Drugs to Treat Neuroinflammation in Neurodegenerative Disorders


如何引用文章

全文:

详细

Neuroinflammation is associated with disorders of the nervous system, and it is induced in response to many factors, including pathogen infection, brain injury, toxic substances, and autoimmune diseases. Astrocytes and microglia have critical roles in neuroinflammation. Microglia are innate immune cells in the central nervous system (CNS), which are activated in reaction to neuroinflammation-inducing factors. Astrocytes can have pro- or anti-inflammatory responses, which depend on the type of stimuli presented by the inflamed milieu. Microglia respond and propagate peripheral inflammatory signals within the CNS that cause low-grade inflammation in the brain. The resulting alteration in neuronal activities leads to physiological and behavioral impairment. Consequently, activation, synthesis, and discharge of various pro-inflammatory cytokines and growth factors occur. These events lead to many neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis discussed in this study. After understanding neuroinflammation mechanisms and the involvement of neurotransmitters, this study covers various drugs used to treat and manage these neurodegenerative illnesses. The study can be helpful in discovering new drug molecules for treating neurodegenerative disorders.

作者简介

Yao-Chin Wang

Graduate Institute of Injury Prevention and Control, College of Public Health,, Taipei Medical University

Email: info@benthamscience.net

Woon-Man Kung

Department of Exercise and Health Promotion, College of Kinesiology and Health,, Chinese Culture University

Email: info@benthamscience.net

Yi-Hsiu Chung

Department of Medical Research and Development,, Linkou Chang Gung Memorial Hospital,

