol., 2023, 46(2), 55-59. doi: 10.1097/WNF.0000000000000544 PMID: 36735565
- Eeckhaut, V.; Van Immerseel, F.; Croubels, S.; De Baere, S.; Haesebrouck, F.; Ducatelle, R.; Louis, P.; Vandamme, P. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb. Biotechnol., 2011, 4(4), 503-512. doi: 10.1111/j.1751-7915.2010.00244.x PMID: 21375722
- Hakalehto, E.; Hänninen, O. Gaseous CO 2 signal initiates growth of butyric-acid-producing Clostridium butyricum in both pure culture and mixed cultures with Lactobacillus brevis. Can. J. Microbiol., 2012, 58(7), 928-931. doi: 10.1139/w2012-059 PMID: 22697044
- Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep., 2019, 9(1), 287. doi: 10.1038/s41598-018-36430-z PMID: 30670726
- Kratsman, N.; Getselter, D.; Elliott, E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 2016, 102, 136-145. doi: 10.1016/j.neuropharm.2015.11.003 PMID: 26577018
- Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132. doi: 10.1016/j.neuint.2016.06.011 PMID: 27346602
- Barone, R.; Rizzo, R.; Tabbì, G.; Malaguarnera, M.; Frye, R.E.; Bastin, J. Nuclear peroxisome proliferator-activated receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int. J. Mol. Sci., 2019, 20(8), 1878. doi: 10.3390/ijms20081878 PMID: 30995737
- Deckmann, I.; Schwingel, G.B.; Fontes-Dutra, M.; Bambini-Junior, V.; Gottfried, C. Neuroimmune alterations in autism: A translational analysis focusing on the animal model of autism induced by prenatal exposure to valproic acid. Neuroimmunomodulation, 2018, 25(5-6), 285-299. doi: 10.1159/000492113 PMID: 30157484
- Kumar, P.; Raman, T.; Swain, M.M.; Mishra, R.; Pal, A. Hyperglycemia-induced oxidative-nitrosative stress induces inflammation and neurodegeneration via augmented tuberous sclerosis complex-2 (TSC-2) activation in neuronal cells. Mol. Neurobiol., 2017, 54(1), 238-254. doi: 10.1007/s12035-015-9667-3 PMID: 26738854
- Das, A.; Durrant, D.; Koka, S.; Salloum, F.N.; Xi, L.; Kukreja, R.C. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: Potential role of attenuated oxidative stress and altered contractile protein expression. J. Biol. Chem., 2014, 289(7), 4145-4160. doi: 10.1074/jbc.M113.521062 PMID: 24371138
- Kotajima-Murakami, H.; Kobayashi, T.; Kashii, H.; Sato, A.; Hagino, Y.; Tanaka, M.; Nishito, Y.; Takamatsu, Y.; Uchino, S.; Ikeda, K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol. Brain, 2019, 12(1), 3. doi: 10.1186/s13041-018-0423-2 PMID: 30621732
- Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 2001, 30(11), 1191-1212. doi: 10.1016/S0891-5849(01)00480-4 PMID: 11368918
- Bala, K.A.; Doğan, M.; Mutluer, T.; Kaba, S.; Aslan, O.; Balahoroğlu, R.; Çokluk, E.; Üstyol, L.; Kocaman, S. Plasma amino acid profile in autism spectrum disorder (ASD). Eur. Rev. Med. Pharmacol. Sci., 2016, 20(5), 923-929. PMID: 27010152
- Moretti, P.; Peters, S.U.; del Gaudio, D.; Sahoo, T.; Hyland, K.; Bottiglieri, T.; Hopkin, R.J.; Peach, E.; Min, S.H.; Goldman, D.; Roa, B.; Bacino, C.A.; Scaglia, F. Brief report: Autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J. Autism Dev. Disord., 2008, 38(6), 1170-1177. doi: 10.1007/s10803-007-0492-z PMID: 18027081
- Zhang, Z.; Yu, L.; Li, S.; Liu, J. Association study of polymorphisms in genes relevant to vitamin B12 and folate metabolism with childhood autism spectrum disorder in a han chinese population. Med. Sci. Monit., 2018, 24, 370-376. doi: 10.12659/MSM.905567 PMID: 29348398
- Bertoglio, K.; Jill James, S.; Deprey, L.; Brule, N.; Hendren, R.L. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J. Altern. Complement. Med., 2010, 16(5), 555-560. doi: 10.1089/acm.2009.0177 PMID: 20804367
- Zhang, Y.; Hodgson, N.W.; Trivedi, M.S.; Abdolmaleky, H.M.; Fournier, M.; Cuenod, M.; Do, K.Q.; Deth, R.C. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One, 2016, 11(1), e0146797. doi: 10.1371/journal.pone.0146797 PMID: 26799654
