Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies


Cite item

Full Text

Abstract

Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.

About the authors

Konstantin Yenkoyan

Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi

Author for correspondence.
Email: info@benthamscience.net

Zadik Ounanian

Neuroscience Laboratory, Cobrain Center,, Yerevan State University

Email: info@benthamscience.net

Margarita Mirumyan

Neuroscience Laboratory, Cobrain Center,, Yerevan State Medical University after M. Heratsi

Email: info@benthamscience.net

Liana Hayrapetyan

Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi

Email: info@benthamscience.net

Naira Zakaryan

Department of Biochemistry, Yerevan State Medical University after M. Heratsi

Email: info@benthamscience.net

Raisa Sahakyan

Department of Biochemistry,, Yerevan State Medical University after M. Heratsi,

Email: info@benthamscience.net

Geir Bjørklund

Department of Research,, Council for Nutritional and Environmental Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Correction and republication: Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(45), 1279. doi: 10.15585/mmwr.mm6745a7 PMID: 30439872
  2. Tillmann, J.; Uljarevic, M.; Crawley, D.; Dumas, G.; Loth, E.; Murphy, D.; Buitelaar, J.; Charman, T.; Ahmad, J.; Ambrosino, S.; Auyeung, B.; Baumeister, S.; Beckmann, C.; Bourgeron, T.; Bours, C.; Brammer, M.; Brandeis, D.; Brogna, C.; de Bruijn, Y.; Chakrabarti, B.; Cornelissen, I.; Acqua, F.D.; Dumas, G.; Ecker, C.; Faulkner, J.; Frouin, V.; Garcés, P.; Goyard, D.; Hayward, H.; Hipp, J.; Johnson, M.H.; Jones, E.J.H.; Kundu, P.; Lai, M-C.; D’ardhuy, X.L.; Lombardo, M.; Lythgoe, D.J.; Mandl, R.; Mason, L.; Meyer-Lindenberg, A.; Moessnang, C.; Mueller, N.; O’Dwyer, L.; Oldehinkel, M.; Oranje, B.; Pandina, G.; Persico, A.M.; Ruggeri, B.; Ruigrok, A.; Sabet, J.; Sacco, R.; Toro, R.; Tost, H.; Waldman, J.; Williams, S.C.R.; Wooldridge, C.; Zwiers, M.P. Dissecting the phenotypic heterogeneity in sensory features in autism spectrum disorder: A factor mixture modelling approach. Mol. Autism, 2020, 11(1), 67. doi: 10.1186/s13229-020-00367-w PMID: 32867850
  3. Yenkoyan, K.; Grigoryan, A.; Fereshetyan, K.; Yepremyan, D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav. Brain Res., 2017, 331, 92-101. doi: 10.1016/j.bbr.2017.04.038 PMID: 28499914
  4. Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA, 2011, 306(18), 2001-2010. doi: 10.1001/jama.2011.1638 PMID: 22068992
  5. Wang, Z.; Hong, Y.; Zou, L.; Zhong, R.; Zhu, B.; Shen, N.; Chen, W.; Lou, J.; Ke, J.; Zhang, T.; Wang, W.; Miao, X. Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2014, 165(2), 192-200. doi: 10.1002/ajmg.b.32222 PMID: 24453138
  6. Turrigiano, G.G.; Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci., 2004, 5(2), 97-107. doi: 10.1038/nrn1327 PMID: 14735113
  7. Guang, S.; Pang, N.; Deng, X.; Yang, L.; He, F.; Wu, L.; Chen, C.; Yin, F.; Peng, J. Synaptopathology involved in autism spectrum disorder. Front. Cell. Neurosci., 2018, 12, 470. doi: 10.3389/fncel.2018.00470 PMID: 30627085
  8. Rizzolatti, G.; Fabbri-Destro, M. Mirror neurons: From discovery to autism. Exp. Brain Res., 2010, 200(3-4), 223-237. doi: 10.1007/s00221-009-2002-3 PMID: 19760408
  9. Kelleher, R.J., III; Bear, M.F. The autistic neuron: Troubled translation? Cell, 2008, 135(3), 401-406. doi: 10.1016/j.cell.2008.10.017 PMID: 18984149
  10. Takumi, T.; Tamada, K. CNV biology in neurodevelopmental disorders. Curr. Opin. Neurobiol., 2018, 48, 183-192. doi: 10.1016/j.conb.2017.12.004 PMID: 29331932
  11. Argyropoulos, A.; Gilby, K.L.; Hill-Yardin, E.L. Studying autism in rodent models: Reconciling endophenotypes with comorbidities. Front. Hum. Neurosci., 2013, 7, 417. doi: 10.3389/fnhum.2013.00417 PMID: 23898259
  12. Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics, 2022, 19(1), 248-262. doi: 10.1007/s13311-022-01183-1 PMID: 35029811
  13. Bourgeron, T. The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harb. Symp. Quant. Biol., 2007, 72(1), 645-654. doi: 10.1101/sqb.2007.72.020 PMID: 18419324
  14. Gogolla, N.; LeBlanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord., 2009, 1(2), 172-181. doi: 10.1007/s11689-009-9023-x PMID: 20664807
  15. Cellot, G.; Cherubini, E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr., 2014, 2, 70. doi: 10.3389/fped.2014.00070 PMID: 25072038
  16. Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698. doi: 10.1016/j.neuron.2015.07.033 PMID: 26291155
  17. Bjorklund, G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp., 2013, 73(2), 225-236. PMID: 23823984
  18. Campbell, M.; Rapoport, J.L.; Simpson, G.M. Antipsychotics in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 1999, 38(5), 537-545. doi: 10.1097/00004583-199905000-00015 PMID: 10230185
  19. Chopko, T.C.; Lindsley, C.W. Classics in chemical neuroscience: Risperidone. ACS Chem. Neurosci., 2018, 9(7), 1520-1529. doi: 10.1021/acschemneuro.8b00159 PMID: 29695153
  20. Vardanyan, R. Piperidine-Based Drug Discovery; Elsevier, 2017.
  21. Robert, L. Cross-discipline team leader review memo. 2012. Available From: https://www.accessdata.fda.gov/drugsatfda_docs/summary_review/2008/021817se1-001_SUMR.pdf
  22. Kent, J.M.; Kushner, S.; Ning, X.; Karcher, K.; Ness, S.; Aman, M.; Singh, J.; Hough, D. Risperidone dosing in children and adolescents with autistic disorder: A double-blind, placebo-controlled study. J. Autism Dev. Disord., 2013, 43(8), 1773-1783. doi: 10.1007/s10803-012-1723-5 PMID: 23212807
  23. Kent, J.M.; Hough, D.; Singh, J.; Karcher, K.; Pandina, G. An open-label extension study of the safety and efficacy of risperidone in children and adolescents with autistic disorder. J. Child Adolesc. Psychopharmacol., 2013, 23(10), 676-686. doi: 10.1089/cap.2012.0058 PMID: 24350813