编辑信件的主要联系方式.
Email: info@benthamscience.net

Sunil Kumar

Graduate Institute of Natural Products, College of Medicine, Chang Gung University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Ebert, S.E.; Jensen, P.; Ozenne, B.; Armand, S.; Svarer, C.; Stenbaek, D.S.; Moeller, K.; Dyssegaard, A.; Thomsen, G.; Steinmetz, J.; Forchhammer, B.H.; Knudsen, G.M.; Pinborg, L.H. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123 I- CLINDE single photon emission computed tomography study. Eur. J. Neurol., 2019, 26(12), 1426-1432. doi: 10.1111/ene.13971 PMID: 31002206
  2. Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 2018, 129(2), 343-366. doi: 10.1097/ALN.0000000000002130 PMID: 29462012
  3. Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172. doi: 10.1038/s41582-020-00435-y PMID: 33318676
  4. Park, K.; Lee, S.J. Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp. Mol. Med., 2020, 52(7), 1028-1038. doi: 10.1038/s12276-020-0468-z PMID: 32665584
  5. Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci., 2015, 16(5), 249-263. doi: 10.1038/nrn3898 PMID: 25891508
  6. Li, K. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis., 2018, 10. PMID: 31165009
  7. Rouach, N.; Koulakoff, A.; Abudara, V.; Willecke, K.; Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 2008, 322(5907), 1551-1555. doi: 10.1126/science.1164022 PMID: 19056987
  8. Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner’s guide. Neurochem. Res., 2015, 40(12), 2583-2599. doi: 10.1007/s11064-015-1581-6 PMID: 25947369
  9. Matejuk, A.; Ransohoff, R.M. Crosstalk between astrocytes and microglia: An overview. Front. Immunol., 2020, 11, 1416-1416. doi: 10.3389/fimmu.2020.01416 PMID: 32765501
  10. Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab., 2018, 27(6), 1176-1199. doi: 10.1016/j.cmet.2018.05.011 PMID: 29874566
  11. Cekanaviciute, E.; Buckwalter, M.S. Astrocytes: Integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics, 2016, 13(4), 685-701. doi: 10.1007/s13311-016-0477-8 PMID: 27677607
  12. Tyzack, G.E.; Sitnikov, S.; Barson, D.; Adams-Carr, K.L.; Lau, N.K.; Kwok, J.C.; Zhao, C.; Franklin, R.J.M.; Karadottir, R.T.; Fawcett, J.W.; Lakatos, A. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun., 2014, 5(1), 4294. doi: 10.1038/ncomms5294 PMID: 25014177
  13. Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620. doi: 10.1016/j.it.2016.06.006 PMID: 27443914
  14. Mitchell, T.J.; John, S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 2005, 114(3), 301-312. doi: 10.1111/j.1365-2567.2005.02091.x PMID: 15720432
  15. Klegeris, A. Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opin. Ther. Targets, 2021, 25(4), 237-241. doi: 10.1080/14728222.2021.1915993 PMID: 33836642
  16. Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol., 2015, 37(6), 625-638. doi: 10.1007/s00281-015-0515-3 PMID: 26223505
  17. Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The role of microglia and astrocytes in huntington’s disease. Front. Mol. Neurosci., 2019, 12(258), 258. doi: 10.3389/fnmol.2019.00258 PMID: 31708741
  18. Guo, S.; Wang, H.; Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci., 2022, 14, 815347. doi: 10.3389/fnagi.2022.815347 PMID: 35250543
  19. Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
  20. Gendelman, H.E. Neural immunity: Friend or foe? J. Neurovirol., 2002, 8(6), 474-479. doi: 10.1080/13550280290168631 PMID: 12476342
  21. DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2), 136-153. doi: 10.1111/jnc.13607
  22. Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12(488), 488. doi: 10.3389/fncel.2018.00488 PMID: 30618635
  23. Harry, G.J.; Kraft, A.D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol., 2008, 4(10), 1265-1277. doi: 10.1517/17425255.4.10.1265 PMID: 18798697
