MicroRNA-mediated Regulation of LDL Receptor: Biological and Pharmacological Implications
- 作者: Keshavarz R.1, Reiner .2, Zengin G.3, Eid A.4, Sahebkar A.5
-
隶属关系:
- Department of Genetics, Faculty of Biological Sciences,, Islamic Azad University,
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb,
- Department of Biology, Science Faculty,, Selçuk University
- Department of Basic Medical Sciences, College of Medicine, Qatar University
- Biotechnology Research Center, Mashhad University of Medical Sciences
- 期: 卷 31, 编号 14 (2024)
- 页面: 1830-1838
- 栏目: Anti-Infectives and Infectious Diseases
- URL: https://journals.eco-vector.com/0929-8673/article/view/644346
- DOI: https://doi.org/10.2174/0929867330666230407091652
- ID: 644346
如何引用文章
全文:
详细
One of the main causes of atherosclerosis is a disruption in cellular cholesterol hemostasis. The low-density lipoprotein receptor (LDLR) is an important factor in maintaining cholesterol homeostasis by the receptor-mediated endocytosis of LDL particles. Defective hepatic LDLR activity and uptake of LDL particles lead to elevated blood levels of low-density lipoprotein cholesterol (LDL-C), which is associated with a higher risk of atherosclerotic cardiovascular disease. LDLR expression can be affected by microRNAs (miRNAs). Some miRNAs, like miR-148a, miR-185, miR-224, miR-520, miR-128-1, miR-27a/b, miR-130b, and miR-301 seem to be important post-transcriptional regulators of LDLR related genes. These findings indicate the critical role of miRNAs in regulating LDL metabolism. The aim of this review was to provide insight into the miRNAs involved in LDLR activity and their potential roles in the treatment of cardiovascular disease.
作者简介
Reyhaneh Keshavarz
Department of Genetics, Faculty of Biological Sciences,, Islamic Azad University,
Email: info@benthamscience.net
eljko Reiner
Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb,
Email: info@benthamscience.net
Gokhan Zengin
Department of Biology, Science Faculty,, Selçuk University
Email: info@benthamscience.net
Ali Eid
Department of Basic Medical Sciences, College of Medicine, Qatar University
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Mashhad University of Medical Sciences
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Macchi, C.; Greco, M.F.; Favero, C.; Dioni, L.; Cantone, L.; Hoxha, M.; Vigna, L.; Solazzo, G.; Corsini, A.; Banach, M.; Pesatori, A.C.; Bollati, V.; Ruscica, M. Associations among PCSK9 levels, atherosclerosis-derived extracellular vesicles, and their miRNA content in adults with obesity. Front. Cardiovasc. Med., 2022, 8, 785250. doi: 10.3389/fcvm.2021.785250 PMID: 35071356
- Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604. doi: 10.1016/j.atherosclerosis.2015.08.023 PMID: 26318398
- Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernández-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol., 2017, 28(3), 273-280. doi: 10.1097/MOL.0000000000000420 PMID: 28333713
- Goedeke, L.; Wagschal, A.; Fernández-Hernando, C.; Näär, A.M. miRNA regulation of LDL-cholesterol metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(12)(12 Pt B), 2047-2052. doi: 10.1016/j.bbalip.2016.03.007 PMID: 26968099
- Bahrami, A.; Parsamanesh, N.; Atkin, S.L.; Banach, M.; Sahebkar, A. Effect of statins on toll-like receptors: A new insight to pleiotropic effects. Pharmacol. Res., 2018, 135, 230-238. doi: 10.1016/j.phrs.2018.08.014 PMID: 30120976
- Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73. doi: 10.1016/j.plipres.2015.08.003 PMID: 26416579
- Parizadeh, S.M.R.; Azarpazhooh, M.R.; Moohebati, M.; Nematy, M.; Ghayour-Mobarhan, M.; Tavallaie, S.; Rahsepar, A.A.; Amini, M.; Sahebkar, A.; Mohammadi, M.; Ferns, G.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids, 2011, 46(4), 333-340. doi: 10.1007/s11745-010-3517-x PMID: 21207250
- Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.H.; Banach, M. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442. doi: 10.1016/j.atherosclerosis.2015.05.022 PMID: 26074317
- Sahebkar, A.; Serban, C.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Muntner, P.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost., 2015, 114(3), 546-557. PMID: 26017749
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.P.; Banach, M. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Thromb. Haemost., 2016, 115(3), 520-532. doi: 10.1160/th15-08-0620 PMID: 26632869
- Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Yousefi, M.T.; Banach, M.; Al- Rasadi, K.; Johnston, T.P.; Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-Like receptor pathways. Clin. Rev. Allergy. Immunol., 2021, 60(2), 175-199. doi: 10.1007/s12016-020-08791-9
- Sohrevardi, S.; Nasab, F.; Mirjalili, M.; Bagherniya, M.; Tafti, A.; Jarrahzadeh, M.; Azarpazhooh, M.; Saeidmanesh, M.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial. Arch. Med. Sci., 2019, 17(5), 1423-1428. doi: 10.5114/aoms.2019.89330 PMID: 34522273
- Bahrami, A.; Bo, S.; Jamialahmadi, T.; Sahebkar, A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res. Rev., 2020, 58, 101024. doi: 10.1016/j.arr.2020.101024 PMID: 32006687
- Vallejo-Vaz, A.J.; De Marco, M.; Stevens, C.A.T.; Akram, A.; Freiberger, T.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; Watts, G.F.; Abifadel, M.; Aguilar-Salinas, C.A.; Al-khnifsawi, M.; AlKindi, F.A.; Alnouri, F.; Alonso, R.; Al-Rasadi, K.; Al-Sarraf, A.; Ashavaid, T.F.; Binder, C.J.; Bogsrud, M.P.; Bourbon, M.; Bruckert, E.; Chlebus, K.; Corral, P.; Descamps, O.; Durst, R.; Ezhov, M.; Fras, Z.; Genest, J.; Groselj, U.; Harada-Shiba, M.; Kayikcioglu, M.; Lalic, K.; Lam, C.S.P.; Latkovskis, G.; Laufs, U.; Liberopoulos, E.; Lin, J.; Maher, V.; Majano, N.; Marais, A.D.; März, W.; Mirrakhimov, E.; Miserez, A.R.; Mitchenko, O.; Nawawi, H.M.; Nordestgaard, B.G.; Paragh, G.; Petrulioniene, Z.; Pojskic, B.; Postadzhiyan, A.; Reda, A.; Reiner, .; Sadoh, W.E.; Sahebkar, A.; Shehab, A.; Shek, A.B.; Stoll, M.; Su, T.C.; Subramaniam, T.; Susekov, A.V.; Symeonides, P.; Tilney, M.; Tomlinson, B.; Truong, T.H.; Tselepis, A.D.; Tybjærg-Hansen, A.; Vázquez-Cárdenas, A.; Viigimaa, M.; Vohnout, B.; Widén, E.; Yamashita, S.; Banach, M.; Gaita, D.; Jiang, L.; Nilsson, L.; Santos, L.E.; Schunkert, H.; Tokgözoğlu, L.; Car, J.; Catapano, A.L.; Ray, K.K. Overview of the current status of familial hypercholesterolaemia care in over 60 countries-the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis, 2018, 277, 234-255. doi: 10.1016/j.atherosclerosis.2018.08.051 PMID: 30270054
- Banach, M.; Serban, C.; Ursoniu, S.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.; Glasser, S.P.; Watts, G.F.; Blumenthal, R.S.; Lip, G.Y.H.; Mikhailidis, D.P.; Sahebkar, A. Statin therapy and plasma coenzyme Q10 concentrations-A systematic review and meta-analysis of placebo-controlled trials. Pharmacol. Res., 2015, 99, 329-336. doi: 10.1016/j.phrs.2015.07.008 PMID: 26192349
- Bytyçi, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; Reiner, .; Toth, P.P.; Banach, M. Prevalence of statin intolerance: A meta-analysis. Eur. Heart J., 2022, 43(34), 3213-3223. doi: 10.1093/eurheartj/ehac015 PMID: 35169843
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20. doi: 10.1038/s41580-018-0059-1 PMID: 30228348
- Yang, S.C.; Alalaiwe, A.; Lin, Z.C.; Lin, Y.C.; Aljuffali, I.A.; Fang, J.Y. Anti-inflammatory microRNAs for treating inflammatory skin dseases. Biomolecules, 2022, 12(8), 1072. doi: 10.3390/biom12081072 PMID: 36008966
- Medley, J.C.; Panzade, G.; Zinovyeva, A.Y. microRNA strand selection: Unwinding the rules. Wiley Interdiscip. Rev. RNA, 2021, 12(3), e1627. doi: 10.1002/wrna.1627 PMID: 32954644
