Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities.

Objective:This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease.

Methods:Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included.

Results:According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels.

Conclusion:In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.

Негізгі сөздер

Авторлар туралы

Amir Jafari-Nozad

Student Research Committee, Birjand University of Medical Sciences

Email: info@benthamscience.net

Amirsajad Jafari

Department of Basic Sciences, School of Veterinary Medicine, Shiraz University,

Email: info@benthamscience.net

Saman Yousefi

Faculty of Veterinary Medicine,, Shahrekord Branch, Islamic Azad University,

Email: info@benthamscience.net

Hasan Bakhshi

Vector-borne Diseases Research Center,, North Khorasan University of Medical Sciences

Email: info@benthamscience.net

Tahereh Farkhondeh

Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Saeed Samarghandian

Healthy Ageing Research Centre, Neyshabur University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother., 2020, 130, 110590. doi: 10.1016/j.biopha.2020.110590
  2. Galvão, I.; Dias, A.C.F.; Tavares, L.D.; Rodrigues, I.P.S.; Queiroz-Junior, C.M.; Costa, V.V.; Reis, A.C.; Ribeiro Oliveira, R.D.; Louzada-Junior, P.; Souza, D.G.; Leng, L.; Bucala, R.; Sousa, L.P.; Bozza, M.T.; Teixeira, M.M.; Amaral, F.A. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout. J. Leukoc. Biol., 2016, 99(6), 1035-1043. doi: 10.1189/jlb.3MA0915-418R PMID: 26868525
  3. Bhole, V.; de Vera, M.; Rahman, M.M.; Krishnan, E.; Choi, H. Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort. Arthritis Rheum., 2010, 62(4), 1069-1076. doi: 10.1002/art.27338 PMID: 20131266
  4. Patil, T.; Soni, A.; Acharya, S. A brief review on in vivo models for gouty arthritis. Metabolism. Open, 2021, 11, 100100. doi: 10.1016/j.metop.2021.100100 PMID: 34189452
  5. Desai, J.; Steiger, S. Molecular pathophysiology of gout. Trends Mol. Med., 2017, 23(8), 756-768. doi: 10.1016/j.molmed.2017.06.005. PMID: 28732688
  6. Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol., 2020, 16(7), 380-390. doi: 10.1038/s41584-020-0441-1 PMID: 32541923
  7. Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013, 62(10), 3307-3315. doi: 10.2337/db12-1814 PMID: 24065788
  8. Bugyei-Twum, A.; Abadeh, A.; Thai, K.; Zhang, Y.; Mitchell, M.; Kabir, G.; Connelly, K.A. Suppression of NLRP3 inflammasome activation ameliorates chronic kidney disease-induced cardiac fibrosis and diastolic dysfunction. Sci. Rep., 2016, 6(1), 1-11. doi: 10.1038/srep39551 PMID: 28000751
  9. Dinesh, P.; Rasool, M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int. Immunopharmacol., 2017, 44, 26-37. doi: 10.1016/j.intimp.2016.12.031. PMID: 28068647
  10. Martin, W.J.; Walton, M.; Harper, J.J.A. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis. Rheum., 2009, 60(1), 281-9. doi: 10.1002/art.24185. PMID: 19116939
  11. Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J.J.N. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-41. doi: 10.1038/nature04516 PMID: 16407889
  12. Cronstein, B.N.; Sunkureddi, P. Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J. Clin. Rheumatol., 2013, 19(1), 19-29. doi: 10.1097/RHU.0b013e31827d8790 PMID: 23319019
  13. Shehzad, A.; Lee, Y.J.D.F. Curcumin: Multiple molecular targets mediate multiple pharmacological actions- A review. Drugs Future, 2010, 35(2), 113.
  14. Jafari-Nozad, A.M.; Jafari, A.; Aschner, M.; Farkhondeh, T.; Samarghandian, S. Curcumin combats against organophosphate pesticides toxicity: A review of the current evidence and molecular pathways. Curr. Med. Chem., 2022, 30(20), 2312-2339. PMID: 35980068
