Biogenic Carbon Quantum Dots: Synthesis and Applications


Цитировать

Полный текст

Аннотация

The new class of nanomaterials termed carbon dots: a quasi-spherical nanoparticle having a size less than 10 nm, possesses some unique characteristics like good aqueous solubility, colloidal stability, resistance to photobleaching, and fluorescence tunability, resulting in the unfolding of their various properties and their usage in different applications. Materials that are naturally derived or produced by living organisms are termed ‘biogenic’. Over the past few years, there has been a gradual increase in the use of naturally derived materials in synthesizing carbon dots. Green precursors or biogenic materials are of low cost, readily available, renewable, and environmentally benign. Most importantly, they provide essential benefits not found in synthesized carbon dots. This review focuses on the use of biogenic materials for the synthesis of biogenic carbon dots developed in the past five years. It also briefly explains different synthetic protocols used, along with some significant findings. Thereafter, an overview of the use of biogenic carbon dots (BCDs) in different applications like chemo and biosensors, drug delivery, bioimaging, catalysis and energy applications, etc., is discussed. Thus biogenic carbon dots are future sustainable materials that are now fast replacing conventional carbon quantum prepared from other sources.

Об авторах

Ankita Deb

Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology

Email: info@benthamscience.net

Devasish Chowdhury

Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737. doi: 10.1021/ja040082h PMID: 15469243
  2. Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(34), 6921-6939. doi: 10.1039/C4TC00988F
  3. Hou, J.; Cheng, H.; Yang, C.; Takeda, O.; Zhu, H. Hierarchical carbon quantum dots/hydrogenated-γ-TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy, 2015, 18, 143-153. doi: 10.1016/j.nanoen.2015.09.005
  4. Mansuriya, B.D.; Altintas, Z. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care—an updated review (2018–2021). Nanomaterials, 2021, 11(10), 2525. doi: 10.3390/nano11102525 PMID: 34684966
  5. Liu, H.; Ye, T.; Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed., 2007, 46(34), 6473-6475. doi: 10.1002/anie.200701271 PMID: 17645271
  6. Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale, 2014, 6(3), 1890-1895. doi: 10.1039/C3NR05380F PMID: 24362823
  7. Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc., 2009, 131(13), 4564-4565. doi: 10.1021/ja809073f PMID: 19296587
  8. Yang, Z.; Li, Z.; Xu, M.; Ma, Y.; Zhang, J.; Su, Y.; Gao, F.; Wei, H.; Zhang, L. Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett., 2013, 5(4), 247-259. doi: 10.1007/BF03353756
  9. Lan, J.; Liu, C.; Gao, M.; Huang, C. An efficient solid-state synthesis of fluorescent surface carboxylated carbon dots derived from C60 as a label-free probe for iron ions in living cells. Talanta, 2015, 144, 93-97. doi: 10.1016/j.talanta.2015.05.071 PMID: 26452796
  10. Shen, P.; Xia, Y. Synthesis-modification integration: One-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem., 2014, 86(11), 5323-5329. doi: 10.1021/ac5001338 PMID: 24694081
  11. Zhang, X.; Wei, C.; Li, Y.; Yu, D. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. Trends Analyt. Chem., 2019, 116, 109-121. doi: 10.1016/j.trac.2019.03.011
  12. Zhang, X.; Jiang, M.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. Review of natural product derived carbon dots: From natural products to functional materials. ChemSusChem, 2018, 11(1), 11-24. doi: 10.1002/cssc.201701847 PMID: 29072348
  13. Niu, W.J.; Li, Y.; Zhu, R.H.; Shan, D.; Fan, Y.R.; Zhang, X.J. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens. Actuators B Chem., 2015, 218, 229-236. doi: 10.1016/j.snb.2015.05.006
  14. Nair, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed. Pharmacother., 2020, 132, 110834-110849. doi: 10.1016/j.biopha.2020.110834 PMID: 33035830