  24. Jesner, O.S.; Aref-Adib, M.; Coren, E. Risperidone for autism spectrum disorder. Cochrane Libr., 2007, 2010(1), CD005040. doi: 10.1002/14651858.CD005040.pub2 PMID: 17253538
  25. West, L.; Waldrop, J. Risperidone use in the treatment of behavioral symptoms in children with autism. Pediatr. Nurs., 2006, 32(6), 545-549. PMID: 17256292
  26. Kim, J.-W.; Seung, H.; Kim, K. C.; Gonzales, E. L. T.; Oh, H. A.; Yang, S. M.; Ko, M. J.; Han, S.-H.; Banerjee, S.; Shin, C. Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81. doi: 10.1016/j.neuropharm.2016.09.014
  27. Raasch, W.; Schäfer, U.; Chun, J.; Dominiak, P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br. J. Pharmacol., 2001, 133(6), 755-780. doi: 10.1038/sj.bjp.0704153 PMID: 11454649
  28. Uzbay, T.; Goktalay, G.; Kayir, H.; Eker, S.S.; Sarandol, A.; Oral, S.; Buyukuysal, L.; Ulusoy, G.; Kirli, S. Increased plasma agmatine levels in patients with schizophrenia. J. Psychiatr. Res., 2013, 47(8), 1054-1060. doi: 10.1016/j.jpsychires.2013.04.004 PMID: 23664672
  29. Esnafoglu, E.; İrende, İ. Decreased plasma agmatine levels in autistic subjects. J. Neural Transm., 2018, 125(4), 735-740. doi: 10.1007/s00702-017-1836-2 PMID: 29302750
  30. Silverman, J.M.; Brunet, Y.R.; Cascales, E.; Mougous, J.D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol., 2012, 66(1), 453-472. doi: 10.1146/annurev-micro-121809-151619 PMID: 22746332
  31. Lee, K.; Mills, Z.; Cheung, P.; Cheyne, J.E.; Montgomery, J.M. The role of zinc and NMDA receptors in autism spectrum disorders. Pharmaceuticals, 2022, 16(1), 1. doi: 10.3390/ph16010001 PMID: 36678498
  32. Vatankhah Ardestani, S.S.; Karahmadi, M.; Tarrahi, M.J.; Omranifard, V.; Farzaneh, B. Efficacy of memantine as adjunct therapy for autism spectrum disorder in children aged 14 years. Adv. Biomed. Res., 2018, 7(1), 131. doi: 10.4103/abr.abr_100_18 PMID: 30320040
  33. Soorya, L.V.; Fogg, L.; Ocampo, E.; Printen, M.; Youngkin, S.; Halpern, D.; Kolevzon, A.; Lee, S.; Grodberg, D.; Anagnostou, E. Neurocognitive outcomes from memantine: A pilot, double-blind, placebo-controlled trial in children with autism spectrum disorder. J. Child Adolesc. Psychopharmacol., 2021, 31(7), 475-484. doi: 10.1089/cap.2021.0010 PMID: 34543081
  34. Aman, M.G.; Findling, R.L.; Hardan, A.Y.; Hendren, R.L.; Melmed, R.D.; Kehinde-Nelson, O.; Hsu, H.A.; Trugman, J.M.; Palmer, R.H.; Graham, S.M.; Gage, A.T.; Perhach, J.L.; Katz, E. Safety and efficacy of memantine in children with autism: Randomized, placebo-controlled study and open-label extension. J. Child Adolesc. Psychopharmacol., 2017, 27(5), 403-412. doi: 10.1089/cap.2015.0146 PMID: 26978327
  35. Modi, M.E.; Young, L.J. D-cycloserine facilitates socially reinforced learning in an animal model relevant to autism spectrum disorders. Biol. Psychiatry, 2011, 70(3), 298-304. doi: 10.1016/j.biopsych.2011.01.026 PMID: 21481844
  36. Minshawi, N.F.; Wink, L.K.; Shaffer, R.; Plawecki, M.H.; Posey, D.J.; Liu, H.; Hurwitz, S.; McDougle, C.J.; Swiezy, N.B.; Erickson, C.A. A randomized, placebo-controlled trial of d-cycloserine for the enhancement of social skills training in autism spectrum disorders. Mol. Autism, 2016, 7(1), 2. doi: 10.1186/s13229-015-0062-8 PMID: 26770664
  37. Burket, J.A.; Benson, A.D.; Tang, A.H.; Deutsch, S.I. d-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res. Bull., 2013, 96, 62-70. doi: 10.1016/j.brainresbull.2013.05.003 PMID: 23685206
  38. Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol., 2022, 9, 781327. doi: 10.3389/fcell.2021.781327 PMID: 35198562
  39. Braat, S.; D’Hulst, C.; Heulens, I.; De Rubeis, S.; Mientjes, E.; Nelson, D.L.; Willemsen, R.; Bagni, C.; Van Dam, D.; De Deyn, P.P.; Kooy, R.F. The GABA A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle, 2015, 14(18), 2985-2995. doi: 10.4161/15384101.2014.989114 PMID: 25790165
  40. Silverman, J.L.; Pride, M.C.; Hayes, J.E.; Puhger, K.R.; Butler-Struben, H.M.; Baker, S.; Crawley, J.N. GABAB receptor agonist r-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology, 2015, 40(9), 2228-2239. doi: 10.1038/npp.2015.66 PMID: 25754761
  41. Mahdavinasab, S.M.; Saghazadeh, A.; Motamed-Gorji, N.; Vaseghi, S.; Mohammadi, M.R.; Alichani, R.; Akhondzadeh, S. Baclofen as an adjuvant therapy for autism: A randomized, double-blind, placebo-controlled trial. Eur. Child Adolesc. Psychiatry, 2019, 28(12), 1619-1628. doi: 10.1007/s00787-019-01333-5 PMID: 30980177
  42. Tan, T.; Wang, W.; Xu, H.; Huang, Z.; Wang, Y.T.; Dong, Z. Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission. Front. Cell. Neurosci., 2018, 12, 46. doi: 10.3389/fncel.2018.00046 PMID: 29541022
  43. Desarkar, P.; Rajji, T.K.; Ameis, S.H.; Blumberger, D.M.; Lai, M.C.; Lunsky, Y.; Daskalakis, Z.J. Assessing and stabilizing atypical plasticity in autism spectrum disorder using rTMS: Results from a proof-of-principle study. Clin. Neurophysiol., 2022, 141, 109-118. doi: 10.1016/j.clinph.2021.03.046 PMID: 34011467
  44. Enticott, P.G.; Barlow, K.; Guastella, A.J.; Licari, M.K.; Rogasch, N.C.; Middeldorp, C.M.; Clark, S.R.; Vallence, A.M.; Boulton, K.A.; Hickie, I.B.; Whitehouse, A.J.O.; Galletly, C.; Alvares, G.A.; Fujiyama, H.; Heussler, H.; Craig, J.M.; Kirkovski, M.; Mills, N.T.; Rinehart, N.J.; Donaldson, P.H.; Ford, T.C.; Caeyenberghs, K.; Albein-Urios, N.; Bekkali, S.; Fitzgerald, P.B. Repetitive transcranial magnetic stimulation (rTMS) in autism spectrum disorder: Protocol for a multicentre randomised controlled clinical trial. BMJ Open, 2021, 11(7), e046830. doi: 10.1136/bmjopen-2020-046830 PMID: 34233985
  45. Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Front. Cell. Neurosci., 2018, 12, 355. doi: 10.3389/fncel.2018.00355 PMID: 30356897