  24. Streit, W.J.; Mrak, R.E.; Griffin, W.S.T. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation, 2004, 1(1), 14. doi: 10.1186/1742-2094-1-14 PMID: 15285801
  25. Streit, W.J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci., 2006, 29(9), 506-510. doi: 10.1016/j.tins.2006.07.001 PMID: 16859761
  26. Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758. doi: 10.1038/nn1472 PMID: 15895084
  27. Raivich, G. Like cops on the beat: the active role of resting microglia. Trends Neurosci., 2005, 28(11), 571-573. doi: 10.1016/j.tins.2005.09.001 PMID: 16165228
  28. Wang, W-Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136-136. PMID: 26207229
  29. Boche, D.; Perry, V.H.; Nicoll, J.A.R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18. doi: 10.1111/nan.12011 PMID: 23252647
  30. Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795. doi: 10.1172/JCI59643 PMID: 22378047
  31. Shibata, M. Hypothalamic neuronal responses to cytokines. Yale J. Biol. Med., 1990, 63(2), 147-156. PMID: 2205055
  32. Bernheim, H.A.; Kluger, M.J. Fever: effect of drug-induced antipyresis on survival. Science, 1976, 193(4249), 237-239. doi: 10.1126/science.935867 PMID: 935867
  33. Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; Zaheer, A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2017, 11, 216-216. doi: 10.3389/fncel.2017.00216 PMID: 28790893
  34. Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66-e66. doi: 10.1038/emm.2013.97 PMID: 24310172
  35. Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151. doi: 10.1016/j.cyto.2008.01.006 PMID: 18304834
  36. Vaure, C.Ã.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol., 2014, 5(316), 316. doi: 10.3389/fimmu.2014.00316 PMID: 25071777
  37. Soares, J.B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R., Jr; Leite-Moreira, A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol. Int., 2010, 4(4), 659-672. doi: 10.1007/s12072-010-9219-x PMID: 21286336
  38. Wang, L.; Li, D.; Yang, K.; Hu, Y.; Zeng, Q. Toll-like receptor-4 and mitogen-activated protein kinase signal system are involved in activation of dendritic cells in patients with acute coronary syndrome. Immunology, 2008, 125(1), 122-130. doi: 10.1111/j.1365-2567.2008.02827.x PMID: 18373609
  39. Badshah, H.; Ali, T.; Kim, M.O. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci. Rep., 2016, 6(1), 24493. doi: 10.1038/srep24493 PMID: 27093924
  40. Guo, C.; Yang, L.; Wan, C.X.; Xia, Y.Z.; Zhang, C.; Chen, M.H.; Wang, Z.D.; Li, Z.R.; Li, X.M.; Geng, Y.D.; Kong, L.Y. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine, 2016, 23(13), 1629-1637. doi: 10.1016/j.phymed.2016.10.007 PMID: 27823627
  41. Maung, A.A.; Fujimi, S.; Miller, M.L.; MacConmara, M.P.; Mannick, J.A.; Lederer, J.A. Enhanced TLR4 reactivity following injury is mediated by increased p38 activation. J. Leukoc. Biol., 2005, 78(2), 565-573. doi: 10.1189/jlb.1204698 PMID: 15857937
  42. Ahmed, M.B.; Islam, S.U.; Lee, Y.S. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim. Cells Syst., 2020, 24(1), 44-52. doi: 10.1080/19768354.2020.1726811 PMID: 32158615
  43. Fukata, M.; Chen, A.; Klepper, A.; Krishnareddy, S.; Vamadevan, A.S.; Thomas, L.S.; Xu, R.; Inoue, H.; Arditi, M.; Dannenberg, A.J.; Abreu, M.T. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology, 2006, 131(3), 862-877. doi: 10.1053/j.gastro.2006.06.017 PMID: 16952555
  44. Lee, J.Y.; Nam, J.H.; Nam, Y.; Nam, H.Y.; Yoon, G.; Ko, E.; Kim, S.B.; Bautista, M.R.; Capule, C.C.; Koyanagi, T.; Leriche, G.; Choi, H.G.; Yang, J.; Kim, J.; Hoe, H.S. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD. J. Neuroinflammation, 2018, 15(1), 286. doi: 10.1186/s12974-018-1321-3 PMID: 30309372