  15. Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater., 2012, 24(15), 2037-2041. doi: 10.1002/adma.201200164 PMID: 22419383
  16. Gayen, B.; Palchoudhury, S.; Chowdhury, J. Carbon dots: A mystic star in the world of nanoscience. J. Nanomater., 2019, 2019, 1-19. doi: 10.1155/2019/3451307
  17. Qiao, Z.A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun., 2010, 46(46), 8812-8814. doi: 10.1039/c0cc02724c PMID: 20953494
  18. Vinoth Kumar, J.; Kavitha, G.; Arulmozhi, R.; Arul, V.; Singaravadivel, S.; Abirami, N. Green sources derived carbon dots for multifaceted applications. J. Fluoresc., 2021, 31(4), 915-932. doi: 10.1007/s10895-021-02721-4 PMID: 33786684
  19. Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron., 2016, 79, 467-475. doi: 10.1016/j.bios.2015.12.087 PMID: 26745793
  20. Wang, N.; Wang, Y.; Guo, T.; Yang, T.; Chen, M.; Wang, J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens. Bioelectron., 2016, 85, 68-75. doi: 10.1016/j.bios.2016.04.089 PMID: 27155118
  21. Liao, J.; Cheng, Z.; Zhou, L. Nitrogen-doping enhanced fluorescent carbon dots: Green synthesis and their applications for bioimaging and label-free detection of Au3+ ions. ACS Sustain. Chem. Eng., 2016, 4(6), 3053-3061. doi: 10.1021/acssuschemeng.6b00018
  22. Arul, V.; Edison, T.N.J.I.; Lee, Y.R.; Sethuraman, M.G. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J. Photochem. Photobiol. B, 2017, 168, 142-148. doi: 10.1016/j.jphotobiol.2017.02.007 PMID: 28222361
  23. Arul, V.; Sethuraman, M.G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt. Mater., 2018, 78, 181-190. doi: 10.1016/j.optmat.2018.02.029
  24. He, M.; Zhang, J.; Wang, H.; Kong, Y.; Xiao, Y.; Xu, W. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett., 2018, 13(1), 175. doi: 10.1186/s11671-018-2581-7 PMID: 29882047
  25. Ahmadian-Fard-Fini, S.; Salavati-Niasari, M.; Ghanbari, D. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 203, 481-493. doi: 10.1016/j.saa.2018.06.021 PMID: 29898431
  26. Guo, X.; Zhu, Y.; Zhou, L.; Zhang, L.; You, Y.; Zhang, H.; Hao, J. A facile and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Advances, 2018, 8(66), 38091-38099. doi: 10.1039/C8RA07584K PMID: 35558597
  27. Monte-Filho, S.S.; Andrade, S.I.E.; Lima, M.B.; Araujo, M.C.U. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. J. Pharm. Anal., 2019, 9(3), 209-216. doi: 10.1016/j.jpha.2019.02.003 PMID: 31297299
  28. Zulfajri, M.; Dayalan, S.; Li, W.Y.; Chang, C.J.; Chang, Y.P.; Huang, G.G. Nitrogen-doped carbon dots from Averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors, 2019, 19(22), 5008. doi: 10.3390/s19225008 PMID: 31744145
  29. Desai, M.L.; Jha, S.; Basu, H.; Singhal, R.K.; Park, T.J.; Kailasa, S.K. Acid oxidation of muskmelon fruit for the fabrication of carbon dots with specific emission colours for recognition of Hg2+ ions and cell imaging. ACS Omega, 2019, 4(21), 19332-19340. doi: 10.1021/acsomega.9b02730 PMID: 31763557
  30. Dias, C.; Vasimalai, N.; P Sárria, M.; Pinheiro, I.; Vilas-Boas, V.; Peixoto, J.; Espiña, B. Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials, 2019, 9(2), 199-208. doi: 10.3390/nano9020199 PMID: 30717497
  31. Atchudan, R.; Jebakumar Immanuel Edison, T.N.; Perumal, S.; Lee, Y.R. Indian gooseberry-derived tunable fluorescent carbon dots as a promise for in vitro/in vivo multicolor bioimaging and fluorescent ink. ACS Omega, 2018, 3(12), 17590-17601. doi: 10.1021/acsomega.8b02463
  32. Ma, H.; Sun, C.; Xue, G.; Wu, G.; Zhang, X.; Han, X.; Qi, X.; Lv, X.; Sun, H.; Zhang, J. Facile synthesis of fluorescent carbon dots from Prunus cerasifera fruits for fluorescent ink, Fe3+ ion detection and cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213, 281-287. doi: 10.1016/j.saa.2019.01.079 PMID: 30703711
  33. Bhamore, J.R.; Jha, S.; Park, T.J.; Kailasa, S.K. Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. J. Photochem. Photobiol. B, 2019, 191, 150-155. doi: 10.1016/j.jphotobiol.2018.12.023 PMID: 30639997