  46. Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; Lemonnier, E.; Lozovaya, N.; Burnashev, N.; Ben-Ari, Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, 343(6171), 675-679. doi: 10.1126/science.1247190 PMID: 24503856
  47. Parker, K.J.; Oztan, O.; Libove, R.A.; Sumiyoshi, R.D.; Jackson, L.P.; Karhson, D.S.; Summers, J.E.; Hinman, K.E.; Motonaga, K.S.; Phillips, J.M.; Carson, D.S.; Garner, J.P.; Hardan, A.Y. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 8119-8124. doi: 10.1073/pnas.1705521114 PMID: 28696286
  48. Bernaerts, S.; Boets, B.; Bosmans, G.; Steyaert, J.; Alaerts, K. Behavioral effects of multiple-dose oxytocin treatment in autism: A randomized, placebo-controlled trial with long-term follow-up. Mol. Autism, 2020, 11(1), 6. doi: 10.1186/s13229-020-0313-1 PMID: 31969977
  49. Bernaerts, S.; Boets, B.; Steyaert, J.; Wenderoth, N.; Alaerts, K. Oxytocin treatment attenuates amygdala activity in autism: A treatment-mechanism study with long-term follow-up. Transl. Psychiatry, 2020, 10(1), 383. doi: 10.1038/s41398-020-01069-w PMID: 33159033
  50. Yenkoyan, K.; Harutyunyan, H.; Harutyunyan, A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic. Biol. Med., 2018, 123, 85-95. doi: 10.1016/j.freeradbiomed.2018.05.070 PMID: 29782990
  51. Harutyunyan, A.A.; Harutyunyan, H.A.; Yenkoyan, K.B. Novel probable glance at inflammatory scenario development in autistic pathology. Front. Psychiatry, 2021, 12, 788779. doi: 10.3389/fpsyt.2021.788779 PMID: 35002805
  52. Manivasagam, T. Role of oxidative stress and antioxidants in autism. In: Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology; Essa, M.; Qoronfleh, M., Eds.; Springer: Cham, 2020; vol 24, pp. 193-206. doi: 10.1007/978-3-030-30402-7_7
  53. Robea, M.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Ciobica, A.S.; Solcan, C.; Audira, G.; Hsiao, C.D.; Strungaru, S.A.; Vitamin, C. Vitamin C attenuates oxidative stress and behavioral abnormalities triggered by fipronil and pyriproxyfen insecticide chronic exposure on zebrafish juvenile. Antioxidants, 2020, 9(10), 944. doi: 10.3390/antiox9100944 PMID: 33019596
  54. McGuinness, G.; Kim, Y. Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI J., 2020, 19, 892-903. doi: 10.17179/excli2020-2487 PMID: 33013262
  55. Abraham, D.A.; Undela, K.; Narasimhan, U.; Rajanandh, M.G. Effect of L-Carnosine in children with autism spectrum disorders: A systematic review and meta-analysis of randomised controlled trials. Amino Acids, 2021, 53(4), 575-585. doi: 10.1007/s00726-021-02960-6 PMID: 33704575
  56. Hajizadeh-Zaker, R.; Ghajar, A.; Mesgarpour, B.; Afarideh, M.; Mohammadi, M.R.; Akhondzadeh, S. L-Carnosine as an adjunctive therapy to risperidone in children with autistic disorder: A randomized, double-blind, placebo-controlled trial. J. Child Adolesc. Psychopharmacol., 2018, 28(1), 74-81. doi: 10.1089/cap.2017.0026 PMID: 29027815
  57. Demarquoy, C.; Demarquoy, J. Autism and carnitine: A possible link. World J. Biol. Chem., 2019, 10(1), 7-16. doi: 10.4331/wjbc.v10.i1.7 PMID: 30622681
  58. Fahmy, S.F.; El-hamamsy, M.H.; Zaki, O.K.; Badary, O.A. l-Carnitine supplementation improves the behavioral symptoms in autistic children. Res. Autism Spectr. Disord., 2013, 7(1), 159-166. doi: 10.1016/j.rasd.2012.07.006
  59. Guevara-Campos, J.; González-Guevara, L.; Guevara-González, J.; Cauli, O. First case report of primary carnitine deficiency manifested as intellectual disability and autism spectrum disorder. Brain Sci., 2019, 9(6), 137. doi: 10.3390/brainsci9060137 PMID: 31200524
  60. Shakibaei, F.; Jelvani, D. Effect of adding l-carnitine to risperidone on behavioral, cognitive, social, and physical symptoms in children and adolescents with autism: A randomized double-blinded placebo-controlled clinical trial. Clin. Neuropharmacol., 2023, 46(2), 55-59. doi: 10.1097/WNF.0000000000000544 PMID: 36735565
  61. Eeckhaut, V.; Van Immerseel, F.; Croubels, S.; De Baere, S.; Haesebrouck, F.; Ducatelle, R.; Louis, P.; Vandamme, P. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb. Biotechnol., 2011, 4(4), 503-512. doi: 10.1111/j.1751-7915.2010.00244.x PMID: 21375722
  62. Hakalehto, E.; Hänninen, O. Gaseous CO 2 signal initiates growth of butyric-acid-producing Clostridium butyricum in both pure culture and mixed cultures with Lactobacillus brevis. Can. J. Microbiol., 2012, 58(7), 928-931. doi: 10.1139/w2012-059 PMID: 22697044
  63. Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep., 2019, 9(1), 287. doi: 10.1038/s41598-018-36430-z PMID: 30670726
  64. Kratsman, N.; Getselter, D.; Elliott, E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 2016, 102, 136-145. doi: 10.1016/j.neuropharm.2015.11.003 PMID: 26577018
  65. Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132. doi: 10.1016/j.neuint.2016.06.011 PMID: 27346602
  66. Barone, R.; Rizzo, R.; Tabbì, G.; Malaguarnera, M.; Frye, R.E.; Bastin, J. Nuclear peroxisome proliferator-activated receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int. J. Mol. Sci., 2019, 20(8), 1878. doi: 10.3390/ijms20081878 PMID: 30995737
  67. Deckmann, I.; Schwingel, G.B.; Fontes-Dutra, M.; Bambini-Junior, V.; Gottfried, C. Neuroimmune alterations in autism: A translational analysis focusing on the animal model of autism induced by prenatal exposure to valproic acid. Neuroimmunomodulation, 2018, 25(5-6), 285-299. doi: 10.1159/000492113 PMID: 30157484
  68. Kumar, P.; Raman, T.; Swain, M.M.; Mishra, R.; Pal, A. Hyperglycemia-induced oxidative-nitrosative stress induces inflammation and neurodegeneration via augmented tuberous sclerosis complex-2 (TSC-2) activation in neuronal cells. Mol. Neurobiol., 2017, 54(1), 238-254. doi: 10.1007/s12035-015-9667-3 PMID: 26738854
  69. Das, A.; Durrant, D.; Koka, S.; Salloum, F.N.; Xi, L.; Kukreja, R.C. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: Potential role of attenuated oxidative stress and altered contractile protein expression. J. Biol. Chem., 2014, 289(7), 4145-4160. doi: 10.1074/jbc.M113.521062 PMID: 24371138