  15. Aldebasi, Y.H.; Aly, S.M.; Rahmani, A. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways. Int. J. Physiol. Pathophysiol. Pharmacol., 2013, 5(4), 194-202. PMID: 24379904
  16. Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38. PMID: 29629341
  17. Sankhwar, R.; Yadav, S.; Kumar, A.; Kr. Gupta, R. Application of nano-curcumin as a natural antimicrobial agent against gram-positive pathogens. J. Appl. Nat. Sci., 2021, 13(1), 126.
  18. Samarghandian, S.; Borji, A.; Hidar Tabasi, S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc. Haematological Disord. Drug Targets. (Formerly Current Drug Targets-Cardiovasc. Hematol. Disord.), 2013, 13(3), 231-236.
  19. Mathews, V.; Binu, P.; Paul, M.S.; Abhilash, M.; Manju, A. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity. Asian Pac. J. Trop. Biomed., 2012, 2(2), S706-S711.
  20. Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222. doi: 10.1002/jcp.26848 PMID: 29968913
  21. Singh, S. From exotic spice to modern drug? Cell, 2007, 130(5), 765-768. doi: 10.1016/j.cell.2007.08.024 PMID: 17803897
  22. Jafari-Nozad, A.M.; Jafari, A.; Zangooie, A.; Behdadfard, M.; Zangouei, A.S.; Aschner, M. Curcumin combats against gastrointestinal cancer: A review of current knowledge regarding epigenetics mechanisms with a focus on DNA methylation. Curr. Med. Chem., 2023, 30(38), 4374-4388.
  23. Epstein, J.; Sanderson, I.R. Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. Br. J. Nutr., 2010, 103(11), 1545-57.
  24. Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Haematological. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2018, 18(1), 52-60.
  25. Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell Physiol., 2019, 234(5), 5728-5740. doi: 10.1002/jcp.27442. PMID: 30317564
  26. Gupte, P.A.; Giramkar, S.A.; Harke, S.M.; Kulkarni, S.K.; Deshmukh, A.P.; Hingorani, L.L.; Mahajan, M.P.; Bhalerao, S.S. Evaluation of the efficacy and safety of Capsule Longvida® Optimized curcumin (solid lipid curcumin particles) in knee osteoarthritis: A pilot clinical study. J. Inflamm. Res., 2019, 12, 145-152.
  27. Samarghandian, S.; Samini, F.; Azimi-Nezhad, M.; Farkhondeh, T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett.2017; 659:26-32. doi: 10.1016/j.neulet.2017.08.065
  28. Gaffo, A.L.; Jacobs, D.R., J.r.; Lewis, C.E.; Mikuls, T.R.; Saag, K.G. Association between being African-American, serum urate levels and the risk of developing hyperuricemia: Findings from the Coronary Artery Risk Development in Young Adults cohort. Arthritis Res. Ther., 2012, 14(1), R4. doi: 10.1186/ar3552 PMID: 22225548
  29. Edwards, N.L. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve. Clin. J. Med., 2008, 75(Suppl. 5), S13-S16. doi: 10.3949/ccjm.75.Suppl_5.S13 PMID: 18822470
  30. Yamanaka, H. Japanese guideline for the management of hyperuricemia and gout: Second edition. Nucleosides Nucleotides Nucleic Acids, 2011, 30(12), 1018-1029. doi: 10.1080/15257770.2011.596496 PMID: 22132951
  31. Nuki, G.; Simkin, P.A. A concise history of gout and hyperuricemia and their treatment. Arthritis Res. Ther., 2006, 8(Suppl 1), S1. doi: 10.1186/ar1906 PMID: 16820040
  32. Pauff, J.M.; Hille, R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J. Nat. Prod., 2009, 72(4), 725-731. doi: 10.1021/np8007123 PMID: 19388706
  33. Bupparenoo, P.; Pakchotanon, R.; Narongroeknawin, P.; Asavatanabodee, P.; Chaiamnuay, S. Effect of curcumin on serum urate in asymptomatic hyperuricemia: A randomized placebo-controlled trial. J. Diet. Suppl., 2021, 18(3), 248-260. doi: 10.1080/19390211.2020.1757798 PMID: 32420786
  34. Lin, J.K.; Shih, C.A. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NJH3T3 cells. Carcinogenesis, 1994, 15(8), 1717-1721. doi: 10.1093/carcin/15.8.1717 PMID: 8055654