  34. Sangubotla, R.; Kim, J. A facile enzymatic approach for selective detection of γ-aminobutyric acid using corn-derived fluorescent carbon dots. Appl. Surf. Sci., 2019, 490, 61-69. doi: 10.1016/j.apsusc.2019.05.320
  35. Gupta, D.A.; Desai, M.L.; Malek, N.I.; Kailasa, S.K. Fluorescence detection of Fe3+ ion using ultra-small fluorescent carbon dots derived from pineapple (Ananas comosus): Development of miniaturized analytical method. J. Mol. Struct., 2020, 1216(1216), 128343. doi: 10.1016/j.molstruc.2020.128343
  36. Liu, W.; Diao, H.; Chang, H.; Wang, H.; Li, T.; Wei, W. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens. Actuators B Chem., 2017, 241, 190-198. doi: 10.1016/j.snb.2016.10.068
  37. Shen, J.; Shang, S.; Chen, X.; Wang, D.; Cai, Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C, 2017, 76, 856-864. doi: 10.1016/j.msec.2017.03.178 PMID: 28482600
  38. Romero, V.; Vila, V.; de la Calle, I.; Lavilla, I.; Bendicho, C. Turn–on fluorescent sensor for the detection of periodate anion following photochemical synthesis of nitrogen and sulphur co–doped carbon dots from vegetables. Sens. Actuators B Chem., 2019, 280, 290-297. doi: 10.1016/j.snb.2018.10.064
  39. Ashrafi Tafreshi, F.; Fatahi, Z.; Ghasemi, S.F.; Taherian, A.; Esfandiari, N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS One, 2020, 15(3), e0230646. doi: 10.1371/journal.pone.0230646 PMID: 32208468
  40. Hu, Y.; Zhang, L.; Li, X.; Liu, R.; Lin, L.; Zhao, S. Green preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustain. Chem. Eng., 2017, 5(6), 4992-5000. doi: 10.1021/acssuschemeng.7b00393
  41. Lai, Z.; Guo, X.; Cheng, Z.; Ruan, G.; Du, F. Green synthesis of fluorescent carbon dots from cherry tomatoes for highly effective detection of trifluralin herbicide in soil samples. ChemistrySelect, 2020, 5(6), 1956-1960. doi: 10.1002/slct.201904517
  42. Konwar, A.; Deb, A.; Kar, A.; Chowdhury, D. Dual emission carbon dots from carotenoids: Converting a single emission to dual emission. Luminescence, 2019, 34(8), 790-795. doi: 10.1002/bio.3685 PMID: 31397062
  43. Zhang, Z.; Hu, B.; Zhuang, Q.; Wang, Y.; Luo, X.; Xie, Y.; Zhou, D. Green synthesis of fluorescent nitrogen–sulfur Co-doped carbon dots from scallion leaves for hemin sensing. Anal. Lett., 2020, 53(11), 1704-1718. doi: 10.1080/00032719.2020.1716782
  44. Tyagi, A.; Tripathi, K.M.; Singh, N.; Choudhary, S.; Gupta, R.K. Green synthesis of carbon quantum dots from lemon peel waste: Applications in sensing and photocatalysis. RSC Advances, 2016, 6(76), 72423-72432. doi: 10.1039/C6RA10488F
  45. Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Troganis, A.; Stalikas, C. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta, 2017, 175, 305-312. doi: 10.1016/j.talanta.2017.07.053 PMID: 28841995
  46. Gudimella, K.K.; Appidi, T.; Wu, H.F.; Battula, V.; Jogdand, A.; Rengan, A.K.; Gedda, G. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf. B Biointerfaces, 2021, 197, 111362. doi: 10.1016/j.colsurfb.2020.111362 PMID: 33038604
  47. Wang, M.; Shi, R.; Gao, M.; Zhang, K.; Deng, L.; Fu, Q.; Wang, L.; Gao, D. Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA. Food Chem., 2020, 318, 126506-126517. doi: 10.1016/j.foodchem.2020.126506 PMID: 32126473
  48. Vandarkuzhali, S.A.A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. Pineapple peel-derived carbon dots: Applications as sensor, molecular keypad lock, and memory device. ACS Omega, 2018, 3(10), 12584-12592. doi: 10.1021/acsomega.8b01146 PMID: 30411011
  49. Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Muthuchamy, N.; Lee, Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 2020, 275, 117821-117831. doi: 10.1016/j.fuel.2020.117821
  50. Muktha, H.; Sharath, R.; Kottam, N.; Smrithi, S.P.; Samrat, K.; Ankitha, P. Green synthesis of carbon dots and evaluation of its pharmacological activities. Bionanoscience, 2020, 10(3), 731-744. doi: 10.1007/s12668-020-00741-1
  51. Jiao, X.Y.; Li, L.S.; Qin, S.; Zhang, Y.; Huang, K.; Xu, L. The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloids Surf. A Physicochem. Eng., 2019, 577, 306-314.