  45. Greenhill, C.J.; Rose-John, S.; Lissilaa, R.; Ferlin, W.; Ernst, M.; Hertzog, P.J.; Mansell, A.; Jenkins, B.J. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J. Immunol., 2011, 186(2), 1199-1208. doi: 10.4049/jimmunol.1002971 PMID: 21148800
  46. Meraz-Ríos, M.A.; Toral-Rios, D.; Franco-Bocanegra, D.; Villeda-Hernández, J.; Campos-Peña, V. Inflammatory process in Alzheimer’s disease. Front. Integr. Nuerosci., 2013, 7, 59.
  47. Dunn, N.; Mullee, M.; Perry, V.H.; Holmes, C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis. Assoc. Disord., 2005, 19(2), 91-94. doi: 10.1097/01.wad.0000165511.52746.1f PMID: 15942327
  48. Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine (Baltimore), 2018, 97(37), e12172-e12172. doi: 10.1097/MD.0000000000012172 PMID: 30212946
  49. Etminan, M.; Gill, S.; Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ, 2003, 327(7407), 128. doi: 10.1136/bmj.327.7407.128 PMID: 12869452
  50. Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28(1), 137-161. doi: 10.1146/annurev-cellbio-101011-155745 PMID: 22974247
  51. Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183. doi: 10.1016/j.brainresrev.2011.01.002 PMID: 21238488
  52. Qi, Y.; Zou, L.B.; Wang, L.H.; Jin, G.; Pan, J.J.; Chi, T.Y.; Ji, X.F. Xanthoceraside inhibits pro-inflammatory cytokine expression in Aβ25-35/IFN-γ-stimulated microglia through the TLR2 receptor, MyD88, nuclear factor-κB, and mitogen-activated protein kinase signaling pathways. J. Pharmacol. Sci., 2013, 122(4), 305-317. doi: 10.1254/jphs.13031FP PMID: 23966052
  53. Chen, H.; Shuai, L.; Lu, J. Folic acid supplementation mitigates Alzheimer's disease by reducing inflammation: A randomized controlled trial. Mediators Inflamm, 2016, 2016, 5912146. doi: 10.1155/2016/5912146
  54. Kumar, A.; Sharma, S. Donepezil, in StatPearls; StatPearls Publishing LLC: Treasure Island (FL), 2020.
  55. Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, 2006(1), CD005593. PMID: 16437532
  56. Schneider, L.S.; Dagerman, K.S.; Higgins, J.P.; McShane, R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch. Neurol., 2011, 68(8), 991-998. doi: 10.1001/archneurol.2011.69 PMID: 21482915
  57. Touchon, J.; Bergman, H.; Bullock, R.; Rapatz, G.; Nagel, J.; Lane, R. Response to rivastigmine or donepezil in Alzheimer’s patients with symptoms suggestive of concomitant Lewy body pathology. Curr. Med. Res. Opin., 2006, 22(1), 49-59. doi: 10.1185/030079906X80279 PMID: 16393430
  58. Fitzgerald, P.J.; Hale, P.J.; Ghimire, A.; Watson, B.O. The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl. Psychiatry, 2020, 10(1), 255. doi: 10.1038/s41398-020-00928-w PMID: 32712627
  59. Forloni, G.; Balducci, C. Alzheimer’s disease, oligomers, and inflammation. J. Alzheimers Dis., 2018, 62(3), 1261-1276. doi: 10.3233/JAD-170819 PMID: 29562537
  60. Kim, H.G.; Moon, M.; Choi, J.G.; Park, G.; Kim, A.J.; Hur, J.; Lee, K.T.; Oh, M.S. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology, 2014, 40, 23-32. doi: 10.1016/j.neuro.2013.10.004 PMID: 24189446
  61. Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflammation, 2018, 15(1), 112. doi: 10.1186/s12974-018-1141-5 PMID: 29669582
  62. Wu, H.M.; Tzeng, N.S.; Qian, L.; Wei, S.J.; Hu, X.; Chen, S.H.; Rawls, S.M.; Flood, P.; Hong, J.S.; Lu, R.B. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology, 2009, 34(10), 2344-2357. doi: 10.1038/npp.2009.64 PMID: 19536110
  63. Nizri, E.; Irony-Tur-Sinai, M.; Faranesh, N.; Lavon, I.; Lavi, E.; Weinstock, M.; Brenner, T. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J. Neuroimmunol., 2008, 203(1), 12-22. doi: 10.1016/j.jneuroim.2008.06.018 PMID: 18692909
  64. Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518. doi: 10.1016/j.nbd.2009.11.004 PMID: 19913097
  65. DeMaagd, G.; Philip, A. Parkinson's disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Ther., 2015, 40(8), 504-532. PMID: 26236139