  70. Kotajima-Murakami, H.; Kobayashi, T.; Kashii, H.; Sato, A.; Hagino, Y.; Tanaka, M.; Nishito, Y.; Takamatsu, Y.; Uchino, S.; Ikeda, K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol. Brain, 2019, 12(1), 3. doi: 10.1186/s13041-018-0423-2 PMID: 30621732
  71. Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 2001, 30(11), 1191-1212. doi: 10.1016/S0891-5849(01)00480-4 PMID: 11368918
  72. Bala, K.A.; Doğan, M.; Mutluer, T.; Kaba, S.; Aslan, O.; Balahoroğlu, R.; Çokluk, E.; Üstyol, L.; Kocaman, S. Plasma amino acid profile in autism spectrum disorder (ASD). Eur. Rev. Med. Pharmacol. Sci., 2016, 20(5), 923-929. PMID: 27010152
  73. Moretti, P.; Peters, S.U.; del Gaudio, D.; Sahoo, T.; Hyland, K.; Bottiglieri, T.; Hopkin, R.J.; Peach, E.; Min, S.H.; Goldman, D.; Roa, B.; Bacino, C.A.; Scaglia, F. Brief report: Autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J. Autism Dev. Disord., 2008, 38(6), 1170-1177. doi: 10.1007/s10803-007-0492-z PMID: 18027081
  74. Zhang, Z.; Yu, L.; Li, S.; Liu, J. Association study of polymorphisms in genes relevant to vitamin B12 and folate metabolism with childhood autism spectrum disorder in a han chinese population. Med. Sci. Monit., 2018, 24, 370-376. doi: 10.12659/MSM.905567 PMID: 29348398
  75. Bertoglio, K.; Jill James, S.; Deprey, L.; Brule, N.; Hendren, R.L. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J. Altern. Complement. Med., 2010, 16(5), 555-560. doi: 10.1089/acm.2009.0177 PMID: 20804367
  76. Zhang, Y.; Hodgson, N.W.; Trivedi, M.S.; Abdolmaleky, H.M.; Fournier, M.; Cuenod, M.; Do, K.Q.; Deth, R.C. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One, 2016, 11(1), e0146797. doi: 10.1371/journal.pone.0146797 PMID: 26799654
  77. Frye, R.E.; Slattery, J.C.; Quadros, E.V. Folate metabolism abnormalities in autism: Potential biomarkers. Biomarkers Med., 2017, 11(8), 687-699. doi: 10.2217/bmm-2017-0109 PMID: 28770615
  78. James, S.J.; Melnyk, S.; Fuchs, G.; Reid, T.; Jernigan, S.; Pavliv, O.; Hubanks, A.; Gaylor, D.W. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am. J. Clin. Nutr., 2009, 89(1), 425-430. doi: 10.3945/ajcn.2008.26615 PMID: 19056591
  79. An, S.; Feng, X.; Dai, Y.; Bo, H.; Wang, X.; Li, M.; Woo, J.Z.; Liang, X.; Guo, C.; Liu, C.X.; Wei, L. Development and evaluation of a speech-generating AAC mobile app for minimally verbal children with autism spectrum disorder in Mainland China. Mol. Autism, 2017, 8(1), 52. doi: 10.1186/s13229-017-0165-5 PMID: 29026509
  80. Sun, C.; Zou, M.; Zhao, D.; Xia, W.; Wu, L. Efficacy of folic acid supplementation in autistic children participating in structured teaching: An open-label trial. Nutrients, 2016, 8(6), 337. doi: 10.3390/nu8060337 PMID: 27338456
  81. Castro, K.; Klein, L.S.; Baronio, D.; Gottfried, C.; Riesgo, R.; Perry, I.S. Folic acid and autism: What do we know? Nutr. Neurosci., 2016, 19(7), 310-317. doi: 10.1179/1476830514Y.0000000142 PMID: 25087906
  82. Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; Pollard, E.L.; Roux, S.; Sadowsky, M.J.; Lipson, K.S.; Sullivan, M.B.; Caporaso, J.G.; Krajmalnik-Brown, R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 2017, 5(1), 10. doi: 10.1186/s40168-016-0225-7 PMID: 28122648
  83. Gondalia, S.V.; Palombo, E.A.; Knowles, S.R.; Cox, S.B.; Meyer, D.; Austin, D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res., 2012, 5(6), 419-427. doi: 10.1002/aur.1253 PMID: 22997101
  84. Chaidez, V.; Hansen, R.L.; Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord., 2014, 44(5), 1117-1127. doi: 10.1007/s10803-013-1973-x PMID: 24193577
  85. Santocchi, E.; Guiducci, L.; Fulceri, F.; Billeci, L.; Buzzigoli, E.; Apicella, F.; Calderoni, S.; Grossi, E.; Morales, M.A.; Muratori, F. Gut to brain interaction in autism spectrum disorders: A randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry, 2016, 16(1), 183. doi: 10.1186/s12888-016-0887-5 PMID: 27260271
  86. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712. doi: 10.1038/nrn3346 PMID: 22968153
  87. McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 2014, 133(5), 872-883. doi: 10.1542/peds.2013-3995 PMID: 24777214
  88. Rao, G.M. Effects of prebiotics, probiotics intervention in children with autism spectrum disorder: A systematic review. Biomedicine, 2020, 20, 119-122.
  89. Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; De Filippo, C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 5(1), 24. doi: 10.1186/s40168-017-0242-1 PMID: 28222761
  90. Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of gaba (γ - aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol., 2012, 43(4), 1230-1241. doi: 10.1590/S1517-83822012000400001 PMID: 24031948
  91. El-Ansary, A.; Bacha, A.B.; Bjørklund, G.; Al-Orf, N.; Bhat, R.S.; Moubayed, N.; Abed, K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis., 2018, 33(4), 1155-1164. doi: 10.1007/s11011-018-0212-8 PMID: 29582256
  92. Ait-Belgnaoui, A.; Colom, A.; Braniste, V.; Ramalho, L.; Marrot, A.; Cartier, C.; Houdeau, E.; Theodorou, V.; Tompkins, T. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil., 2014, 26(4), 510-520. doi: 10.1111/nmo.12295 PMID: 24372793
  93. Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr., 2018, 5, 40. doi: 10.3389/fnut.2018.00040 PMID: 29868601
  94. Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome, 2018, 6(1), 133. doi: 10.1186/s40168-018-0523-3 PMID: 30071894
  95. Meguid, N.A.; Mawgoud, Y.I.A.; Bjørklund, G.; Mehanne, N.S.; Anwar, M.; Effat, B.A.E.K.; Chirumbolo, S.; Elrahman, M.M.A. Molecular characterization of probiotics and their influence on children with autism spectrum disorder. Mol. Neurobiol., 2022, 59(11), 6896-6902. doi: 10.1007/s12035-022-02963-8 PMID: 36050597