  52. Sahoo, N.K.; Jana, G.C.; Aktara, M.N.; Das, S.; Nayim, S.; Patra, A.; Bhattacharjee, P.; Bhadra, K.; Hossain, M. Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Mater. Sci. Eng. C, 2020, 108, 110429. doi: 10.1016/j.msec.2019.110429 PMID: 31923934
  53. Liu, H.; Ding, L.; Chen, L.; Chen, Y.; Zhou, T.; Li, H.; Xu, Y.; Zhao, L.; Huang, N. A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline. J. Ind. Eng. Chem., 2019, 69, 455-463. doi: 10.1016/j.jiec.2018.10.007
  54. Jayaweera, S.; Yin, K.; Ng, W.J. Nitrogen-doped durian shell derived carbon dots for inner filter effect mediated sensing of tetracycline and fluorescent ink. J. Fluoresc., 2019, 29(1), 221-229. doi: 10.1007/s10895-018-2331-3 PMID: 30565002
  55. Amin, N.; Afkhami, A.; Hosseinzadeh, L.; Madrakian, T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging. Anal. Chim. Acta, 2018, 1030, 183-193. doi: 10.1016/j.aca.2018.05.014 PMID: 30032768
  56. Chandra, S.; Singh, V.K.; Yadav, P.K.; Bano, D.; Kumar, V.; Pandey, V.K.; Talat, M.; Hasan, S.H. Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal. Chim. Acta, 2019, 1054, 145-156. doi: 10.1016/j.aca.2018.12.024 PMID: 30712585
  57. Raji, K.; Ramanan, V.; Ramamurthy, P. Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au3+ ions in aqueous medium and in in vitro multicolor cell imaging. New J. Chem., 2019, 43(29), 11710-11719. doi: 10.1039/C9NJ02590A
  58. v, R.; Misra, S.; Santra, M.K.; Ottoor, D. One pot green synthesis of C-dots from groundnuts and its application as Cr(VI) sensor and in vitro bioimaging agent. J. Photochem. Photobiol. Chem., 2019, 373, 28-36. doi: 10.1016/j.jphotochem.2018.12.028
  59. Li, K.; Xu, J.; Arsalan, M.; Cheng, N.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T. Nitrogen doped carbon dots derived from natural seeds and their application for electrochemical sensing. J. Electrochem. Soc., 2019, 166(2), B56-B62. doi: 10.1149/2.0501902jes
  60. Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M.F.; Menéndez-Miranda, M.; Costa-Fernández, J.M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M.T. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J. Nanotechnol., 2018, 9(1), 530-544. doi: 10.3762/bjnano.9.51 PMID: 29527430
  61. Long, R.; Guo, Y.; Xie, L.; Shi, S.; Xu, J.; Tong, C.; Lin, Q.; Li, T. White pepper-derived ratiometric carbon dots for highly selective detection and imaging of coenzyme A. Food Chem., 2020, 315, 126171-126177. doi: 10.1016/j.foodchem.2020.126171 PMID: 31991253
  62. Shahshahanipour, M.; Rezaei, B.; Ensafi, A.A.; Etemadifar, Z. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Mater. Sci. Eng. C, 2019, 98, 826-833. doi: 10.1016/j.msec.2019.01.041 PMID: 30813088
  63. Prathumsuwan, T.; Jaiyong, P.; In, I.; Paoprasert, P. Label-free carbon dots from water hyacinth leaves as a highly fluorescent probe for selective and sensitive detection of borax. Sens. Actuators B Chem., 2019, 299, 126936-126947. doi: 10.1016/j.snb.2019.126936
  64. Jiang, X.; Qin, D.; Mo, G.; Feng, J.; Yu, C.; Mo, W.; Deng, B. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J. Pharm. Biomed. Anal., 2019, 164, 514-519. doi: 10.1016/j.jpba.2018.11.025 PMID: 30453158
  65. Raveendran, V.; Suresh Babu, A.R.; Renuka, N.K. Mint leaf derived carbon dots for dual analyte detection of Fe(III) and ascorbic acid. RSC Advances, 2019, 9(21), 12070-12077. doi: 10.1039/C9RA02120E PMID: 35517017
  66. Yadav, P.K.; Singh, V.K.; Chandra, S.; Bano, D.; Kumar, V.; Talat, M.; Hasan, S.H. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater. Sci. Eng., 2019, 5(2), 623-632. doi: 10.1021/acsbiomaterials.8b01528 PMID: 33405826
  67. Deb, A.; Saikia, R.; Chowdhury, D. Nano-bioconjugate film from Aloe vera to detect hazardous chemicals used in cosmetics. ACS Omega, 2019, 4(23), 20394-20401. doi: 10.1021/acsomega.9b03280 PMID: 31815243