  35. Shen, L.; Ji, H.F. Insights into the inhibition of xanthine oxidase by curcumin. Bioorg. Med. Chem. Lett., 2009, 19(21), 5990-5993. doi: 10.1016/j.bmcl.2009.09.076 PMID: 19800788
  36. Ao, G.Z.; Zhou, M.Z.; Li, Y.Y.; Li, S.N.; Wang, H.N.; Wan, Q.W.; Li, H.Q.; Hu, Q.H. Discovery of novel curcumin derivatives targeting xanthine oxidase and urate transporter 1 as anti-hyperuricemic agents. Bioorg. Med. Chem., 2017, 25(1), 166-174. doi: 10.1016/j.bmc.2016.10.022 PMID: 28340987
  37. Kong, L.D.; Cai, Y.; Huang, W.W.; Cheng, C.H.K.; Tan, R.X. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol., 2000, 73(1-2), 199-207. doi: 10.1016/S0378-8741(00)00305-6 PMID: 11025157
  38. Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Berghe, D.V. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76. doi: 10.1021/np970237h PMID: 9461655
  39. Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun., 2002, 294(1), 167-172. doi: 10.1016/S0006-291X(02)00442-4 PMID: 12054758
  40. Wang, F.; Yang, L.; Huang, K.; Li, X.; Hao, X.; Stöckigt, J.; Zhao, Y. Preparation of ferulic acid derivatives and evaluation of their xanthine oxidase inhibition activity. Nat. Prod. Res., 2007, 21(3), 196-202. doi: 10.1080/14786410601129648 PMID: 17365708
  41. Chuengsamarn, S.; Rattanamongkolgul, S.; Phonrat, B.; Tungtrongchitr, R.; Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J. Nutr. Biochem., 2014, 25(2), 144-150. doi: 10.1016/j.jnutbio.2013.09.013 PMID: 24445038
  42. Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial. J. Cardiovasc. Pharmacol., 2016, 68(3), 223-229. doi: 10.1097/FJC.0000000000000406 PMID: 27124606
  43. Malik, N.; Dhiman, P.; Khatkar, A. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors. Curr. Drug Targets, 2019, 20(5), 593-603. doi: 10.2174/1389450120666181122100511 PMID: 30465499
  44. Peng, F.; Tao, Q.; Wu, X.; Dou, H.; Spencer, S.; Mang, C.; Xu, L.; Sun, L.; Zhao, Y.; Li, H.; Zeng, S.; Liu, G.; Hao, X. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia, 2012, 83(3), 568-585. doi: 10.1016/j.fitote.2011.12.028 PMID: 22248534
  45. Wempe, M.F.; Jutabha, P.; Quade, B.; Iwen, T.J.; Frick, M.M.; Ross, I.R.; Rice, P.J.; Anzai, N.; Endou, H. Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J. Med. Chem., 2011, 54(8), 2701-2713. doi: 10.1021/jm1015022 PMID: 21449597
  46. Kang, B.Y.; Song, Y.J.; Kim, K.M.; Choe, Y.K.; Hwang, S.Y.; Kim, T.S. Curcumin inhibits Th1 cytokine profile in CD4 + T cells by suppressing interleukin-12 production in macrophages. Br. J. Pharmacol., 1999, 128(2), 380-384. doi: 10.1038/sj.bjp.0702803 PMID: 10510448
  47. Mathy-Hartert, M.; Jacquemond-Collet, I.; Priem, F.; Sanchez, C.; Lambert, C.; Henrotin, Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm. Res., 2009, 58(12), 899-908. doi: 10.1007/s00011-009-0063-1 PMID: 19579007
  48. Miquel, J.; Bernd, A.; Sempere, J.M.; Díaz-Alperi, J.; Ramírez, A. The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch. Gerontol. Geriatr., 2002, 34(1), 37-46. doi: 10.1016/S0167-4943(01)00194-7 PMID: 14764309
  49. Pourhabibi-Zarandi, F.; Shojaei-Zarghani, S.; Rafraf, M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int. J. Clin. Pract., 2021, 75(10), e14280. doi: 10.1111/ijcp.14280 PMID: 33914984
  50. Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168. doi: 10.1089/107555303321223035 PMID: 12676044
  51. Samarghandian, S.; Shoshtari, M.E.; Sargolzaei, J.; Hossinimoghadam, H.; Farahzad, J.A. Anti-tumor activity of safranal against neuroblastoma cells. Pharmacogn. Mag., 2014, 10(Suppl 2), S419.
  52. Gu, Y.; Zhu, Y.; Deng, G.; Liu, S.; Sun, Y.; Lv, W. Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, 93, 107375. doi: 10.1016/j.intimp.2021.107375 PMID: 33517224