- Goedeke, L.; Aranda, J.F.; Fernández-Hernando, C. microRNA regulation of lipoprotein metabolism. Curr. Opin. Lipidol., 2014, 25(4), 282-288. doi: 10.1097/MOL.0000000000000094 PMID: 24978143
- Ramírez, C.M.; Goedeke, L.; Fernández-Hernando, C. "Micromanaging" metabolic syndrome. Cell Cycle, 2011, 10(19), 3249-3252. doi: 10.4161/cc.10.19.17558 PMID: 21946517
- Goedeke, L.; Rotllan, N.; Ramírez, C.M.; Aranda, J.F.; Canfrán-Duque, A.; Araldi, E.; Fernández-Hernando, A.; Langhi, C.; de Cabo, R.; Baldán, Á.; Suárez, Y.; Fernández-Hernando, C. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243(2), 499-509. doi: 10.1016/j.atherosclerosis.2015.09.033 PMID: 26520906
- Chen, W.J.; Yin, K.; Zhao, G.J.; Fu, Y.C.; Tang, C.K. The magic and mystery of MicroRNA-27 in atherosclerosis. Atherosclerosis, 2012, 222(2), 314-323. doi: 10.1016/j.atherosclerosis.2012.01.020 PMID: 22307089
- Wagschal, A.; Najafi-Shoushtari, S.H.; Wang, L.; Goedeke, L.; Sinha, S.; deLemos, A.S.; Black, J.C.; Ramírez, C.M.; Li, Y.; Tewhey, R.; Hatoum, I.; Shah, N.; Lu, Y.; Kristo, F.; Psychogios, N.; Vrbanac, V.; Lu, Y.C.; Hla, T.; de Cabo, R.; Tsang, J.S.; Schadt, E.; Sabeti, P.C.; Kathiresan, S.; Cohen, D.E.; Whetstine, J.; Chung, R.T.; Fernández-Hernando, C.; Kaplan, L.M.; Bernards, A.; Gerszten, R.E.; Näär, A.M. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med., 2015, 21(11), 1290-1297. doi: 10.1038/nm.3980 PMID: 26501192
- Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81. doi: 10.3389/fcvm.2020.00081 PMID: 32528976
- Jiang, H.; Zhang, J.; Du, Y.; Jia, X.; Yang, F.; Si, S.; Wang, L.; Hong, B. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis, 2015, 243(2), 523-532. doi: 10.1016/j.atherosclerosis.2015.10.026 PMID: 26523989
- Yang, M.; Liu, W.; Pellicane, C.; Sahyoun, C.; Joseph, B.K.; Gallo-Ebert, C.; Donigan, M.; Pandya, D.; Giordano, C.; Bata, A.; Nickels, J.T., Jr Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res., 2014, 55(2), 226-238. doi: 10.1194/jlr.M041335 PMID: 24296663
- Xu, Y.; Gao, J.; Gong, Y.; Chen, M.; Chen, J.; Zhao, W.; Tan, S. Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis, 2020, 297, 111-119. doi: 10.1016/j.atherosclerosis.2020.02.004 PMID: 32109664
- van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298. doi: 10.3389/fcvm.2021.667298 PMID: 34322524
- Ma, N.; Fan, L.; Dong, Y.; Xu, X.; Yu, C.; Chen, J.; Ren, J. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol. Res., 2021, 167, 105562. doi: 10.1016/j.phrs.2021.105562 PMID: 33737240
- Wang, N.; He, L.; Lin, H.; Tan, L.; Sun, Y.; Zhang, X.; Danser, A.H.J.; Lu, H.S.; He, Y.; Lu, X. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356. doi: 10.1371/journal.pone.0225356 PMID: 32437440
- Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210. doi: 10.1111/joim.12758 PMID: 29617044
- Rotllan, N.; Fernández-Hernando, C. MicroRNA regulation of cholesterol metabolism. Cholesterol, 2012, 2012, 1-8. doi: 10.1155/2012/847849 PMID: 22919472
- Lambert, G.; Sjouke, B.; Choque, B.; Kastelein, J.J.P.; Hovingh, G.K. The PCSK9 decade. J. Lipid Res., 2012, 53(12), 2515-2524. doi: 10.1194/jlr.R026658 PMID: 22811413
- Reiner, . PCSK9 inhibitors in clinical practice: Expectations and reality. Atherosclerosis, 2018, 270, 187-188. doi: 10.1016/j.atherosclerosis.2018.01.001 PMID: 29366497
- Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812. doi: 10.1172/jci.insight.143812 PMID: 33119548
- Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. MicroRNAs: New therapeutic targets for familial hypercholesterolemia? Clin. Rev. Allergy Immunol., 2018, 54(2), 224-233. doi: 10.1007/s12016-017-8611-x PMID: 28534160
- imić, I.; Reiner, Z. Adverse effects of statins-myths and reality. Curr. Pharm. Des., 2015, 21(9), 1220-1226. doi: 10.2174/1381612820666141013134447 PMID: 25312733
补充文件