  68. Ran, Y.; Wang, S.; Yin, Q.; Wen, A.; Peng, X.; Long, Y.; Chen, S. Green synthesis of fluorescent carbon dots using chloroplast dispersions as precursors and application for Fe3+ ion sensing. Luminescence, 2020, 35(6), 870-876. doi: 10.1002/bio.3794 PMID: 32142218
  69. Zhang, Y.P.; Ma, J.M.; Yang, Y.S.; Ru, J.X.; Liu, X.Y.; Ma, Y.; Guo, H.C. Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 217, 60-67. doi: 10.1016/j.saa.2019.03.044 PMID: 30927572
  70. Ensafi, A.A.; Hghighat Sefat, S.; Kazemifard, N.; Rezaei, B.; Moradi, F. A novel one-step and green synthesis of highly fluorescent carbon dots from saffron for cell imaging and sensing of prilocaine. Sens. Actuators B Chem., 2017, 253, 451-460. doi: 10.1016/j.snb.2017.06.163
  71. Huang, Q.; Li, Q.; Chen, Y.; Tong, L.; Lin, X.; Zhu, J.; Tong, Q. High quantum yield nitrogen-doped carbon dots: Green synthesis and application as "off-on" fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sens. Actuators B Chem., 2018, 276, 82-88. doi: 10.1016/j.snb.2018.08.089
  72. Shukla, D.; Pandey, F.P.; Kumari, P.; Basu, N.; Tiwari, M.K.; Lahiri, J.; Kharwar, R.N.; Parmar, A.S. Label-free fluorometric detection of adulterant malachite green using carbon dots derived from the medicinal plant source Ocimum tenuiflorum. ChemistrySelect, 2019, 4(17), 4839-4847. doi: 10.1002/slct.201900530
  73. Naik, G.G.; Alam, M.B.; Pandey, V.; Mohapatra, D.; Dubey, P.K.; Parmar, A.S.; Sahu, A.N. Multi-functional carbon dots from an ayurvedic medicinal plant for cancer cell bioimaging applications. J. Fluoresc., 2020, 30(2), 407-418. doi: 10.1007/s10895-020-02515-0 PMID: 32088852
  74. Guo, Y.; Zhang, L.; Cao, F.; Leng, Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci. Rep., 2016, 6(1), 35795. doi: 10.1038/srep35795 PMID: 27762342
  75. Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Leonardos, I.; Troganis, A.; Stalikas, C. Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: Analytical and bioimaging applications. Sens. Actuators B Chem., 2018, 267, 494-501. doi: 10.1016/j.snb.2018.04.059
  76. Hua, X.W.; Bao, Y.W.; Wang, H.Y.; Chen, Z.; Wu, F.G. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale, 2017, 9(6), 2150-2161. doi: 10.1039/C6NR06558A PMID: 27874123
  77. Lin, F.; Li, C.; Dong, L.; Fu, D.; Chen, Z. Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale, 2017, 9(26), 9056-9064. doi: 10.1039/C7NR01975K PMID: 28639672
  78. Zhang, S.; Zhang, D.; Ding, Y.; Hua, J.; Tang, B.; Ji, X.; Zhang, Q.; Wei, Y.; Qin, K.; Li, B. Bacteria-derived fluorescent carbon dots for highly selective detection of p-nitrophenol and bioimaging. Analyst, 2019, 144(18), 5497-5503. doi: 10.1039/C9AN01103J PMID: 31386712
  79. Yu, Y.; Li, C.; Chen, C.; Huang, H.; Liang, C.; Lou, Y.; Chen, X.B.; Shi, Z.; Feng, S. Saccharomyces-derived carbon dots for biosensing pH and vitamin B12. Talanta, 2019, 195, 117-126. doi: 10.1016/j.talanta.2018.11.010 PMID: 30625521
  80. Singh, A.K.; Singh, V.K.; Singh, M.; Singh, P.; Khadim, S.R.; Singh, U.; Koch, B.; Hasan, S.H.; Asthana, R.K. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. J. Photochem. Photobiol. Chem., 2019, 376, 63-72. doi: 10.1016/j.jphotochem.2019.02.023
  81. Bandi, R.; Gangapuram, B.R.; Dadigala, R.; Eslavath, R.; Singh, S.S.; Guttena, V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 2016, 6(34), 28633-28639. doi: 10.1039/C6RA01669C
  82. Feng, J.; Wang, W.J.; Hai, X.; Yu, Y.L.; Wang, J.H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(3), 387-393. doi: 10.1039/C5TB01999K PMID: 32263205
  83. Yao, Y.Y.; Gedda, G.; Girma, W.M.; Yen, C.L.; Ling, Y.C.; Chang, J.Y. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(16), 13887-13899. doi: 10.1021/acsami.7b01599 PMID: 28388048
  84. Huang, G.; Chen, X.; Wang, C.; Zheng, H.; Huang, Z.; Chen, D.; Xie, H. Photoluminescent carbon dots derived from sugarcane molasses: Synthesis, properties, and applications. RSC Advances, 2017, 7(75), 47840-47847. doi: 10.1039/C7RA09002A