  53. Liu, X.; Jin, X.; Yu, D.; Liu, G. Suppression of NLRP3 and NF-κB signaling pathways by α-Cyperone via activating SIRT1 contributes to attenuation of LPS-induced acute lung injury in mice. Int. Immunopharmacol., 2019, 76, 105886. doi: 10.1016/j.intimp.2019.105886 PMID: 31520990
  54. Yang, G.; Lee, H.E.; Moon, S.J.; Ko, K.M.; Koh, J.H.; Seok, J.K.; Min, J.K.; Heo, T.H.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Fitzgerald, K.A.; Lee, J.Y. Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol., 2020, 72(7), 1192-1202. doi: 10.1002/art.41245 PMID: 32134203
  55. Yuan, X.; Fan, Y.S.; Xu, L.; Xie, G.Q.; Feng, X.H.; Qian, K. Jia-Wei-Si-Miao-Wan alleviates acute gouty arthritis by targeting NLRP3 inflammasome. J. Biol. Regul. Homeost. Agents, 2019, 33(1), 63-71. PMID: 30697988
  56. Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Preventive effect of safranal against oxidative damage in aged male rat brain. Experimental Animals. 2015; 64(1):65-71. doi: 10.1538/expanim.14-0027 PMID: 25312506
  57. Mijanović, O.; Branković, A.; Panin, A.N.; Savchuk, S.; Timashev, P.; Ulasov, I.; Lesniak, M.S. Cathepsin B: A sellsword of cancer progression. Cancer Lett., 2019, 449, 207-214. doi: 10.1016/j.canlet.2019.02.035 PMID: 30796968
  58. Peng, S.; Gao, J.; Liu, W.; Jiang, C.; Yang, X.; Sun, Y.; Guo, W.; Xu, Q. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget, 2016, 7(49), 80262-80274. doi: 10.18632/oncotarget.12918 PMID: 27793052
  59. Amaral, E.P.; Riteau, N.; Moayeri, M.; Maier, N.; Mayer-Barber, K.D.; Pereira, R.M.; Lage, S.L.; Kubler, A.; Bishai, W.R.; D’Império-Lima, M.R.; Sher, A.; Andrade, B.B. Lysosomal cathepsin release is required for NLRP3-inflammasome activation by Mycobacterium tuberculosis in infected macrophages. Front. Immunol., 2018, 9, 1427. doi: 10.3389/fimmu.2018.01427 PMID: 29977244
  60. Nidorf, S.M.; Fiolet, A.; Abela, G.S. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J. Clin. Lipidol., 2020, 14(5), 619-630. doi: 10.1016/j.jacl.2020.07.003 PMID: 32792218
  61. Wang, D.; Zhang, J.; Jiang, W.; Cao, Z.; Zhao, F.; Cai, T.; Aschner, M.; Luo, W. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy, 2017, 13(5), 914-927. doi: 10.1080/15548627.2017.1293766 PMID: 28318352
  62. Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol., 2015, 6, 262. doi: 10.3389/fphar.2015.00262 PMID: 26594174
  63. Mirzaei, S.; Zarrabi, A.; Asnaf, S.E.; Hashemi, F.; Zabolian, A.; Hushmandi, K.; Raei, M.; Goharrizi MASB, Makvandi P, Samarghandian S, Najafi M, Ashrafizadeh M, Aref AR, Hamblin MR. The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci. 2021; 268:119005. doi: 10.1016/j.lfs.2020.119005.
  64. Wang, S.; Zhao, X.; Yang, S.; Chen, B.; Shi, J. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem. Biol. Interact., 2017, 278, 48-53. doi: 10.1016/j.cbi.2017.10.012 PMID: 29031534
  65. Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Hematol. Disord. Drug Targets. 2018; 18(1), 52-60. doi: 10.2174/1871529X18666180212114816.
  66. Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol., 2018, 104, 11-19. doi: 10.1016/j.molimm.2018.09.004 PMID: 30396035
  67. Li, X.; Xu, D.Q.; Sun, D.Y.; Zhang, T.; He, X.; Xiao, D.M. Curcumin ameliorates monosodium urate-induced gouty arthritis through nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling. J. Cell. Biochem., 2019, 120(4), 6718-6728. doi: 10.1002/jcb.27969 PMID: 30592318
  68. Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharmacother., 2019, 118, 109195. doi: 10.1016/j.biopha.2019.109195 PMID: 31362244
  69. Chen, B.; Li, H.; Ou, G.; Ren, L.; Yang, X.; Zeng, M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res. Ther., 2019, 21(1), 193. doi: 10.1186/s13075-019-1974-z PMID: 30606217