  96. MacFabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2012, 23(0) doi: 10.3402/mehd.v23i0.19260 PMID: 23990817
  97. Sanctuary, M.R.; Kain, J.N.; Chen, S.Y.; Kalanetra, K.; Lemay, D.G.; Rose, D.R.; Yang, H.T.; Tancredi, D.J.; German, J.B.; Slupsky, C.M.; Ashwood, P.; Mills, D.A.; Smilowitz, J.T.; Angkustsiri, K. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One, 2019, 14(1), e0210064. doi: 10.1371/journal.pone.0210064 PMID: 30625189
  98. Witters, P.; Debbold, E.; Crivelly, K.; Vande Kerckhove, K.; Corthouts, K.; Debbold, B.; Andersson, H.; Vannieuwenborg, L.; Geuens, S.; Baumgartner, M.; Kozicz, T.; Settles, L.; Morava, E. Autism in patients with propionic acidemia. Mol. Genet. Metab., 2016, 119(4), 317-321. doi: 10.1016/j.ymgme.2016.10.009 PMID: 27825584
  99. Choi, J.; Lee, S.; Won, J.; Jin, Y.; Hong, Y.; Hur, T.Y.; Kim, J.H.; Lee, S.R.; Hong, Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One, 2018, 13(2), e0192925. doi: 10.1371/journal.pone.0192925 PMID: 29447237
  100. Frye, R.E.; Rose, S.; Slattery, J.; MacFabe, D.F. Gastrointestinal dysfunction in autism spectrum disorder: The role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis., 2015, 26(0), 27458. doi: 10.3402/mehd.v26.27458 PMID: 25956238
  101. Williams, B.L.; Hornig, M.; Buie, T.; Bauman, M.L.; Cho Paik, M.; Wick, I.; Bennett, A.; Jabado, O.; Hirschberg, D.L.; Lipkin, W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 2011, 6(9), e24585. doi: 10.1371/journal.pone.0024585 PMID: 21949732
  102. Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187. doi: 10.1016/j.physbeh.2014.10.033 PMID: 25446201
  103. Hogan, S.; O’Gara, J.P.; O’Neill, E. Novel treatment of Staphylococcus aureus device-related infections using fibrinolytic agents. Antimicrob. Agents Chemother., 2018, 62(2), e02008-17. doi: 10.1128/AAC.02008-17 PMID: 29203484
  104. Zapotoczna, M.; McCarthy, H.; Rudkin, J.K.; O’Gara, J.P.; O’Neill, E. An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J. Infect. Dis., 2015, 212(12), 1883-1893. doi: 10.1093/infdis/jiv319 PMID: 26044292
  105. Chang, Y.; Gu, W.; McLandsborough, L. Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiol., 2012, 29(1), 10-17. doi: 10.1016/j.fm.2011.07.009 PMID: 22029913
  106. Miyazaki, Y.; Yokota, H.; Takahashi, H.; Fukuda, M.; Kawakami, H.; Kamiya, S.; Hanawa, T. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on Enteroaggregative Escherichia coli. J. Infect. Chemother., 2010, 16(1), 10-18. doi: 10.1007/s10156-009-0007-2 PMID: 20054601
  107. Panksepp, J. A neurochemical theory of autism. Trends Neurosci., 1979, 2, 174-177. doi: 10.1016/0166-2236(79)90071-7
  108. Gillberg, C.; Terenius, L.; Lönnerholm, G. Endorphin activity in childhood psychosis. Spinal fluid levels in 24 cases. Arch. Gen. Psychiatry, 1985, 42(8), 780-783. doi: 10.1001/archpsyc.1985.01790310042005 PMID: 4015322
  109. Guareschi Cazzullo, A.; Musetti, M.C.; Musetti, L.; Bajo, S.; Sacerdote, P.; Panerai, A. β-Endorphin levels in peripheral blood mononuclear cells and long-term naltrexone treatment in autistic children. Eur. Neuropsychopharmacol., 1999, 9(4), 361-366. doi: 10.1016/S0924-977X(99)00010-3 PMID: 10422898
  110. Zioudrou, C.; Streaty, R.A.; Klee, W.A. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem., 1979, 254(7), 2446-2449. doi: 10.1016/S0021-9258(17)30243-0 PMID: 372181
  111. Whiteley, P.; Shattock, P. Biochemical aspects in autism spectrum disorders: Updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin. Ther. Targets, 2002, 6(2), 175-183. doi: 10.1517/14728222.6.2.175 PMID: 12223079
  112. Camarca, A.; Anderson, R.P.; Mamone, G.; Fierro, O.; Facchiano, A.; Costantini, S.; Zanzi, D.; Sidney, J.; Auricchio, S.; Sette, A.; Troncone, R.; Gianfrani, C. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol., 2009, 182(7), 4158-4166. doi: 10.4049/jimmunol.0803181 PMID: 19299713
  113. Catassi, C.; Fasano, A. Celiac disease. Curr. Opin. Gastroenterol., 2008, 24(6), 687-691. doi: 10.1097/MOG.0b013e32830edc1e PMID: 19122516
  114. Ghalichi, F.; Ghaemmaghami, J.; Malek, A.; Ostadrahimi, A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: A randomized clinical trial. World J. Pediatr., 2016, 12(4), 436-442. doi: 10.1007/s12519-016-0040-z PMID: 27286693
  115. Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci., 2012, 15(2), 85-91. doi: 10.1179/1476830512Y.0000000003 PMID: 22564339
  116. Johnson, C.R.; Handen, B.L.; Zimmer, M.; Sacco, K.; Turner, K. Effects of gluten free / casein free diet in young children with autism: A pilot study. J. Dev. Phys. Disabil., 2011, 23(3), 213-225. doi: 10.1007/s10882-010-9217-x
  117. Elder, J.H.; Shankar, M.; Shuster, J.; Theriaque, D.; Burns, S.; Sherrill, L. The gluten-free, casein-free diet in autism: Results of a preliminary double blind clinical trial. J. Autism Dev. Disord., 2006, 36(3), 413-420. doi: 10.1007/s10803-006-0079-0 PMID: 16555138
  118. Lange, K.W.; Hauser, J.; Reissmann, A. Gluten-free and casein-free diets in the therapy of autism. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 572-575. doi: 10.1097/MCO.0000000000000228 PMID: 26418822
  119. Desai, A.; Sequeira, J.M.; Quadros, E.V. Prevention of behavioral deficits in rats exposed to folate receptor antibodies: Implication in autism. Mol. Psychiatry, 2017, 22(9), 1291-1297. doi: 10.1038/mp.2016.153 PMID: 27646260
  120. Castro, K.; Baronio, D.; Perry, I.S.; Riesgo, R.S.; Gottfried, C. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr. Neurosci., 2017, 20(6), 343-350. doi: 10.1080/1028415X.2015.1133029 PMID: 26856821
  121. Spilioti, M.; Evangeliou, A.E.; Tramma, D.; Theodoridou, Z.; Metaxas, S.; Michailidi, E.; Bonti, E.; Frysira, H.; Haidopoulou, A.; Asprangathou, D.; Tsalkidis, A.J.; Kardaras, P.; Wevers, R.A.; Jakobs, C.; Gibson, K.M. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front. Hum. Neurosci., 2013, 7, 858. doi: 10.3389/fnhum.2013.00858 PMID: 24399946