  85. Thongsai, N.; Tanawannapong, N.; Praneerad, J.; Kladsomboon, S.; Jaiyong, P.; Paoprasert, P. Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids Surf. A Physicochem. Eng. Asp., 2019, 560, 278-287. doi: 10.1016/j.colsurfa.2018.09.077
  86. Picard, M.; Thakur, S.; Misra, M.; Mohanty, A.K. Miscanthus grass-derived carbon dots to selectively detect Fe3+ ions. RSC Advances, 2019, 9(15), 8628-8637. doi: 10.1039/C8RA10051A PMID: 35518702
  87. Deb, A.; Konwar, A.; Chowdhury, D. pH-responsive hybrid jute carbon dot-cotton patch. ACS Sustain. Chem. Eng., 2020, 8(19), 7394-7402. doi: 10.1021/acssuschemeng.0c01221
  88. Pramanik, S.; Chatterjee, S.; Suresh Kumar, G.; Sujatha Devi, P. Egg-shell derived carbon dots for base pair selective DNA binding and recognition. Phys. Chem. Chem. Phys., 2018, 20(31), 20476-20488. doi: 10.1039/C8CP02872A PMID: 30043811
  89. Venkatesan, G.; Rajagopalan, V.; Chakravarthula, S.N. Boswellia ovalifoliolata bark extract derived carbon dots for selective fluorescent sensing of Fe3+. J. Environ. Chem. Eng., 2019, 7(2), 103013. doi: 10.1016/j.jece.2019.103013
  90. Tiwari, P.; Kaur, N.; Sharma, V.; Kang, H.; Uddin, J.; Mobin, S.M. Cannabis sativa -derived carbon dots co-doped with N–S: Highly efficient nanosensors for temperature and vitamin B12. New J. Chem., 2019, 43(43), 17058-17068. doi: 10.1039/C9NJ04061G
  91. Zulfajri, M.; Gedda, G.; Chang, C.J.; Chang, Y.P.; Huang, G.G. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega, 2019, 4(13), 15382-15392. doi: 10.1021/acsomega.9b01333 PMID: 31572837
  92. Wei, X.; Li, L.; Liu, J.; Yu, L.; Li, H.; Cheng, F.; Yi, X.; He, J.; Li, B. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl. Mater. Interfaces, 2019, 11(10), 9832-9840. doi: 10.1021/acsami.9b00074 PMID: 30758177
  93. Chen, K.; Qing, W.; Hu, W.; Lu, M.; Wang, Y.; Liu, X. On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO42−, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213, 228-234. doi: 10.1016/j.saa.2019.01.066 PMID: 30695741
  94. Shukla, D.; Das, M.; Kasade, D.; Pandey, M.; Dubey, A.K.; Yadav, S.K.; Parmar, A.S. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. Chemosphere, 2020, 248, 125998. doi: 10.1016/j.chemosphere.2020.125998 PMID: 32006833
  95. Newman Monday, Y.; Abdullah, J.; Yusof, N.A.; Abdul Rashid, S.; Shueb, R.H. Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor. Appl. Sci., 2021, 11(4), 1630. doi: 10.3390/app11041630
  96. Huang, C.; Dong, H.; Su, Y.; Wu, Y.; Narron, R.; Yong, Q. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials, 2019, 9(3), 387. doi: 10.3390/nano9030387 PMID: 30866423
  97. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res., 2015, 8(2), 355-381. doi: 10.1007/s12274-014-0644-3
  98. Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem., 2019, 21(3), 449-471. doi: 10.1039/C8GC02736F
  99. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed., 2015, 54(18), 5360-5363. doi: 10.1002/anie.201501193 PMID: 25832292
  100. Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed., 2010, 49(26), 4430-4434. doi: 10.1002/anie.200906154 PMID: 20461744
  101. Zhang, Y.; Yuan, R.; He, M.; Hu, G.; Jiang, J.; Xu, T.; Zhou, L.; Chen, W.; Xiang, W.; Liang, X. Multicolour nitrogen-doped carbon dots: Tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 2017, 9(45), 17849-17858. doi: 10.1039/C7NR05363K PMID: 29116274
  102. Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10(1), 484-491. doi: 10.1021/acsnano.5b05406 PMID: 26646584
  103. Guo, Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon, 2013, 52, 583-589. doi: 10.1016/j.carbon.2012.10.028
  104. Shibata, K.; Nakai, T.; Fukuwatari, T. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats. Anal. Biochem., 2012, 430(2), 151-155. doi: 10.1016/j.ab.2012.08.010 PMID: 22922385