  70. Banerjee, S.; Ji, C.; Mayfield, J.E.; Goel, A. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc. National Aca. Sci., 2018, 115(32), 201806797.
  71. Fan, Z.; Jing, H.; Yao, J.; Li, Y.; Hu, X.; Shao, H.; Shen, G.; Pan, J.; Luo, F.; Tian, X. The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxid. Med. Cell Longev., 2014, 2014, 191624. doi: 10.1155/2014/191624 PMID: 25215173
  72. Ni, H.; Jin, W.; Zhu, T.; Wang, J.; Yuan, B.; Jiang, J.; Liang, W.; Ma, Z. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J. Spinal Cord Med., 2015, 38(2), 199-206. doi: 10.1179/2045772313Y.0000000179 PMID: 24621048
  73. Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; Yi, F.; Peng, J. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol., 2018, 200(8), 2835-2846. doi: 10.4049/jimmunol.1701495 PMID: 29549176
  74. Leemans, J.C.; Cassel, S.L.; Sutterwala, F.S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev., 2011, 243(1), 152-162. doi: 10.1111/j.1600-065X.2011.01043.x PMID: 21884174
  75. Ghosh, S.; Karin, M. Missing pieces in the NF-kappaB puzzle. Cell, 2002, 109(2), S81-S96. doi: 10.1016/S0092-8674(02)00703-1 PMID: 11983155
  76. Hayden, M.S.; Ghosh, S. Signaling to NF-κB. Genes Dev., 2004, 18(18), 2195-2224. doi: 10.1101/gad.1228704 PMID: 15371334
  77. Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11. doi: 10.1172/JCI11830 PMID: 11134171
  78. Mohamed, D.A.; Al-Okbi, S.Y. Evaluation of anti-gout activity of some plant food extracts. Pol. J. Food Nutr. Sci., 2008, 58(3)
  79. Urano, W.; Yamanaka, H.; Tsutani, H.; Nakajima, H.; Matsuda, Y.; Taniguchi, A.; Hara, M.; Kamatani, N. The inflammatory process in the mechanism of decreased serum uric acid concentrations during acute gouty arthritis. J. Rheumatol., 2002, 29(9), 1950-1953. PMID: 12233891
  80. Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res., 2006, 55(4), 168-175. doi: 10.1007/s00011-006-0067-z PMID: 16807698
  81. Ammon, H.P.T.; Safayhi, H.; Mack, T.; Sabieraj, J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J. Ethnopharmacol., 1993, 38(2-3), 105-112. doi: 10.1016/0378-8741(93)90005-P PMID: 8510458
  82. Flynn, D.L.; Rafferty, M.F.; Boctor, A.M. Inhibition of 5-hydroxy-eicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: Inhibitory activities of curcuminoids and yakuchinones. Prostaglandins Leukot. Med., 1986, 22(3), 357-360. doi: 10.1016/0262-1746(86)90146-0 PMID: 3460103
  83. Madan, B.; Ghosh, B. Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock, 2003, 19(1), 91-96. doi: 10.1097/00024382-200301000-00017 PMID: 12558151
  84. Limasset, B.; Le Doucen, C.; Dore, J.C.; Ojasoo, T.; Damon, M.; De Paulet, A.C. Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils. Biochem. Pharmacol., 1993, 46(7), 1257-1271. doi: 10.1016/0006-2952(93)90476-D PMID: 8216378
  85. Bisset, S.; Sobhi, W.; Bensouici, C.; Khenchouche, A. Chain-breaking/preventive antioxidant, urate-lowering, and anti-inflammatory effects of pure curcumin. Curr. Nutr. Food Sci., 2020, 17(1), 66-74. doi: 10.2174/1573401316999200421095134
  86. Umar, H.I.; Ajayi, A.; Josiah, S.S.; Saliu, T.; Danjuma, J.B.; Chukwuemeka, P.O. In silico molecular docking of selected polyphenols against interleukin-17A target in gouty arthritis. Eur. J. Biol. Res., 2020, 10(4), 352-367.
  87. Liu, S.; Song, X.; Chrunyk, B.A.; Shanker, S.; Hoth, L.R.; Marr, E.S. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat. Commun., 2013, 4, 1888.
  88. Chang, S.H.; Reynolds, J.M.; Pappu, B.P.; Chen, G.; Martinez, G.J.; Dong, C. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity, 2011, 35(4), 611-621. doi: 10.1016/j.immuni.2011.09.010 PMID: 21982598