- Frye, R.E.; Slattery, J.C.; Quadros, E.V. Folate metabolism abnormalities in autism: Potential biomarkers. Biomarkers Med., 2017, 11(8), 687-699. doi: 10.2217/bmm-2017-0109 PMID: 28770615
- James, S.J.; Melnyk, S.; Fuchs, G.; Reid, T.; Jernigan, S.; Pavliv, O.; Hubanks, A.; Gaylor, D.W. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am. J. Clin. Nutr., 2009, 89(1), 425-430. doi: 10.3945/ajcn.2008.26615 PMID: 19056591
- An, S.; Feng, X.; Dai, Y.; Bo, H.; Wang, X.; Li, M.; Woo, J.Z.; Liang, X.; Guo, C.; Liu, C.X.; Wei, L. Development and evaluation of a speech-generating AAC mobile app for minimally verbal children with autism spectrum disorder in Mainland China. Mol. Autism, 2017, 8(1), 52. doi: 10.1186/s13229-017-0165-5 PMID: 29026509
- Sun, C.; Zou, M.; Zhao, D.; Xia, W.; Wu, L. Efficacy of folic acid supplementation in autistic children participating in structured teaching: An open-label trial. Nutrients, 2016, 8(6), 337. doi: 10.3390/nu8060337 PMID: 27338456
- Castro, K.; Klein, L.S.; Baronio, D.; Gottfried, C.; Riesgo, R.; Perry, I.S. Folic acid and autism: What do we know? Nutr. Neurosci., 2016, 19(7), 310-317. doi: 10.1179/1476830514Y.0000000142 PMID: 25087906
- Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; Pollard, E.L.; Roux, S.; Sadowsky, M.J.; Lipson, K.S.; Sullivan, M.B.; Caporaso, J.G.; Krajmalnik-Brown, R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 2017, 5(1), 10. doi: 10.1186/s40168-016-0225-7 PMID: 28122648
- Gondalia, S.V.; Palombo, E.A.; Knowles, S.R.; Cox, S.B.; Meyer, D.; Austin, D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res., 2012, 5(6), 419-427. doi: 10.1002/aur.1253 PMID: 22997101
- Chaidez, V.; Hansen, R.L.; Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord., 2014, 44(5), 1117-1127. doi: 10.1007/s10803-013-1973-x PMID: 24193577
- Santocchi, E.; Guiducci, L.; Fulceri, F.; Billeci, L.; Buzzigoli, E.; Apicella, F.; Calderoni, S.; Grossi, E.; Morales, M.A.; Muratori, F. Gut to brain interaction in autism spectrum disorders: A randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry, 2016, 16(1), 183. doi: 10.1186/s12888-016-0887-5 PMID: 27260271
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712. doi: 10.1038/nrn3346 PMID: 22968153
- McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 2014, 133(5), 872-883. doi: 10.1542/peds.2013-3995 PMID: 24777214
- Rao, G.M. Effects of prebiotics, probiotics intervention in children with autism spectrum disorder: A systematic review. Biomedicine, 2020, 20, 119-122.
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; De Filippo, C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 5(1), 24. doi: 10.1186/s40168-017-0242-1 PMID: 28222761
- Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of gaba (γ - aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol., 2012, 43(4), 1230-1241. doi: 10.1590/S1517-83822012000400001 PMID: 24031948
- El-Ansary, A.; Bacha, A.B.; Bjørklund, G.; Al-Orf, N.; Bhat, R.S.; Moubayed, N.; Abed, K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis., 2018, 33(4), 1155-1164. doi: 10.1007/s11011-018-0212-8 PMID: 29582256
- Ait-Belgnaoui, A.; Colom, A.; Braniste, V.; Ramalho, L.; Marrot, A.; Cartier, C.; Houdeau, E.; Theodorou, V.; Tompkins, T. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil., 2014, 26(4), 510-520. doi: 10.1111/nmo.12295 PMID: 24372793
- Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr., 2018, 5, 40. doi: 10.3389/fnut.2018.00040 PMID: 29868601
- Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome, 2018, 6(1), 133. doi: 10.1186/s40168-018-0523-3 PMID: 30071894
- Meguid, N.A.; Mawgoud, Y.I.A.; Bjørklund, G.; Mehanne, N.S.; Anwar, M.; Effat, B.A.E.K.; Chirumbolo, S.; Elrahman, M.M.A. Molecular characterization of probiotics and their influence on children with autism spectrum disorder. Mol. Neurobiol., 2022, 59(11), 6896-6902. doi: 10.1007/s12035-022-02963-8 PMID: 36050597
- MacFabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2012, 23(0) doi: 10.3402/mehd.v23i0.19260 PMID: 23990817
- Sanctuary, M.R.; Kain, J.N.; Chen, S.Y.; Kalanetra, K.; Lemay, D.G.; Rose, D.R.; Yang, H.T.; Tancredi, D.J.; German, J.B.; Slupsky, C.M.; Ashwood, P.; Mills, D.A.; Smilowitz, J.T.; Angkustsiri, K. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One, 2019, 14(1), e0210064. doi: 10.1371/journal.pone.0210064 PMID: 30625189
- Witters, P.; Debbold, E.; Crivelly, K.; Vande Kerckhove, K.; Corthouts, K.; Debbold, B.; Andersson, H.; Vannieuwenborg, L.; Geuens, S.; Baumgartner, M.; Kozicz, T.; Settles, L.; Morava, E. Autism in patients with propionic acidemia. Mol. Genet. Metab., 2016, 119(4), 317-321. doi: 10.1016/j.ymgme.2016.10.009 PMID: 27825584
- Choi, J.; Lee, S.; Won, J.; Jin, Y.; Hong, Y.; Hur, T.Y.; Kim, J.H.; Lee, S.R.; Hong, Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One, 2018, 13(2), e0192925. doi: 10.1371/journal.pone.0192925 PMID: 29447237
- Frye, R.E.; Rose, S.; Slattery, J.; MacFabe, D.F. Gastrointestinal dysfunction in autism spectrum disorder: The role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis., 2015, 26(0), 27458. doi: 10.3402/mehd.v26.27458 PMID: 25956238
- Williams, B.L.; Hornig, M.; Buie, T.; Bauman, M.L.; Cho Paik, M.; Wick, I.; Bennett, A.; Jabado, O.; Hirschberg, D.L.; Lipkin, W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 2011, 6(9), e24585. doi: 10.1371/journal.pone.0024585 PMID: 21949732
- Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187. doi: 10.1016/j.physbeh.2014.10.033 PMID: 25446201
- Hogan, S.; OGara, J.P.; ONeill, E. Novel treatment of Staphylococcus aureus device-related infections using fibrinolytic agents. Antimicrob. Agents Chemother., 2018, 62(2), e02008-17. doi: 10.1128/AAC.02008-17 PMID: 29203484
- Zapotoczna, M.; McCarthy, H.; Rudkin, J.K.; OGara, J.P.; ONeill, E. An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J. Infect. Dis., 2015, 212(12), 1883-1893. doi: 10.1093/infdis/jiv319 PMID: 26044292
- Chang, Y.; Gu, W.; McLandsborough, L. Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiol., 2012, 29(1), 10-17. doi: 10.1016/j.fm.2011.07.009 PMID: 22029913
- Miyazaki, Y.; Yokota, H.; Takahashi, H.; Fukuda, M.; Kawakami, H.; Kamiya, S.; Hanawa, T. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on Enteroaggregative Escherichia coli. J. Infect. Chemother., 2010, 16(1), 10-18. doi: 10.1007/s10156-009-0007-2 PMID: 20054601
- Panksepp, J. A neurochemical theory of autism. Trends Neurosci., 1979, 2, 174-177. doi: 10.1016/0166-2236(79)90071-7
- Gillberg, C.; Terenius, L.; Lönnerholm, G. Endorphin activity in childhood psychosis. Spinal fluid levels in 24 cases. Arch. Gen. Psychiatry, 1985, 42(8), 780-783. doi: 10.1001/archpsyc.1985.01790310042005 PMID: 4015322
- Guareschi Cazzullo, A.; Musetti, M.C.; Musetti, L.; Bajo, S.; Sacerdote, P.; Panerai, A. β-Endorphin levels in peripheral blood mononuclear cells and long-term naltrexone treatment in autistic children. Eur. Neuropsychopharmacol., 1999, 9(4), 361-366. doi: 10.1016/S0924-977X(99)00010-3 PMID: 10422898
- Zioudrou, C.; Streaty, R.A.; Klee, W.A. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem., 1979, 254(7), 2446-2449. doi: 10.1016/S0021-9258(17)30243-0 PMID: 372181
- Whiteley, P.; Shattock, P. Biochemical aspects in autism spectrum disorders: Updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin. Ther. Targets, 2002, 6(2), 175-183. doi: 10.1517/14728222.6.2.175 PMID: 12223079
- Camarca, A.; Anderson, R.P.; Mamone, G.; Fierro, O.; Facchiano, A.; Costantini, S.; Zanzi, D.; Sidney, J.; Auricchio, S.; Sette, A.; Troncone, R.; Gianfrani, C. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol., 2009, 182(7), 4158-4166. doi: 10.4049/jimmunol.0803181 PMID: 19299713