  105. Miller, A.; Korem, M.; Almog, R.; Galboiz, Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J. Neurol. Sci., 2005, 233(1-2), 93-97. doi: 10.1016/j.jns.2005.03.009 PMID: 15896807
  106. Sun, X.Y.; Yuan, M.J.; Liu, B.; Shen, J.S. Carbon dots as fluorescent probes for detection of VB12 based on the inner filter effect. RSC Advances, 2018, 8(35), 19786-19790. doi: 10.1039/C8RA03070G PMID: 35540996
  107. Ding, L.; Yang, H.; Ge, S.; Yu, J. Fluorescent carbon dots nanosensor for label-free determination of vitamin B12 based on inner filter effect. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 193, 305-309. doi: 10.1016/j.saa.2017.12.015 PMID: 29258025
  108. Cho, I.H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res., 2020, 24(1), 6. doi: 10.1186/s40824-019-0181-y PMID: 32042441
  109. Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 2021, 224, 121828. doi: 10.1016/j.talanta.2020.121828 PMID: 33379046
  110. Ji, C.; Zhou, Y.; Leblanc, R.M.; Peng, Z. Recent developments of carbon dots in biosensing: A review. ACS Sens., 2020, 5(9), 2724-2741. doi: 10.1021/acssensors.0c01556 PMID: 32812427
  111. Speed, N.K.; Matthies, H.J.G.; Kennedy, J.P.; Vaughan, R.A.; Javitch, J.A.; Russo, S.J.; Lindsley, C.W.; Niswender, K.; Galli, A. Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression. ACS Chem. Neurosci., 2010, 1(7), 476-481. doi: 10.1021/cn100031t PMID: 22778840
  112. Zhou, J.; Wang, W.; Yu, P.; Xiong, E.; Zhang, X.; Chen, J. A simple label-free electrochemical aptasensor for dopamine detection. RSC Advances, 2014, 4(94), 52250-52255. doi: 10.1039/C4RA08090D
  113. Wang, X.; You, Z.; Sha, H.; Cheng, Y.; Zhu, H.; Sun, W. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Talanta, 2014, 128, 373-378. doi: 10.1016/j.talanta.2014.04.078 PMID: 25059174
  114. Jiang, G.; Jiang, T.; Zhou, H.; Yao, J.; Kong, X. Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Advances, 2015, 5(12), 9064-9068. doi: 10.1039/C4RA16773B
  115. Asad, M.; Zulfiqar, A.; Raza, R.; Yang, M.; Hayat, A.; Akhtar, N. Orange peel derived C-dots decorated CuO nanorods for the selective monitoring of dopamine from deboned chicken. Electroanalysis, 2020, 32(1), 11-18. doi: 10.1002/elan.201900468
  116. Huang, Q.; Lin, X.; Zhu, J.J.; Tong, Q.X. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron., 2017, 94, 507-512. doi: 10.1016/j.bios.2017.03.048 PMID: 28343103
  117. Ghodsi, J.; Rafati, A.A.; Shoja, Y. First report on electrocatalytic oxidation of oxytetracycline by horse radish peroxidase: Application in developing a biosensor to oxytetracycline determination. Sens. Actuators B Chem., 2016, 224, 692-699. doi: 10.1016/j.snb.2015.10.091
  118. Johari-Ahar, M.; Barar, J.; Alizadeh, A.M.; Davaran, S.; Omidi, Y.; Rashidi, M.R. Methotrexate-conjugated quantum dots: Synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J. Drug Target., 2016, 24(2), 120-133. doi: 10.3109/1061186X.2015.1058801 PMID: 26176269
  119. Olivieri, A.C.; Arancibia, J.A.; Muñoz de la Peña, A.; Durán-Merás, I.; Espinosa Mansilla, A. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Anal. Chem., 2004, 76(19), 5657-5666. doi: 10.1021/ac0493065 PMID: 15456283
  120. Nudelman, J.; Taylor, B.; Evans, N.; Rizzo, J.; Gray, J.; Engel, C.; Walker, M. Policy and research recommendations emerging from the scientific evidence connecting environmental factors and breast cancer. Int. J. Occup. Environ. Health, 2009, 15(1), 79-101. doi: 10.1179/oeh.2009.15.1.79 PMID: 19267127
  121. Atchudan, R.; Jebakumar Immanuel Edison, T.N.; Shanmugam, M.; Perumal, S.; Somanathan, T.; Lee, Y.R. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E, 2021, 126, 114417. doi: 10.1016/j.physe.2020.114417