  66. Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19-19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
  67. Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194. doi: 10.1007/s12035-014-9070-5 PMID: 25598354
  68. Lynch, M.A. Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci., 2010, 1(6), 6. doi: 10.3389/neuro.24.006.2009 PMID: 20552057
  69. Tufekci, K.U. Chapter four - inflammation in Parkinson’s disease. Advances in protein chemistry and structural biology; Donev, R., Ed.; Academic Press, 2012, pp. 69-132.
  70. Poewe, W.; Espay, A.J. Long duration response in Parkinson’s disease: levodopa revisited. Brain, 2020, 143(8), 2332-2335. doi: 10.1093/brain/awaa226 PMID: 32844192
  71. Hershey, T.; Black, K.J.; Carl, J.L.; McGee-Minnich, L.; Snyder, A.Z.; Perlmutter, J.S. Long term treatment and disease severity change brain responses to levodopa in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(7), 844-851. doi: 10.1136/jnnp.74.7.844 PMID: 12810765
  72. Poletti, M.; Bonuccelli, U. Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: a review. Ther. Adv. Psychopharmacol., 2013, 3(2), 101-113. doi: 10.1177/2045125312470130 PMID: 24167681
  73. Aarsland, D.; Ballard, C.; Walker, Z.; Bostrom, F.; Alves, G.; Kossakowski, K.; Leroi, I.; Pozo-Rodriguez, F.; Minthon, L.; Londos, E. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol., 2009, 8(7), 613-618. doi: 10.1016/S1474-4422(09)70146-2 PMID: 19520613
  74. Rashid, U.; Ansari, F.L. Challenges in designing therapeutic agents for treating Alzheimer’s disease-from serendipity to rationality. In: Drug design and discovery in Alzheimer's disease; Atta ur, R.; Choudhary, M.I., Eds.; Elsevier, 2014; pp. 40-141.
  75. McShane, R.; Maggie, J.W.; Emmert, R. Memantine for dementia. Cochrane Database Syst. Rev., 2019, 3(3), CD003154. doi: 10.1002/14651858.CD003154.pub6
  76. Rizzi, G.; Tan, K.R. Dopamine and acetylcholine, a circuit point of view in Parkinson’s disease. Front. Neural Circuits, 2017, 11(110), 110. doi: 10.3389/fncir.2017.00110 PMID: 29311846
  77. Alshammari, T.M.; AlMutairi, E.N. Use of an entacapone- containing drug combination and risk of death: Analysis of the FDA AERS (FAERS) database. Saudi Pharm J., 2015, 23(1), 28-32. doi: 10.1016/j.jsps.2014.04.005 PMID: 25685040
  78. Lecht, S.; Haroutiunian, S.; Hoffman, A.; Lazarovici, P. Rasagiline - a novel MAO B inhibitor in Parkinson’s disease therapy. Ther. Clin. Risk Manag., 2007, 3(3), 467-474. PMID: 18488080
  79. LeWitt, P.A.; Fahn, S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology, 2016, 86(14)(Suppl. 1), S3-S12. doi: 10.1212/WNL.0000000000002509 PMID: 27044648
  80. Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 2015, 160(1-2), 62-73. doi: 10.1016/j.cell.2014.11.047 PMID: 25594175
  81. Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol., 2005, 58(6), 963-967. doi: 10.1002/ana.20682 PMID: 16240369
  82. Naegele, M.; Martin, R. The good and the bad of neuroinflammation in multiple sclerosis. Handbook of Clinical Neurology; Goodin, D.S., Ed.; Elsevier, 2014, pp. 59-87.
  83. Matthews, P.M. Chronic inflammation in multiple sclerosis - seeing what was always there. Nat. Rev. Neurol., 2019, 15(10), 582-593. doi: 10.1038/s41582-019-0240-y PMID: 31420598
  84. Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener., 2009, 4(1), 47-47. doi: 10.1186/1750-1326-4-47 PMID: 19917131
  85. Wynn, D.R. Enduring clinical value of copaxone® (glatiramer acetate) in multiple sclerosis after 20 years of use. Mult. Scler. Int., 2019, 2019, 1-19. doi: 10.1155/2019/7151685 PMID: 30775037
  86. Pjrek, E.; Winkler, D.; Dervic, K.; Aschauer, H.; Kasper, S. Psychosis as a possible side-effect of treatment with glatiramer acetate. Int. J. Neuropsychopharmacol., 2005, 8(3), 487-488. doi: 10.1017/S1461145705005304 PMID: 15975191