- Catassi, C.; Fasano, A. Celiac disease. Curr. Opin. Gastroenterol., 2008, 24(6), 687-691. doi: 10.1097/MOG.0b013e32830edc1e PMID: 19122516
- Ghalichi, F.; Ghaemmaghami, J.; Malek, A.; Ostadrahimi, A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: A randomized clinical trial. World J. Pediatr., 2016, 12(4), 436-442. doi: 10.1007/s12519-016-0040-z PMID: 27286693
- Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci., 2012, 15(2), 85-91. doi: 10.1179/1476830512Y.0000000003 PMID: 22564339
- Johnson, C.R.; Handen, B.L.; Zimmer, M.; Sacco, K.; Turner, K. Effects of gluten free / casein free diet in young children with autism: A pilot study. J. Dev. Phys. Disabil., 2011, 23(3), 213-225. doi: 10.1007/s10882-010-9217-x
- Elder, J.H.; Shankar, M.; Shuster, J.; Theriaque, D.; Burns, S.; Sherrill, L. The gluten-free, casein-free diet in autism: Results of a preliminary double blind clinical trial. J. Autism Dev. Disord., 2006, 36(3), 413-420. doi: 10.1007/s10803-006-0079-0 PMID: 16555138
- Lange, K.W.; Hauser, J.; Reissmann, A. Gluten-free and casein-free diets in the therapy of autism. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 572-575. doi: 10.1097/MCO.0000000000000228 PMID: 26418822
- Desai, A.; Sequeira, J.M.; Quadros, E.V. Prevention of behavioral deficits in rats exposed to folate receptor antibodies: Implication in autism. Mol. Psychiatry, 2017, 22(9), 1291-1297. doi: 10.1038/mp.2016.153 PMID: 27646260
- Castro, K.; Baronio, D.; Perry, I.S.; Riesgo, R.S.; Gottfried, C. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr. Neurosci., 2017, 20(6), 343-350. doi: 10.1080/1028415X.2015.1133029 PMID: 26856821
- Spilioti, M.; Evangeliou, A.E.; Tramma, D.; Theodoridou, Z.; Metaxas, S.; Michailidi, E.; Bonti, E.; Frysira, H.; Haidopoulou, A.; Asprangathou, D.; Tsalkidis, A.J.; Kardaras, P.; Wevers, R.A.; Jakobs, C.; Gibson, K.M. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front. Hum. Neurosci., 2013, 7, 858. doi: 10.3389/fnhum.2013.00858 PMID: 24399946
- El-Rashidy, O.; El-Baz, F.; El-Gendy, Y.; Khalaf, R.; Reda, D.; Saad, K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis., 2017, 32(6), 1935-1941. doi: 10.1007/s11011-017-0088-z PMID: 28808808
- Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J. Application of a ketogenic diet in children with autistic behavior: Pilot study. J. Child Neurol., 2003, 18(2), 113-118. doi: 10.1177/08830738030180020501 PMID: 12693778
- Hartman, R.E.; Patel, D. Dietary approaches to the management of autism spectrum disorders. Advances in Neurobiology; Springer, 2020, Vol. 24, pp. 547-571. doi: 10.1007/978-3-030-30402-7_19
- Nurchi, V.M.; Buha Djordjevic, A.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic toxicity: Molecular targets and therapeutic agents. Biomolecules, 2020, 10(2), 235. doi: 10.3390/biom10020235 PMID: 32033229
- Bjørklund, G.; Crisponi, G.; Nurchi, V.M.; Cappai, R.; Buha Djordjevic, A.; Aaseth, J. A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules, 2019, 24(18), 3247. doi: 10.3390/molecules24183247 PMID: 31489907
- Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol., 2017, 91(12), 3787-3797. doi: 10.1007/s00204-017-2100-0 PMID: 29063135
- Yassa, H.A. Autism: A form of lead and mercury toxicity. Environ. Toxicol. Pharmacol., 2014, 38(3), 1016-1024. doi: 10.1016/j.etap.2014.10.005 PMID: 25461563
- James, S.; Stevenson, S.W.; Silove, N.; Williams, K. Chelation for autism spectrum disorder (ASD). Cochrane Libr., 2015, 2016(10), CD010766. doi: 10.1002/14651858.CD010766.pub2 PMID: 26114777
- T Schultz, S.; G Gould, G. Acetaminophen use for fever in children associated with autism spectrum disorder. Autism Open Access, 2016, 6(2), 170. doi: 10.4172/2165-7890.1000170 PMID: 27695658
- Wang, T.; Shan, L.; Du, L.; Feng, J.; Xu, Z.; Staal, W.G.; Jia, F. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: A systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry, 2016, 25(4), 341-350. doi: 10.1007/s00787-015-0786-1 PMID: 26514973
- Fernell, E.; Bejerot, S.; Westerlund, J.; Miniscalco, C.; Simila, H.; Eyles, D.; Gillberg, C.; Humble, M.B. Autism spectrum disorder and low vitamin D at birth: A sibling control study. Mol. Autism, 2015, 6(1), 3. doi: 10.1186/2040-2392-6-3 PMID: 25874075
- Huang, Y.N.; Ho, Y.J.; Lai, C.C.; Chiu, C.T.; Wang, J.Y. 1,25-Dihydroxyvitamin D3 attenuates endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuron-glia cultures. J. Neuroinflammation, 2015, 12(1), 147. doi: 10.1186/s12974-015-0370-0 PMID: 26259787
- Patrick, R.P.; Ames, B.N.; Vitamin, D. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J., 2014, 28(6), 2398-2413. doi: 10.1096/fj.13-246546 PMID: 24558199
- Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; El-Houfey, A.A.; Othman, H.A.K.; Bjørklund, G.; Jia, F.; Urbina, M.A.; Abo-Elela, M.G.M.; Ahmad, F.A.; Abd El-Baseer, K.A.; Ahmed, A.E.; Abdel-Salam, A.M. Retracted: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J. Child Psychol. Psychiatry, 2018, 59(1), 20-29. doi: 10.1111/jcpp.12652 PMID: 27868194
- Kostiukow, A.; Samborski, W. The effectiveness of hyperbaric oxygen therapy (HBOT) in children with autism spectrum disorders. Pol. Merkur. Lekarski, 2020, 48(283), 15-18.
- Rossignol, D.A.; Rossignol, L.W.; Smith, S.; Schneider, C.; Logerquist, S.; Usman, A.; Neubrander, J.; Madren, E.M.; Hintz, G.; Grushkin, B.; Mumper, E.A. Hyperbaric treatment for children with autism: A multicenter, randomized, double-blind, controlled trial. BMC Pediatr., 2009, 9(1), 21. doi: 10.1186/1471-2431-9-21 PMID: 19284641
- Sakulchit, T.; Ladish, C.; Goldman, R.D. Hyperbaric oxygen therapy for children with autism spectrum disorder. Can. Fam. Physician, 2017, 63(6), 446-448. PMID: 28615394
- Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the brain: Friend or foe? Int. J. Mol. Sci., 2020, 21(23), 8941. doi: 10.3390/ijms21238941 PMID: 33255662
- Bitanihirwe, B.K.Y.; Cunningham, M.G. Zinc: The brains dark horse. Synapse, 2009, 63(11), 1029-1049. doi: 10.1002/syn.20683 PMID: 19623531
- Cope, E.C.; Levenson, C.W. Role of zinc in the development and treatment of mood disorders. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(6), 685-689. doi: 10.1097/MCO.0b013e32833df61a PMID: 20689416
- Russo, A. J. Decreased zinc and increased copper in individuals with anxiety. Nutr Metab Insights, 2011, 4, 1-5. doi: 10.4137/NMI.S6349
- Krall, R.; Gale, J.R.; Ross, M.M.; Tzounopoulos, T.; Aizenman, E. Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A. Neurosci. Lett., 2022, 790, 136896. doi: 10.1016/j.neulet.2022.136896 PMID: 36202195
- Miyata, S.; Nagata, H.; Yamao, S.; Nakamura, S.; Kameyama, M. Dopamine-β-hydroxylase activities in serum and cerebrospinal fluid of aged and demented patients. J. Neurol. Sci., 1984, 63(3), 403-409. doi: 10.1016/0022-510X(84)90163-1 PMID: 6726279
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Radysh, I.V.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J. Trace Elem. Med. Biol., 2017, 43, 9-14. doi: 10.1016/j.jtemb.2016.09.009 PMID: 27707611
- Wu, H.; Zhao, G.; Liu, S.; Zhang, Q.; Wang, P.; Cao, Y.; Wu, L. Supplementation with selenium attenuates autism-like behaviors and improves oxidative stress, inflammation and related gene expression in an autism disease model. J. Nutr. Biochem., 2022, 107, 109034. doi: 10.1016/j.jnutbio.2022.109034 PMID: 35500829
- Skalny, A.V.; Skalnaya, M.G.; Bjørklund, G.; Gritsenko, V.A.; Aaseth, J.; Tinkov, A.A. Selenium and autism spectrum disorder. In: Selenium. Molecular and Integrative Toxicology; Springer: Cham, 2018; pp. 193-210. doi: 10.1007/978-3-319-95390-8_10
- Raymond, L.J.; Deth, R.C.; Ralston, N.V.C. Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res. Treat., 2014, 2014, 1-15. doi: 10.1155/2014/164938 PMID: 24734177
- Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev., 2017, 332, 30-37. doi: 10.1016/j.ccr.2016.10.009
- Bjørklund, G. Selenium as an antidote in the treatment of mercury intoxication. Biometals, 2015, 28(4), 605-614. doi: 10.1007/s10534-015-9857-5 PMID: 25947386
- El-Ansary, A.; Bjørklund, G.; Tinkov, A.A.; Skalny, A.V.; Al Dera, H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis., 2017, 32(4), 1073-1080. doi: 10.1007/s11011-017-9996-1 PMID: 28326463
- Kirkland, A.; Sarlo, G.; Holton, K. The role of magnesium in neurological disorders. Nutrients, 2018, 10(6), 730. doi: 10.3390/nu10060730 PMID: 29882776
- Yasuda, H.; Tsutsui, T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int. J. Environ. Res. Public Health, 2013, 10(11), 6027-6043. doi: 10.3390/ijerph10116027 PMID: 24284360
- Beto, J.A. The role of calcium in human aging. Clin. Nutr. Res., 2015, 4(1), 1-8. doi: 10.7762/cnr.2015.4.1.1 PMID: 25713787
- Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; Schmunk, G.; Gargus, J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11), 1718-1732. doi: 10.1016/j.bbamcr.2018.08.003 PMID: 30992134
- Chen, L.; Shi, X.J.; Liu, H.; Mao, X.; Gui, L.N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry, 2021, 11(1), 15. doi: 10.1038/s41398-020-01135-3 PMID: 33414386
- Vetter, T.; Lohse, M.J. Magnesium and the parathyroid. Curr. Opin. Nephrol. Hypertens., 2002, 11(4), 403-410. doi: 10.1097/00041552-200207000-00006 PMID: 12105390
- Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(9), 3293. doi: 10.3390/ijms21093293 PMID: 32384730
- Saghazadeh, A.; Ahangari, N.; Hendi, K.; Saleh, F.; Rezaei, N. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis. Rev. Neurosci., 2017, 28(7), 783-809. doi: 10.1515/revneuro-2017-0015 PMID: 28665792
- Skalny, A.V.; Mazaletskaya, A.L.; Ajsuvakova, O.P.; Bjørklund, G.; Skalnaya, M.G.; Chernova, L.N.; Skalny, A.A.; Tinkov, A.A. Magnesium status in children with attention-deficit/hyperactivity disorder and/or autism spectrum disorder. J. Korean Acad. Child Adolesc. Psychiatry, 2020, 31(1), 41-45. doi: 10.5765/jkacap.190036 PMID: 32612412
- Uwitonze, A.M.; Razzaque, M.S. Role of magnesium in vitamin D activation and function. J. Am. Osteopath. Assoc., 2018, 118(3), 181-189. doi: 10.7556/jaoa.2018.037 PMID: 29480918
- Muir, K.W. Magnesium in stroke treatment. Postgrad. Med. J., 2002, 78(925), 641-645. doi: 10.1136/pmj.78.925.641 PMID: 12496316
- Schmunk, G.; Gargus, J.J. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet., 2013, 4, 222. doi: 10.3389/fgene.2013.00222 PMID: 24204377
- Martineau, J.; Barthelemy, C.; Garreau, B.; Lelord, G. Vitamin B6, magnesium, and combined B6-Mg: Therapeutic effects in childhood autism. Biol. Psychiatry, 1985, 20(5), 467-478. doi: 10.1016/0006-3223(85)90019-8 PMID: 3886023
- Bjørklund, G.; Waly, M.I.; Al-Farsi, Y.; Saad, K.; Dadar, M.; Rahman, M.M.; Elhoufey, A.; Chirumbolo, S.; Jóźwik-Pruska, J.; Kałużna-Czaplińska, J. The role of vitamins in autism spectrum disorder: What do we know? J. Mol. Neurosci., 2019, 67(3), 373-387. doi: 10.1007/s12031-018-1237-5 PMID: 30607900
- Saad, K.; Abdel-rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; Cannell, J.J.; Bjørklund, G.; Abdel-Reheim, M.K.; Othman, H.A.K.; El-Houfey, A.A.; Abd El-Aziz, N.H.R.; Abd El-Baseer, K.A.; Ahmed, A.E.; Ali, A.M. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci., 2016, 19(8), 346-351. doi: 10.1179/1476830515Y.0000000019 PMID: 25876214
- Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The role of vitamin D in the immune system as a pro-survival molecule. Clin. Ther., 2017, 39(5), 894-916. doi: 10.1016/j.clinthera.2017.03.021 PMID: 28438353
- Patrick, R.P.; Ames, B.N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J., 2015, 29(6), 2207-2222. doi: 10.1096/fj.14-268342 PMID: 25713056
- Cui, X.; Eyles, D.W. Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients, 2022, 14(20), 4353. doi: 10.3390/nu14204353 PMID: 36297037
- Zastre, J.A.; Sweet, R.L.; Hanberry, B.S.; Ye, S. Linking vitamin B1 with cancer cell metabolism. Cancer Metab., 2013, 1(1), 16. doi: 10.1186/2049-3002-1-16 PMID: 24280319
- Jung, H.Y.; Kwon, H.J.; Kim, W.; Nam, S.M.; Kim, J.W.; Hahn, K.R.; Yoo, D.Y.; Yoon, Y.S.; Choi, S.Y.; Kim, D.W.; Hwang, I.K. Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue Cell, 2019, 61, 72-78. doi: 10.1016/j.tice.2019.09.005 PMID: 31759410
- Stover, P.J.; Field, M.S. Vitamin B-6. Adv. Nutr., 2015, 6(1), 132-133. doi: 10.3945/an.113.005207 PMID: 25593152
- Scott, J.M. Folate and vitamin B 12. Proc. Nutr. Soc., 1999, 58(2), 441-448. doi: 10.1017/S0029665199000580 PMID: 10466189
- Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res., 2021, 166, 105437. doi: 10.1016/j.phrs.2021.105437 PMID: 33493659
- Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J.B.; Aaseth, J.; Skalny, A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med., 2020, 160, 149-162. doi: 10.1016/j.freeradbiomed.2020.07.017 PMID: 32745763
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; Osredkar, J.; Urbina, M.A.; Fabjan, T.; El-Houfey, A.A.; Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S. Oxidative stress in autism spectrum disorder. Mol. Neurobiol., 2020, 57(5), 2314-2332. doi: 10.1007/s12035-019-01742-2 PMID: 32026227
- Rimland, B.; Callaway, E.; Dreyfus, P. The effect of high doses of vitamin B6 on autistic children: A double- blind crossover study. Am. J. Psychiatry, 1978, 135(4), 472-475. doi: 10.1176/ajp.135.4.472 PMID: 345827
- El-Ansary, A.; Cannell, J.J.; Bjørklund, G.; Bhat, R.S.; Al Dbass, A.M.; Alfawaz, H.A.; Chirumbolo, S.; Al-Ayadhi, L. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: The role of vitamin D. Metab. Brain Dis., 2018, 33(3), 917-931. doi: 10.1007/s11011-018-0199-1 PMID: 29497932
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr., 2019, 59(1), 72-88. doi: 10.1080/10408398.2017.1357534 PMID: 28799778
- Kałużna-Czaplińska, J.; Jóźwik-Pruska, J.; Chirumbolo, S.; Bjørklund, G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metab. Brain Dis., 2017, 32(5), 1585-1593. doi: 10.1007/s11011-017-0045-x PMID: 28608247
- Bjørklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp., 2016, 76(4), 257-268. doi: 10.21307/ane-2017-025 PMID: 28094817
- Connery, K.; Tippett, M.; Delhey, L.M.; Rose, S.; Slattery, J.C.; Kahler, S.G.; Hahn, J.; Kruger, U.; Cunningham, M.W.; Shimasaki, C.; Frye, R.E. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl. Psychiatry, 2018, 8(1), 148. doi: 10.1038/s41398-018-0214-7 PMID: 30097568
- Abrams, D.I. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur. J. Intern. Med., 2018, 49, 7-11. doi: 10.1016/j.ejim.2018.01.003 PMID: 29325791
- Agarwal, R.; Burke, S.L.; Maddux, M. Current state of evidence of cannabis utilization for treatment of autism spectrum disorders. BMC Psychiatry, 2019, 19(1), 328. doi: 10.1186/s12888-019-2259-4 PMID: 31664964
- Aran, A.; Cayam-Rand, D. Medical cannabis in children. Rambam Maimonides Med. J., 2020, 11(1), e0003. doi: 10.5041/RMMJ.10386 PMID: 32017680
- Fusar-Poli, L.; Cavone, V.; Tinacci, S.; Concas, I.; Petralia, A.; Signorelli, M.S.; Díaz-Caneja, C.M.; Aguglia, E. Cannabinoids for people with ASD: A systematic review of published and ongoing studies. Brain Sci., 2020, 10(9), 572. doi: 10.3390/brainsci10090572 PMID: 32825313
- Bar-Lev Schleider, L.; Mechoulam, R.; Saban, N.; Meiri, G.; Novack, V. Real life experience of medical cannabis treatment in autism: Analysis of safety and efficacy. Sci. Rep., 2019, 9(1), 200. doi: 10.1038/s41598-018-37570-y PMID: 30655581
- Wong, H.; Hoeffer, C. Maternal IL-17A in autism. Exp. Neurol., 2018, 299(Pt A), 228-240. doi: 10.1016/j.expneurol.2017.04.010 PMID: 28455196
- Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939. doi: 10.1126/science.aad0314 PMID: 26822608
- Nabetani, M.; Mukai, T.; Taguchi, A. Cell therapies for autism spectrum disorder based on new pathophysiology: A review. Cell Transplant., 2023, 32 doi: 10.1177/09636897231163217 PMID: 36999673
- Qu, J.; Liu, Z.; Li, L.; Zou, Z.; He, Z.; Zhou, L.; Luo, Y.; Zhang, M.; Ye, J. Efficacy and safety of stem cell therapy in children with autism spectrum disorders: A systematic review and meta-analysis. Front Pediatr., 2022, 10, 897398. doi: 10.3389/fped.2022.897398 PMID: 35601435
- Bradstreet, J.J.; Sych, N.; Antonucci, N.; Klunnik, M.; Ivankova, O.; Matyashchuk, I.; Demchuk, M.; Siniscalco, D. Efficacy of fetal stem cell transplantation in autism spectrum disorders: An open-labeled pilot study. Cell Transplant., 2014, 23(1_suppl)(Suppl. 1), 105-112. doi: 10.3727/096368914X684916 PMID: 25302490
- Lv, Y.T.; Zhang, Y.; Liu, M.; Qiuwaxi, J.; Ashwood, P.; Cho, S.C.; Huan, Y.; Ge, R.C.; Chen, X.W.; Wang, Z.J.; Kim, B.J.; Hu, X. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Transl. Med., 2013, 11(1), 196. doi: 10.1186/1479-5876-11-196 PMID: 23978163
- Dawson, G.; Sun, J.M.; Davlantis, K.S.; Murias, M.; Franz, L.; Troy, J.; Simmons, R.; Sabatos-DeVito, M.; Durham, R.; Kurtzberg, J. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial. Stem Cells Transl. Med., 2017, 6(5), 1332-1339. doi: 10.1002/sctm.16-0474 PMID: 28378499
- Dawson, G.; Sun, J.M.; Baker, J.; Carpenter, K.; Compton, S.; Deaver, M.; Franz, L.; Heilbron, N.; Herold, B.; Horrigan, J.; Howard, J.; Kosinski, A.; Major, S.; Murias, M.; Page, K.; Prasad, V.K.; Sabatos-DeVito, M.; Sanfilippo, F.; Sikich, L.; Simmons, R.; Song, A.; Vermeer, S.; Waters-Pick, B.; Troy, J.; Kurtzberg, J. A phase II randomized clinical trial of the safety and efficacy of intravenous umbilical cord blood infusion for treatment of children with autism spectrum disorder. J. Pediatr., 2020, 222, 164-173.e5. doi: 10.1016/j.jpeds.2020.03.011 PMID: 32444220
- Siniscalco, D.; Kannan, S.; Semprún-Hernández, N.; Eshraghi, A.A.; Brigida, A.L.; Antonucci, N. Stem cell therapy in autism: Recent insights. Stem Cells Cloning, 2018, 11, 55-67. doi: 10.2147/SCCAA.S155410 PMID: 30425534
- Kathuria, A.; Nowosiad, P.; Jagasia, R.; Aigner, S.; Taylor, R.D.; Andreae, L.C.; Gatford, N.J.F.; Lucchesi, W.; Srivastava, D.P.; Price, J. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol. Psychiatry, 2018, 23(3), 735-746. doi: 10.1038/mp.2017.185 PMID: 28948968
- Griesi-Oliveira, K.; Acab, A.; Gupta, A.R.; Sunaga, D.Y.; Chailangkarn, T.; Nicol, X.; Nunez, Y.; Walker, M.F.; Murdoch, J.D.; Sanders, S.J.; Fernandez, T.V.; Ji, W.; Lifton, R.P.; Vadasz, E.; Dietrich, A.; Pradhan, D.; Song, H.; Ming, G.; Gu, X.; Haddad, G.; Marchetto, M.C.N.; Spitzer, N.; Passos-Bueno, M.R.; State, M.W.; Muotri, A.R. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry, 2015, 20(11), 1350-1365. doi: 10.1038/mp.2014.141 PMID: 25385366
- Liu, X.; Campanac, E.; Cheung, H.H.; Ziats, M.N.; Canterel-Thouennon, L.; Raygada, M.; Baxendale, V.; Pang, A.L.Y.; Yang, L.; Swedo, S.; Thurm, A.; Lee, T.L.; Fung, K.P.; Chan, W.Y.; Hoffman, D.A.; Rennert, O.M. Idiopathic autism: Cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol. Neurobiol., 2017, 54(6), 4507-4523. doi: 10.1007/s12035-016-9961-8 PMID: 27356918
- Knoepfler, P.S. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 2009, 27(5), 1050-1056. doi: 10.1002/stem.37 PMID: 19415771
Supplementary files