  122. Qin, K.; Zhang, D.; Ding, Y.; Zheng, X.; Xiang, Y.; Hua, J.; Zhang, Q.; Ji, X.; Li, B.; Wei, Y. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p -nitrophenol detection. Analyst, 2020, 145(1), 177-183. doi: 10.1039/C9AN01753D PMID: 31729506
  123. Xue, M.; Zhao, J.; Zhan, Z.; Zhao, S.; Lan, C.; Ye, F.; Liang, H. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy. Nanoscale, 2018, 10(38), 18124-18130. doi: 10.1039/C8NR05017A PMID: 30255925
  124. Esim, O.; Kurbanoglu, S.; Savaser, A.; Ozkan, S.A.; Ozkan, Y. Nanomaterials for drug delivery systems. New developments in nanosensors for pharmaceutical analysis; Academic Press, 2019, pp. 273-301. doi: 10.1016/B978-0-12-816144-9.00009-2
  125. Koutsogiannis, P.; Thomou, E.; Stamatis, H.; Gournis, D.; Rudolf, P. Advances in fluorescent carbon dots for biomedical applications. Adv. Phys. X, 2020, 5(1), 1758592. doi: 10.1080/23746149.2020.1758592
  126. Fahmi, M.Z.; Haris, A.; Permana, A.J.; Nor Wibowo, D.L.; Purwanto, B.; Nikmah, Y.L.; Idris, A. Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC Advances, 2018, 8(67), 38376-38383. doi: 10.1039/C8RA07944G PMID: 35559085
  127. Liang, L.; Liu, Z. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem. Commun., 2011, 47(8), 2255-2257. doi: 10.1039/c0cc02540b PMID: 21258740
  128. D’souza, S.L.; Chettiar, S.S.; Koduru, J.R.; Kailasa, S.K. Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik, 2018, 158, 893-900. doi: 10.1016/j.ijleo.2017.12.200
  129. Shao, Y.; Zhu, C.; Fu, Z.; Lin, K.; Wang, Y.; Chang, Y.; Han, L.; Yu, H.; Tian, F. Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. J. Nanopart. Res., 2020, 22(8), 229. doi: 10.1007/s11051-020-04917-4
  130. Ankireddy, S.R.; Vo, V.G.; An, S.S.A.; Kim, J. Solvent-free synthesis of fluorescent carbon dots: An ecofriendly approach for the bioimaging and screening of anticancer activity via caspase-induced apoptosis. ACS Appl. Bio Mater., 2020, 3(8), 4873-4882. doi: 10.1021/acsabm.0c00377 PMID: 35021731
  131. Zhu, C.; Zhai, J.; Dong, S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun., 2012, 48(75), 9367-9369. doi: 10.1039/c2cc33844k PMID: 22911246
  132. Zhang, H.; Wang, Y.; Wang, D.; Li, Y.; Liu, X.; Liu, P.; Yang, H.; An, T.; Tang, Z.; Zhao, H. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small, 2014, 10(16), 3371-3378. doi: 10.1002/smll.201400781 PMID: 24729520
  133. Liu, R.; Zhang, H.; Liu, S.; Zhang, X.; Wu, T.; Ge, X.; Zang, Y.; Zhao, H.; Wang, G. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys., 2016, 18(5), 4095-4101. doi: 10.1039/C5CP06970J PMID: 26778836
  134. Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater., 2015, 25(31), 4929-4947. doi: 10.1002/adfm.201501250
  135. Unnikrishnan, B.; Wu, C.W.; Chen, I.W.P.; Chang, H.T.; Lin, C.H.; Huang, C.C. Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain. Chem.& Eng., 2016, 4(6), 3008-3016. doi: 10.1021/acssuschemeng.5b01700
  136. Xu, L.; Wang, H.; Gao, J.; Jin, X. Electrochemical performance enhancement of flexible graphene supercapacitor electrodes by carbon dots modification and NiCo2S4 electrodeposition. J. Alloys Compd., 2019, 809, 151802. doi: 10.1016/j.jallcom.2019.151802
  137. Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S.A.; Shang, Y.; Yang, B. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater., 2018, 30(31), 1800676. doi: 10.1002/adma.201800676
  138. Unnikrishnan, B.; Wu, C.W.; Chen, I.W.P.; Chang, H.T.; Lin, C.H.; Huang, C.C. Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain. Chem. Eng., 2016, 4(6), 3008-3016.
  139. Xu, L.; Wang, H.; Gao, J.; Jin, X. Electrochemical performance enhancement of flexible graphene supercapacitor electrodes by carbon dots modification and NiCo 2 S 4 electrodeposition. J. Alloys Compd., 2019, 809, 151802.
  140. Hoang, V.C.; Nguyen, L.H.; Gomes, V.G. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. J. Electroanal. Chem., 2019, 832, 87-96.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024