  87. Mandal, P.; Gupta, A.; Fusi-Rubiano, W.; Keane, P.A.; Yang, Y. Fingolimod: therapeutic mechanisms and ocular adverse effects. Eye (Lond.), 2017, 31(2), 232-240. doi: 10.1038/eye.2016.258 PMID: 27886183
  88. Gajofatto, A.; Turatti, M.; Monaco, S.; Benedetti, M.D. Clinical efficacy, safety, and tolerability of fingolimod for the treatment of relapsing-remitting multiple sclerosis. Drug Healthc. Patient Saf., 2015, 7, 157-167. doi: 10.2147/DHPS.S69640 PMID: 26715860
  89. O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Kappos, L.; Bouchard, J.P.; Lebrun-Frenay, C.; Mares, J.; Benamor, M.; Thangavelu, K.; Liang, J.; Truffinet, P.; Lawson, V.J.; Wolinsky, J.S. Long-term safety and efficacy of teriflunomide. Neurology, 2016, 86(10), 920-930. doi: 10.1212/WNL.0000000000002441 PMID: 26865517
  90. Rafiee Zadeh, A.; Ghadimi, K.; Ataei, A.; Askari, M.; Sheikhinia, N.; Tavoosi, N.; Falahatian, M. Mechanism and adverse effects of multiple sclerosis drugs: a review article. Part 2. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(4), 105-114. PMID: 31523358
  91. Deeks, E.D. Cladribine tablets: A review in relapsing MS. CNS Drugs, 2018, 32(8), 785-796. doi: 10.1007/s40263-018-0562-0 PMID: 30105527
  92. Minton, K. Cladribine hope for multiple sclerosis. Nat. Rev. Immunol., 2009, 9(6), 387-387. doi: 10.1038/nri2579
  93. Carlström, K.E.; Ewing, E.; Granqvist, M.; Gyllenberg, A.; Aeinehband, S.; Enoksson, S.L.; Checa, A.; Badam, T.V.S.; Huang, J.; Gomez-Cabrero, D.; Gustafsson, M.; Al Nimer, F.; Wheelock, C.E.; Kockum, I.; Olsson, T.; Jagodic, M.; Piehl, F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat. Commun., 2019, 10(1), 3081. doi: 10.1038/s41467-019-11139-3 PMID: 31300673
  94. Toumi, M.; Jadot, G. Economic impact of new active substance status on EU payers’ budgets: example of dimethyl fumarate (Tecfidera®) for multiple sclerosis. J. Mark. Access Health Policy, 2014, 2(1), 23932. doi: 10.3402/jmahp.v2.23932 PMID: 27226838
  95. Foroughipour, M.; Gazeran, S. Effectiveness and side effects of dimethyl fumarate in multiple sclerosis after 12 months of follow up: An Iranian clinical trial. Iran. J. Neurol., 2019, 18(4), 154-158. PMID: 32117551
  96. Diaz, R.A.; Doss, S.; Burke, M.J.; George, E.; Adler, A.I. Alemtuzumab for relapsing-remitting multiple sclerosis. Lancet Neurol., 2014, 13(9), 869-870. doi: 10.1016/S1474-4422(14)70184-X PMID: 25285344
  97. Guarnera, C.; Bramanti, P.; Mazzon, E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther. Clin. Risk Manag., 2017, 13, 871-879. doi: 10.2147/TCRM.S134398 PMID: 28761351
  98. Huggett, B. How Tysabri survived. Nat. Biotechnol., 2009, 27(11), 986-986. doi: 10.1038/nbt1109-986 PMID: 19898447
  99. Hoepner, R.; Faissner, S.; Salmen, A.; Gold, R.; Chan, A. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J. Cent. Nerv. Syst. Dis., 2014, 6, JCNSD.S14049. doi: 10.4137/JCNSD.S14049 PMID: 24855407
  100. Ali, Z.K.; Baker, D.E. Formulary drug review: Ocrelizumab. Hosp. Pharm., 2017, 52(9), 599-606. doi: 10.1177/0018578717731733 PMID: 29276296
  101. Aschenbrenner, D.S. Two new drugs approved for multiple sclerosis. Am. J. Nurs., 2019, 119(7), 22-23. doi: 10.1097/01.NAJ.0000569436.66670.b3
  102. Marriott, J.J.; Miyasaki, J.M.; Gronseth, G.; O’Connor, P.W. Evidence Report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2010, 74(18), 1463-1470. doi: 10.1212/WNL.0b013e3181dc1ae0 PMID: 20439849
  103. Scott, L.J.; Figgitt, D.P. Mitoxantrone. CNS Drugs, 2004, 18(6), 379-396. doi: 10.2165/00023210-200418060-00010 PMID: 15089110
  104. David, O.J.; Kovarik, J.M.; Schmouder, R.L. Clinical pharmacokinetics of fingolimod. Clin. Pharmacokinet., 2012, 51(1), 15-28. doi: 10.2165/11596550-000000000-00000 PMID: 22149256

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024