  89. Gaffen, SLJNRI. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol., 2009, 9(8), 556-67.
  90. Raucci, F.; Iqbal, A.J.; Saviano, A.; Minosi, P.; Piccolo, M.; Irace, C. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation. Pharmacol. Res., 2019, 147, 104351. doi: 10.1016/j.phrs.2019.104351 PMID: 31315067
  91. Cavalcanti, N.G.; Marques, C.D.L.; Lins e Lins, T.U.; Pereira, M.C. Cytokine profile in gout: Inflammation driven by IL-6 and IL-18? Immunol. Invest., 2016, 45(5), 383-95. doi: 10.3109/08820139.2016.1153651 PMID: 27219123
  92. Liu, Y.; Zhao, Q.; Yin, Y.; McNutt, M.A.; Zhang, T.; Cao, Y. Serum levels of IL-17 are elevated in patients with acute gouty arthritis. Biochem. Biophys. Res. Commun., 2018, 497(3), 897-902. doi: 10.1016/j.bbrc.2018.02.166 PMID: 29476737
  93. Miossec, P. Update on interleukin-17: A role in the pathogenesis of inflammatory arthritis and implication for clinical practice. RMD Open, 2017, 3(1), e000284. doi: 10.1136/rmdopen-2016-000284. PMID: 28243466
  94. Zhang, X.; Angkasekwinai, P.; Dong, C.; Tang, H.J.P. Structure and function of interleukin-17 family cytokines. Protein Cell, 2011, 2(1), 26-40. doi: 10.1007/s13238-011-1006-5. PMID: 21337007
  95. Le Goff, B.; Bouvard, B.; Lequerre, T.; Lespessailles, E.; Marotte, H.; Pers, Y.M.; Cortet, B. Implication of IL-17 in bone loss and structural damage in inflammatory rheumatic diseases. Mediators Inflamm., 2019, 2019, 8659302. doi: 10.1155/2019/8659302 PMID: 31485194
  96. Kuwabara, T.; Ishikawa, F.; Kondo, M. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm., 2017, 2017, 3908061. doi: 10.1155/2017/3908061. PMID: 28316374
  97. Zhou, Z.; Li, X.; Li, H.; Guo, M.; Liu, S. Genetic analysis of IL-17 gene polymorphisms in gout in a male Chinese Han population. PLoS One, 2016, 11(2), e0148082. doi: 10.1371/journal.pone.0148082. PMID: 26890073
  98. Ranade, S.Y.; Gaud, R.S. Current strategies in herbal drug delivery for arthritis: An overview. Int. J. Pharm. Sci. Res., 2013, 4(10), 3782.
  99. Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics, 2022, 11(3), 322. doi: 10.3390/antibiotics11030322 PMID: 35326785
  100. Sohn, S.I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin-An updated overview. Pharmaceutics, 2021, 13(12), 2102. doi: 10.3390/pharmaceutics13122102 PMID: 34959384
  101. Mustafa Kiyani, M.M.; Sohail, M.F.; Shahnaz, G.; Rehman, H.; Akhtar, M.F.; Nawaz, I.; Mahmood, T.; Manzoor, M.; Imran Bokhari, S.A. Evaluation of turmeric nanoparticles as anti-gout agent: Modernization of a traditional drug. Medicina, 2019, 55(1), 10. doi: 10.3390/medicina55010010 PMID: 30642012
  102. Walsh, A.S.; Yin, H.; Erben, C.M.; Wood, M.J.A.; Turberfield, A.J. DNA cage delivery to mammalian cells. ACS Nano, 2011, 5(7), 5427-5432. doi: 10.1021/nn2005574 PMID: 21696187
  103. Appelboom, T.; MsciBiost, C.M. MsciBiost CM. Flexofytol, a purified curcumin extract, in fibromyalgia and gout: A retrospective study. Open J. Rheumatol. Autoimmune Dis., 2013, 3(2), 104-107. doi: 10.4236/ojra.2013.32015
  104. WHO. The burden of musculoskeletal conditions at the start of the new millenium: Report of a WHO scientific group. 2003. Available from: https://apps.who.int/iris/handle/10665/42721
  105. Xu, Y.T.; Leng, Y.R.; Liu, M.M.; Dong, R.F.; Bian, J.; Yuan, L.L.; Zhang, J.; Xia, Y.Z.; Kong, L.Y. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int. Immunopharmacol., 2020, 87, 106842. doi: 10.1016/j.intimp.2020.106842 PMID: 32738598
  106. Wortmann, R.L. The management of gout: It should be crystal clear. J. Rheumatol., 2006, 33(10), 1921-1922. PMID: 17014007
  107. Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci., 2019, 20(13), 3328. doi: 10.3390/ijms20133328 PMID: 31284572