  122. El-Rashidy, O.; El-Baz, F.; El-Gendy, Y.; Khalaf, R.; Reda, D.; Saad, K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis., 2017, 32(6), 1935-1941. doi: 10.1007/s11011-017-0088-z PMID: 28808808
  123. Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J. Application of a ketogenic diet in children with autistic behavior: Pilot study. J. Child Neurol., 2003, 18(2), 113-118. doi: 10.1177/08830738030180020501 PMID: 12693778
  124. Hartman, R.E.; Patel, D. Dietary approaches to the management of autism spectrum disorders. Advances in Neurobiology; Springer, 2020, Vol. 24, pp. 547-571. doi: 10.1007/978-3-030-30402-7_19
  125. Nurchi, V.M.; Buha Djordjevic, A.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic toxicity: Molecular targets and therapeutic agents. Biomolecules, 2020, 10(2), 235. doi: 10.3390/biom10020235 PMID: 32033229
  126. Bjørklund, G.; Crisponi, G.; Nurchi, V.M.; Cappai, R.; Buha Djordjevic, A.; Aaseth, J. A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules, 2019, 24(18), 3247. doi: 10.3390/molecules24183247 PMID: 31489907
  127. Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol., 2017, 91(12), 3787-3797. doi: 10.1007/s00204-017-2100-0 PMID: 29063135
  128. Yassa, H.A. Autism: A form of lead and mercury toxicity. Environ. Toxicol. Pharmacol., 2014, 38(3), 1016-1024. doi: 10.1016/j.etap.2014.10.005 PMID: 25461563
  129. James, S.; Stevenson, S.W.; Silove, N.; Williams, K. Chelation for autism spectrum disorder (ASD). Cochrane Libr., 2015, 2016(10), CD010766. doi: 10.1002/14651858.CD010766.pub2 PMID: 26114777
  130. T Schultz, S.; G Gould, G. Acetaminophen use for fever in children associated with autism spectrum disorder. Autism Open Access, 2016, 6(2), 170. doi: 10.4172/2165-7890.1000170 PMID: 27695658
  131. Wang, T.; Shan, L.; Du, L.; Feng, J.; Xu, Z.; Staal, W.G.; Jia, F. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: A systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry, 2016, 25(4), 341-350. doi: 10.1007/s00787-015-0786-1 PMID: 26514973
  132. Fernell, E.; Bejerot, S.; Westerlund, J.; Miniscalco, C.; Simila, H.; Eyles, D.; Gillberg, C.; Humble, M.B. Autism spectrum disorder and low vitamin D at birth: A sibling control study. Mol. Autism, 2015, 6(1), 3. doi: 10.1186/2040-2392-6-3 PMID: 25874075
  133. Huang, Y.N.; Ho, Y.J.; Lai, C.C.; Chiu, C.T.; Wang, J.Y. 1,25-Dihydroxyvitamin D3 attenuates endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuron-glia cultures. J. Neuroinflammation, 2015, 12(1), 147. doi: 10.1186/s12974-015-0370-0 PMID: 26259787
  134. Patrick, R.P.; Ames, B.N.; Vitamin, D. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J., 2014, 28(6), 2398-2413. doi: 10.1096/fj.13-246546 PMID: 24558199
  135. Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; El-Houfey, A.A.; Othman, H.A.K.; Bjørklund, G.; Jia, F.; Urbina, M.A.; Abo-Elela, M.G.M.; Ahmad, F.A.; Abd El-Baseer, K.A.; Ahmed, A.E.; Abdel-Salam, A.M. Retracted: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J. Child Psychol. Psychiatry, 2018, 59(1), 20-29. doi: 10.1111/jcpp.12652 PMID: 27868194
  136. Kostiukow, A.; Samborski, W. The effectiveness of hyperbaric oxygen therapy (HBOT) in children with autism spectrum disorders. Pol. Merkur. Lekarski, 2020, 48(283), 15-18.
  137. Rossignol, D.A.; Rossignol, L.W.; Smith, S.; Schneider, C.; Logerquist, S.; Usman, A.; Neubrander, J.; Madren, E.M.; Hintz, G.; Grushkin, B.; Mumper, E.A. Hyperbaric treatment for children with autism: A multicenter, randomized, double-blind, controlled trial. BMC Pediatr., 2009, 9(1), 21. doi: 10.1186/1471-2431-9-21 PMID: 19284641
  138. Sakulchit, T.; Ladish, C.; Goldman, R.D. Hyperbaric oxygen therapy for children with autism spectrum disorder. Can. Fam. Physician, 2017, 63(6), 446-448. PMID: 28615394
  139. Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the brain: Friend or foe? Int. J. Mol. Sci., 2020, 21(23), 8941. doi: 10.3390/ijms21238941 PMID: 33255662
  140. Bitanihirwe, B.K.Y.; Cunningham, M.G. Zinc: The brain’s dark horse. Synapse, 2009, 63(11), 1029-1049. doi: 10.1002/syn.20683 PMID: 19623531
  141. Cope, E.C.; Levenson, C.W. Role of zinc in the development and treatment of mood disorders. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(6), 685-689. doi: 10.1097/MCO.0b013e32833df61a PMID: 20689416
  142. Russo, A. J. Decreased zinc and increased copper in individuals with anxiety. Nutr Metab Insights, 2011, 4, 1-5. doi: 10.4137/NMI.S6349
  143. Krall, R.; Gale, J.R.; Ross, M.M.; Tzounopoulos, T.; Aizenman, E. Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A. Neurosci. Lett., 2022, 790, 136896. doi: 10.1016/j.neulet.2022.136896 PMID: 36202195
  144. Miyata, S.; Nagata, H.; Yamao, S.; Nakamura, S.; Kameyama, M. Dopamine-β-hydroxylase activities in serum and cerebrospinal fluid of aged and demented patients. J. Neurol. Sci., 1984, 63(3), 403-409. doi: 10.1016/0022-510X(84)90163-1 PMID: 6726279
  145. Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Radysh, I.V.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J. Trace Elem. Med. Biol., 2017, 43, 9-14. doi: 10.1016/j.jtemb.2016.09.009 PMID: 27707611
  146. Wu, H.; Zhao, G.; Liu, S.; Zhang, Q.; Wang, P.; Cao, Y.; Wu, L. Supplementation with selenium attenuates autism-like behaviors and improves oxidative stress, inflammation and related gene expression in an autism disease model. J. Nutr. Biochem., 2022, 107, 109034. doi: 10.1016/j.jnutbio.2022.109034 PMID: 35500829
  147. Skalny, A.V.; Skalnaya, M.G.; Bjørklund, G.; Gritsenko, V.A.; Aaseth, J.; Tinkov, A.A. Selenium and autism spectrum disorder. In: Selenium. Molecular and Integrative Toxicology; Springer: Cham, 2018; pp. 193-210. doi: 10.1007/978-3-319-95390-8_10