  108. Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci., 2014, 1319(1), 82-95. doi: 10.1111/nyas.12458 PMID: 24840700
  109. Wu, M.; Tian, Y.; Wang, Q.; Guo, C. Gout: A disease involved with complicated immunoinflammatory responses: A narrative review. Clin. Rheumatol., 2020, 39(10), 2849-2859. doi: 10.1007/s10067-020-05090-8 PMID: 32382830
  110. Dinarello, C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol., 2019, 15(10), 612-632. doi: 10.1038/s41584-019-0277-8 PMID: 31515542
  111. Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27. doi: 10.1111/imr.12621 PMID: 29247995
  112. Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617. doi: 10.1016/j.autrev.2020.102617 PMID: 32663626
  113. Fields, J.K.; Günther, S.; Sundberg, E.J. Structural basis of IL-1 family cytokine signaling. Front. Immunol., 2019, 10, 1412. doi: 10.3389/fimmu.2019.01412 PMID: 31281320
  114. Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci., 2019, 20(3), 649. doi: 10.3390/ijms20030649 PMID: 30717382
  115. Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev., 2018, 281(1), 138-153. doi: 10.1111/imr.12616 PMID: 29247988
  116. Nakanishi, K. Unique action of interleukin-18 on T cells and other immune cells. Front. Immunol., 2018, 9, 763. doi: 10.3389/fimmu.2018.00763 PMID: 29731751
  117. Choe, J.Y.; Choi, C.H.; Park, K.Y.; Kim, S.K. High-mobility group box 1 is responsible for monosodium urate crystal-induced inflammation in human U937 macrophages. Biochem. Biophys. Res. Commun., 2018, 503(4), 3248-3255. doi: 10.1016/j.bbrc.2018.08.139 PMID: 30166062
  118. Son, C.N.; Bang, S.Y.; Kim, J.H.; Choi, C.B.; Kim, T.H.; Jun, J.B. Caspase-1 level in synovial fluid is high in patients with spondyloarthropathy but not in patients with gout. J. Korean Med. Sci., 2013, 28(9), 1289-1292. doi: 10.3346/jkms.2013.28.9.1289 PMID: 24015032
  119. Chen, C.J.; Shi, Y.; Hearn, A.; Fitzgerald, K.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, 116(8), 2262-2271. doi: 10.1172/JCI28075 PMID: 16886064
  120. Trøseid, M.; Seljeflot, I.; Hjerkinn, E.M.; Arnesen, H. Interleukin-18 is a strong predictor of cardiovascular events in elderly men with the metabolic syndrome: Synergistic effect of inflammation and hyperglycemia. Diabetes Care, 2009, 32(3), 486-492. doi: 10.2337/dc08-1710 PMID: 19092166
  121. Schlesinger, N.; Brunetti, L. Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin. Arthritis. Rheum., 2020, 50(3), 444-450. doi: 10.1016/j.semarthrit.2019.11.009
  122. Yin, C.; Liu, B.; Li, Y.; Li, X.; Wang, J.; Chen, R.; Tai, Y.; Shou, Q.; Wang, P.; Shao, X.; Liang, Y.; Zhou, H.; Mi, W.; Fang, J.; Liu, B. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics, 2020, 10(26), 12189-12203. doi: 10.7150/thno.48028 PMID: 33204337
  123. Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol., 2020, 177(9), 2042-2057. doi: 10.1111/bph.14967 PMID: 31883118
  124. Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Silva, C.R.; Fusi, C.; Tonello, R.; Minocci, D.; Guerra, G.P.; Materazzi, S.; Nassini, R.; Geppetti, P.; Ferreira, J. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout. Free Radic. Biol. Med., 2014, 72, 200-209. doi: 10.1016/j.freeradbiomed.2014.04.021 PMID: 24780252
  125. Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Ineu, R.P.; Guerra, G.P.; Materazzi, S.; Fusi, C.; Nassini, R.; Geppetti, P.; Ferreira, J. Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum., 2013, 65(11), 2984-2995. doi: 10.1002/art.38112 PMID: 23918657
  126. Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677. doi: 10.1126/science.1156995 PMID: 18403674
  127. Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225. doi: 10.1038/nature09663 PMID: 21124315
  128. Alberts, B.M.; Bruce, C.; Basnayake, K.; Ghezzi, P.; Davies, K.A.; Mullen, L.M. Secretion of IL-1β from monocytes in gout is redox independent. Front. Immunol., 2019, 10, 70. doi: 10.3389/fimmu.2019.00070 PMID: 30761138
  129. Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221. doi: 10.3390/ijms22179221 PMID: 34502127
  130. Mitroulis, I.; Kambas, K.; Ritis, K. Neutrophils, IL-1β, and gout: Is there a link? Semin. Immunopathol., 2013, 35(4), 501-12. doi: 10.1007/s00281-013-0361-0
  131. Liu, M.L.; Lyu, X.; Werth, V.P. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J., 2022, 289(14), 3954-3966. doi: 10.1111/febs.16036 PMID: 34042290
  132. Daily, JW.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. food, 2016, 19(8), 717-29.
  133. Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res., 2012, 26(11), 1719-1725. doi: 10.1002/ptr.4639 PMID: 22407780
  134. Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: A randomized, double-blind, placebo-controlled prospective study. J. Orthop. Sci., 2014, 19(6), 933-939. doi: 10.1007/s00776-014-0633-0 PMID: 25308211
  135. Dewangan, A.K.; Varkey, S.; Mazumder, S. Synthesis of curcumin loaded CMCAB nanoparticles for treatment of rheumatoid arthritis. International Conference on Chemical, Environmental and Biological Sciences (CEBS), Dubai (UAE) 18-19, 2015.
  136. Coradini, K.; Friedrich, R.B.; Fonseca, F.N.; Vencato, M.S.; Andrade, D.F.; Oliveira, C.M.; Battistel, A.P.; Guterres, S.S.; da Rocha, M.I.U.M.; Pohlmann, A.R.; Beck, R.C.R. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci., 2015, 78, 163-170. doi: 10.1016/j.ejps.2015.07.012 PMID: 26206297
  137. Arora, R.; Kuhad, A.; Kaur, I.P.; Chopra, K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain, 2015, 19(7), 940-952. doi: 10.1002/ejp.620 PMID: 25400173
  138. Xiang, B.; Dong, D-W.; Shi, N-Q.; Gao, W.; Yang, Z-Z.; Cui, Y.; Cao, D-Y.; Qi, X-R. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 2013, 34(28), 6979-91. doi: 10.1016/j.biomaterials.2013.05.055 PMID: 23777916
  139. Khezri, K.; Saeedi, M.; Mohammadamini, H.; Zakaryaei, A.S. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res., 2021, 35(10), 5527-5563. doi: 10.1002/ptr.7190 PMID: 34131980
  140. Sun, H.; Zhan, M.; Mignani, S.; Shcharbin, D.; Majoral, J-P.; Rodrigues, J.; Shi, X.; Shen, M. Modulation of macrophages using nanoformulations with curcumin to treat inflammatory diseases: A concise review. Pharmaceutics, 2022, 14(10), 2239. doi: 10.3390/pharmaceutics14102239 PMID: 36297677
  141. Liu, C.; Rokavec, M.; Huang, Z.; Hermeking, H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ., 2023, 1-15.
  142. Huang, J.; Wu, T.; Zhong, Y.; Huang, J.; Kang, Z.; Zhou, B.; Zhao, H.; Liu, D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR / MYD88 signaling pathway. Phytother. Res., 2023, 37(2), 731-742. doi: 10.1002/ptr.7656 PMID: 36196887
  143. Miyazaki, K.; Morine, Y.; Xu, C.; Nakasu, C.; Wada, Y.; Teraoku, H. Curcumin-mediated resistance to lenvatinib via EGFR signaling pathway in hepatocellular carcinoma. Cells, 2023, 12(4), 612. doi: 10.3390/cells12040612
  144. Zhang, H.; Li, H.; Wang, H.; Lei, S.; Yan, LJB. Overexpression of TRPM7 promotes the therapeutic effect of curcumin in wound healing through the STAT3/SMAD3 signaling pathway in human fibroblasts. Burns, 2023, 49(4), 889-900. doi: 10.1016/j.burns.2022.06.016 PMID: 35850880
  145. Benameur, T.; Frota Gaban, S.V.; Giacomucci, G.; Filannino, F.M.; Trotta, T.; Polito, R.; Messina, G.; Porro, C.; Panaro, M.A. The effects of curcumin on inflammasome: Latest update. Molecules, 2023, 28(2), 742. doi: 10.3390/molecules28020742 PMID: 36677800
  146. Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921. PMID: 32464325

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024