  148. Raymond, L.J.; Deth, R.C.; Ralston, N.V.C. Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res. Treat., 2014, 2014, 1-15. doi: 10.1155/2014/164938 PMID: 24734177
  149. Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev., 2017, 332, 30-37. doi: 10.1016/j.ccr.2016.10.009
  150. Bjørklund, G. Selenium as an antidote in the treatment of mercury intoxication. Biometals, 2015, 28(4), 605-614. doi: 10.1007/s10534-015-9857-5 PMID: 25947386
  151. El-Ansary, A.; Bjørklund, G.; Tinkov, A.A.; Skalny, A.V.; Al Dera, H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis., 2017, 32(4), 1073-1080. doi: 10.1007/s11011-017-9996-1 PMID: 28326463
  152. Kirkland, A.; Sarlo, G.; Holton, K. The role of magnesium in neurological disorders. Nutrients, 2018, 10(6), 730. doi: 10.3390/nu10060730 PMID: 29882776
  153. Yasuda, H.; Tsutsui, T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int. J. Environ. Res. Public Health, 2013, 10(11), 6027-6043. doi: 10.3390/ijerph10116027 PMID: 24284360
  154. Beto, J.A. The role of calcium in human aging. Clin. Nutr. Res., 2015, 4(1), 1-8. doi: 10.7762/cnr.2015.4.1.1 PMID: 25713787
  155. Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; Schmunk, G.; Gargus, J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11), 1718-1732. doi: 10.1016/j.bbamcr.2018.08.003 PMID: 30992134
  156. Chen, L.; Shi, X.J.; Liu, H.; Mao, X.; Gui, L.N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry, 2021, 11(1), 15. doi: 10.1038/s41398-020-01135-3 PMID: 33414386
  157. Vetter, T.; Lohse, M.J. Magnesium and the parathyroid. Curr. Opin. Nephrol. Hypertens., 2002, 11(4), 403-410. doi: 10.1097/00041552-200207000-00006 PMID: 12105390
  158. Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(9), 3293. doi: 10.3390/ijms21093293 PMID: 32384730
  159. Saghazadeh, A.; Ahangari, N.; Hendi, K.; Saleh, F.; Rezaei, N. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis. Rev. Neurosci., 2017, 28(7), 783-809. doi: 10.1515/revneuro-2017-0015 PMID: 28665792
  160. Skalny, A.V.; Mazaletskaya, A.L.; Ajsuvakova, O.P.; Bjørklund, G.; Skalnaya, M.G.; Chernova, L.N.; Skalny, A.A.; Tinkov, A.A. Magnesium status in children with attention-deficit/hyperactivity disorder and/or autism spectrum disorder. J. Korean Acad. Child Adolesc. Psychiatry, 2020, 31(1), 41-45. doi: 10.5765/jkacap.190036 PMID: 32612412
  161. Uwitonze, A.M.; Razzaque, M.S. Role of magnesium in vitamin D activation and function. J. Am. Osteopath. Assoc., 2018, 118(3), 181-189. doi: 10.7556/jaoa.2018.037 PMID: 29480918
  162. Muir, K.W. Magnesium in stroke treatment. Postgrad. Med. J., 2002, 78(925), 641-645. doi: 10.1136/pmj.78.925.641 PMID: 12496316
  163. Schmunk, G.; Gargus, J.J. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet., 2013, 4, 222. doi: 10.3389/fgene.2013.00222 PMID: 24204377
  164. Martineau, J.; Barthelemy, C.; Garreau, B.; Lelord, G. Vitamin B6, magnesium, and combined B6-Mg: Therapeutic effects in childhood autism. Biol. Psychiatry, 1985, 20(5), 467-478. doi: 10.1016/0006-3223(85)90019-8 PMID: 3886023
  165. Bjørklund, G.; Waly, M.I.; Al-Farsi, Y.; Saad, K.; Dadar, M.; Rahman, M.M.; Elhoufey, A.; Chirumbolo, S.; Jóźwik-Pruska, J.; Kałużna-Czaplińska, J. The role of vitamins in autism spectrum disorder: What do we know? J. Mol. Neurosci., 2019, 67(3), 373-387. doi: 10.1007/s12031-018-1237-5 PMID: 30607900
  166. Saad, K.; Abdel-rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; Cannell, J.J.; Bjørklund, G.; Abdel-Reheim, M.K.; Othman, H.A.K.; El-Houfey, A.A.; Abd El-Aziz, N.H.R.; Abd El-Baseer, K.A.; Ahmed, A.E.; Ali, A.M. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci., 2016, 19(8), 346-351. doi: 10.1179/1476830515Y.0000000019 PMID: 25876214
  167. Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The role of vitamin D in the immune system as a pro-survival molecule. Clin. Ther., 2017, 39(5), 894-916. doi: 10.1016/j.clinthera.2017.03.021 PMID: 28438353
  168. Patrick, R.P.; Ames, B.N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J., 2015, 29(6), 2207-2222. doi: 10.1096/fj.14-268342 PMID: 25713056
  169. Cui, X.; Eyles, D.W. Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients, 2022, 14(20), 4353. doi: 10.3390/nu14204353 PMID: 36297037
  170. Zastre, J.A.; Sweet, R.L.; Hanberry, B.S.; Ye, S. Linking vitamin B1 with cancer cell metabolism. Cancer Metab., 2013, 1(1), 16. doi: 10.1186/2049-3002-1-16 PMID: 24280319
  171. Jung, H.Y.; Kwon, H.J.; Kim, W.; Nam, S.M.; Kim, J.W.; Hahn, K.R.; Yoo, D.Y.; Yoon, Y.S.; Choi, S.Y.; Kim, D.W.; Hwang, I.K. Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue Cell, 2019, 61, 72-78. doi: 10.1016/j.tice.2019.09.005 PMID: 31759410
  172. Stover, P.J.; Field, M.S. Vitamin B-6. Adv. Nutr., 2015, 6(1), 132-133. doi: 10.3945/an.113.005207 PMID: 25593152
  173. Scott, J.M. Folate and vitamin B 12. Proc. Nutr. Soc., 1999, 58(2), 441-448. doi: 10.1017/S0029665199000580 PMID: 10466189
  174. Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res., 2021, 166, 105437. doi: 10.1016/j.phrs.2021.105437 PMID: 33493659
  175. Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J.B.; Aaseth, J.; Skalny, A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med., 2020, 160, 149-162. doi: 10.1016/j.freeradbiomed.2020.07.017 PMID: 32745763
  176. Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; Osredkar, J.; Urbina, M.A.; Fabjan, T.; El-Houfey, A.A.; Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S. Oxidative stress in autism spectrum disorder. Mol. Neurobiol., 2020, 57(5), 2314-2332. doi: 10.1007/s12035-019-01742-2 PMID: 32026227
  177. Rimland, B.; Callaway, E.; Dreyfus, P. The effect of high doses of vitamin B6 on autistic children: A double- blind crossover study. Am. J. Psychiatry, 1978, 135(4), 472-475. doi: 10.1176/ajp.135.4.472 PMID: 345827
  178. El-Ansary, A.; Cannell, J.J.; Bjørklund, G.; Bhat, R.S.; Al Dbass, A.M.; Alfawaz, H.A.; Chirumbolo, S.; Al-Ayadhi, L. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: The role of vitamin D. Metab. Brain Dis., 2018, 33(3), 917-931. doi: 10.1007/s11011-018-0199-1 PMID: 29497932
  179. Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr., 2019, 59(1), 72-88. doi: 10.1080/10408398.2017.1357534 PMID: 28799778
  180. Kałużna-Czaplińska, J.; Jóźwik-Pruska, J.; Chirumbolo, S.; Bjørklund, G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metab. Brain Dis., 2017, 32(5), 1585-1593. doi: 10.1007/s11011-017-0045-x PMID: 28608247
  181. Bjørklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp., 2016, 76(4), 257-268. doi: 10.21307/ane-2017-025 PMID: 28094817
  182. Connery, K.; Tippett, M.; Delhey, L.M.; Rose, S.; Slattery, J.C.; Kahler, S.G.; Hahn, J.; Kruger, U.; Cunningham, M.W.; Shimasaki, C.; Frye, R.E. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl. Psychiatry, 2018, 8(1), 148. doi: 10.1038/s41398-018-0214-7 PMID: 30097568
  183. Abrams, D.I. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur. J. Intern. Med., 2018, 49, 7-11. doi: 10.1016/j.ejim.2018.01.003 PMID: 29325791
  184. Agarwal, R.; Burke, S.L.; Maddux, M. Current state of evidence of cannabis utilization for treatment of autism spectrum disorders. BMC Psychiatry, 2019, 19(1), 328. doi: 10.1186/s12888-019-2259-4 PMID: 31664964
  185. Aran, A.; Cayam-Rand, D. Medical cannabis in children. Rambam Maimonides Med. J., 2020, 11(1), e0003. doi: 10.5041/RMMJ.10386 PMID: 32017680
  186. Fusar-Poli, L.; Cavone, V.; Tinacci, S.; Concas, I.; Petralia, A.; Signorelli, M.S.; Díaz-Caneja, C.M.; Aguglia, E. Cannabinoids for people with ASD: A systematic review of published and ongoing studies. Brain Sci., 2020, 10(9), 572. doi: 10.3390/brainsci10090572 PMID: 32825313
  187. Bar-Lev Schleider, L.; Mechoulam, R.; Saban, N.; Meiri, G.; Novack, V. Real life experience of medical cannabis treatment in autism: Analysis of safety and efficacy. Sci. Rep., 2019, 9(1), 200. doi: 10.1038/s41598-018-37570-y PMID: 30655581
  188. Wong, H.; Hoeffer, C. Maternal IL-17A in autism. Exp. Neurol., 2018, 299(Pt A), 228-240. doi: 10.1016/j.expneurol.2017.04.010 PMID: 28455196
  189. Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939. doi: 10.1126/science.aad0314 PMID: 26822608
  190. Nabetani, M.; Mukai, T.; Taguchi, A. Cell therapies for autism spectrum disorder based on new pathophysiology: A review. Cell Transplant., 2023, 32 doi: 10.1177/09636897231163217 PMID: 36999673
  191. Qu, J.; Liu, Z.; Li, L.; Zou, Z.; He, Z.; Zhou, L.; Luo, Y.; Zhang, M.; Ye, J. Efficacy and safety of stem cell therapy in children with autism spectrum disorders: A systematic review and meta-analysis. Front Pediatr., 2022, 10, 897398. doi: 10.3389/fped.2022.897398 PMID: 35601435
  192. Bradstreet, J.J.; Sych, N.; Antonucci, N.; Klunnik, M.; Ivankova, O.; Matyashchuk, I.; Demchuk, M.; Siniscalco, D. Efficacy of fetal stem cell transplantation in autism spectrum disorders: An open-labeled pilot study. Cell Transplant., 2014, 23(1_suppl)(Suppl. 1), 105-112. doi: 10.3727/096368914X684916 PMID: 25302490
  193. Lv, Y.T.; Zhang, Y.; Liu, M.; Qiuwaxi, J.; Ashwood, P.; Cho, S.C.; Huan, Y.; Ge, R.C.; Chen, X.W.; Wang, Z.J.; Kim, B.J.; Hu, X. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Transl. Med., 2013, 11(1), 196. doi: 10.1186/1479-5876-11-196 PMID: 23978163
  194. Dawson, G.; Sun, J.M.; Davlantis, K.S.; Murias, M.; Franz, L.; Troy, J.; Simmons, R.; Sabatos-DeVito, M.; Durham, R.; Kurtzberg, J. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial. Stem Cells Transl. Med., 2017, 6(5), 1332-1339. doi: 10.1002/sctm.16-0474 PMID: 28378499
  195. Dawson, G.; Sun, J.M.; Baker, J.; Carpenter, K.; Compton, S.; Deaver, M.; Franz, L.; Heilbron, N.; Herold, B.; Horrigan, J.; Howard, J.; Kosinski, A.; Major, S.; Murias, M.; Page, K.; Prasad, V.K.; Sabatos-DeVito, M.; Sanfilippo, F.; Sikich, L.; Simmons, R.; Song, A.; Vermeer, S.; Waters-Pick, B.; Troy, J.; Kurtzberg, J. A phase II randomized clinical trial of the safety and efficacy of intravenous umbilical cord blood infusion for treatment of children with autism spectrum disorder. J. Pediatr., 2020, 222, 164-173.e5. doi: 10.1016/j.jpeds.2020.03.011 PMID: 32444220
  196. Siniscalco, D.; Kannan, S.; Semprún-Hernández, N.; Eshraghi, A.A.; Brigida, A.L.; Antonucci, N. Stem cell therapy in autism: Recent insights. Stem Cells Cloning, 2018, 11, 55-67. doi: 10.2147/SCCAA.S155410 PMID: 30425534
  197. Kathuria, A.; Nowosiad, P.; Jagasia, R.; Aigner, S.; Taylor, R.D.; Andreae, L.C.; Gatford, N.J.F.; Lucchesi, W.; Srivastava, D.P.; Price, J. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol. Psychiatry, 2018, 23(3), 735-746. doi: 10.1038/mp.2017.185 PMID: 28948968
  198. Griesi-Oliveira, K.; Acab, A.; Gupta, A.R.; Sunaga, D.Y.; Chailangkarn, T.; Nicol, X.; Nunez, Y.; Walker, M.F.; Murdoch, J.D.; Sanders, S.J.; Fernandez, T.V.; Ji, W.; Lifton, R.P.; Vadasz, E.; Dietrich, A.; Pradhan, D.; Song, H.; Ming, G.; Gu, X.; Haddad, G.; Marchetto, M.C.N.; Spitzer, N.; Passos-Bueno, M.R.; State, M.W.; Muotri, A.R. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry, 2015, 20(11), 1350-1365. doi: 10.1038/mp.2014.141 PMID: 25385366
  199. Liu, X.; Campanac, E.; Cheung, H.H.; Ziats, M.N.; Canterel-Thouennon, L.; Raygada, M.; Baxendale, V.; Pang, A.L.Y.; Yang, L.; Swedo, S.; Thurm, A.; Lee, T.L.; Fung, K.P.; Chan, W.Y.; Hoffman, D.A.; Rennert, O.M. Idiopathic autism: Cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol. Neurobiol., 2017, 54(6), 4507-4523. doi: 10.1007/s12035-016-9961-8 PMID: 27356918
  200. Knoepfler, P.S. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 2009, 27(5), 1050-1056. doi: 10.1002/stem.37 PMID: 19415771

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers