Aging and Diabetic Kidney Disease: Emerging Pathogenetic Mechanisms and Clinical Implications


如何引用文章

全文:

详细

Diabetic kidney disease (DKD) is one of the leading causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) worldwide. With the overpowering trend of aging, the prevalence of DKD in the elderly is progressively increasing. Genetic factors, abnormal glucose metabolism, inflammation, mitochondrial dysregulation, and oxidative stress all contribute to the development of DKD. Conceivably, during aging, these pathobiological processes are likely to be intensified, and this would further exacerbate the deterioration of renal functions in elderly patients, ultimately leading to ESRD. Currently, the pathogenesis of DKD in the elderly is not very well-understood. This study describes an appraisal of the relationship between diabetic nephropathy and aging while discussing the structural and functional changes in the aged kidney, the impact of related mechanisms on the outcome of DKD, and the latest advances in targeted therapies.

作者简介

Yi Chen

School of Medicine, Ningbo University

Email: info@benthamscience.net

Yashpal Kanwar

Department of Pathology, Feinberg School of Medicine,, Northwestern University

Email: info@benthamscience.net

Xueqin Chen

Department of Medicine, The First Affiliated Hospital, Ningbo University

Email: info@benthamscience.net

Ming Zhan

China Health Institute, University of Nottingham Ningbo China

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab., 2020, 9(4), 183-185. doi: 10.1097/XCE.0000000000000210 PMID: 33225235
  2. Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281. doi: 10.1016/j.diabres.2018.02.023 PMID: 29496507
  3. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119. doi: 10.1016/j.diabres.2021.109119 PMID: 34879977
  4. Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract, 2020, 162, 108072. doi: 10.1016/j.diabres.2020.108072 PMID: 32061820
  5. Bridges, C.C.; Zalups, R.K. The aging kidney and the nephrotoxic effects of mercury. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(2), 55-80. doi: 10.1080/10937404.2016.1243501 PMID: 28339347
  6. Barutta, F.; Bellini, S.; Corbetta, B.; Durazzo, M.; Gruden, G. The future of diabetic kidney disease management: What to expect from the experimental studies? J. Nephrol., 2020, 33(6), 1151-1161. doi: 10.1007/s40620-020-00724-1 PMID: 32221858
  7. Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; Zhai, Z.; Zhang, D.; Dai, Z.; Gao, J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol. (Lausanne), 2021, 12, 672350. doi: 10.3389/fendo.2021.672350 PMID: 34276558
  8. Burrows, N.R.; Li, Y.; Geiss, L.S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care, 2010, 33(1), 73-77. doi: 10.2337/dc09-0343 PMID: 20040673
  9. Guo, J.; Zheng, H.J.; Zhang, W.; Lou, W.; Xia, C.; Han, X.T.; Huang, W.J.; Zhang, F.; Wang, Y.; Liu, W.J. Accelerated kidney aging in diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 1-24. doi: 10.1155/2020/1234059 PMID: 32774664
  10. Denic, A.; Glassock, R.J.; Rule, A.D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis., 2016, 23(1), 19-28. doi: 10.1053/j.ackd.2015.08.004 PMID: 26709059
  11. Roseman, D.A.; Hwang, S.J.; Oyama-Manabe, N.; Chuang, M.L.; O’Donnell, C.J.; Manning, W.J.; Fox, C.S. Clinical associations of total kidney volume: the Framingham Heart Study. Nephrol. Dial. Transplant., 2017, 32(8), 1344-1350. PMID: 27325252
  12. Tauchi, H.; Tsuboi, K.; Okutomi, J. Age changes in the human kidney of the different races. Gerontology, 1971, 17(2), 87-97. doi: 10.1159/000211811 PMID: 5093734
  13. Wang, X.; Vrtiska, T.J.; Avula, R.T.; Walters, L.R.; Chakkera, H.A.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int., 2014, 85(3), 677-685. doi: 10.1038/ki.2013.359 PMID: 24067437
  14. Rule, A.D.; Sasiwimonphan, K.; Lieske, J.C.; Keddis, M.T.; Torres, V.E.; Vrtiska, T.J. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis., 2012, 59(5), 611-618. doi: 10.1053/j.ajkd.2011.12.022 PMID: 22398108
  15. Lorenz, E.C.; Vrtiska, T.J.; Lieske, J.C.; Dillon, J.J.; Stegall, M.D.; Li, X.; Bergstralh, E.J.; Rule, A.D. Prevalence of renal artery and kidney abnormalities by computed tomography among healthy adults. Clin. J. Am. Soc. Nephrol., 2010, 5(3), 431-438. doi: 10.2215/CJN.07641009 PMID: 20089492
  16. Denic, A.; Alexander, M.P.; Kaushik, V.; Lerman, L.O.; Lieske, J.C.; Stegall, M.D.; Larson, J.J.; Kremers, W.K.; Vrtiska, T.J.; Chakkera, H.A.; Poggio, E.D.; Rule, A.D. Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am. J. Kidney Dis., 2016, 68(1), 58-67. doi: 10.1053/j.ajkd.2015.12.029 PMID: 26857648
  17. Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med., 2010, 152(9), 561-567. doi: 10.7326/0003-4819-152-9-201005040-00006 PMID: 20439574
  18. Takazakura, E.; Sawabu, N.; Handa, A.; Takada, A.; Shinoda, A.; Takeuchi, J. Intrarenal vascular changes with age and disease. Kidney Int., 1972, 2(4), 224-230. doi: 10.1038/ki.1972.98 PMID: 4657923
  19. Hoang, K.; Tan, J.C.; Derby, G.; Blouch, K.L.; Masek, M.; Ma, I.; Lemley, K.V.; Myers, B.D. Determinants of glomerular hypofiltration in aging humans. Kidney Int., 2003, 64(4), 1417-1424. doi: 10.1046/j.1523-1755.2003.00207.x PMID: 12969161
  20. Fioretto, P.; Steffes, M.W.; Brown, D.M.; Mauer, S.M. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am. J. Kidney Dis., 1992, 20(6), 549-558. doi: 10.1016/S0272-6386(12)70217-2 PMID: 1462981
  21. Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563. doi: 10.1681/ASN.2010010010 PMID: 20167701
  22. Friedman, E.A. Renal syndromes in diabetes. Endocrinol. Metab. Clin. North Am., 1996, 25(2), 293-324. doi: 10.1016/S0889-8529(05)70326-1 PMID: 8799702
  23. Sobamowo, H.; Prabhakar, S.S. The kidney in aging. Prog. Mol. Biol. Transl. Sci., 2017, 146, 303-340. doi: 10.1016/bs.pmbts.2016.12.018 PMID: 28253989
  24. Tan, J.C.; Busque, S.; Workeneh, B.; Ho, B.; Derby, G.; Blouch, K.L.; Graham Sommer, F.; Edwards, B.; Myers, B.D. Effects of aging on glomerular function and number in living kidney donors. Kidney Int., 2010, 78(7), 686-692. doi: 10.1038/ki.2010.128 PMID: 20463656
  25. Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol., 2017, 28(1), 313-320. doi: 10.1681/ASN.2016020154 PMID: 27401688
  26. Zhou, X.J.; Rakheja, D.; Yu, X.; Saxena, R.; Vaziri, N.D.; Silva, F.G. The aging kidney. Kidney Int., 2008, 74(6), 710-720. doi: 10.1038/ki.2008.319 PMID: 18614996
  27. Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Am. J. Kidney Dis., 2003, 41(1), 1-12. doi: 10.1053/ajkd.2003.50007 PMID: 12500213
  28. Wiggins, J.E.; Goyal, M.; Sanden, S.K.; Wharram, B.L.; Shedden, K.A.; Misek, D.E.; Kuick, R.D.; Wiggins, R.C. Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol., 2005, 16(10), 2953-2966. doi: 10.1681/ASN.2005050488 PMID: 16120818
  29. Esposito, C.; Dal Canton, A. Functional changes in the aging kidney. J. Nephrol., 2010, 23(Suppl. 15), S41-S45. PMID: 20872370
  30. Huber, T.B.; Edelstein, C.L.; Hartleben, B.; Inoki, K.; Jiang, M.; Koya, D.; Kume, S.; Lieberthal, W.; Pallet, N.; Quiroga, A.; Ravichandran, K.; Susztak, K.; Yoshida, S.; Dong, Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 2012, 8(7), 1009-1031. doi: 10.4161/auto.19821 PMID: 22692002
  31. Wiggins, J.E. Aging in the glomerulus. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(12), 1358-1364. doi: 10.1093/gerona/gls157 PMID: 22843670
  32. Martin, J.E.; Sheaff, M.T. Renal ageing. J. Pathol., 2007, 211(2), 198-205. doi: 10.1002/path.2111 PMID: 17200944
  33. Abdelhafiz, A.H. Diabetic kidney disease in older people with type 2 diabetes mellitus: Improving prevention and treatment options. Drugs Aging, 2020, 37(8), 567-584. doi: 10.1007/s40266-020-00773-y PMID: 32495289
  34. Plante, G.E. Impact of aging on the body’s vascular system. Metabolism, 2003, 52(10)(Suppl. 2), 31-35. doi: 10.1016/S0026-0495(03)00299-3 PMID: 14577061
  35. Murata, K.; Horiuchi, Y. Age-dependent distribution of acidic glycosaminoglycans in human kidney tissue. Nephron J., 1978, 20(2), 111-118. doi: 10.1159/000181203 PMID: 622208
  36. Merker, L. Nephropathy in diabetes. MMW Fortschr. Med., 2021, 163(8), 48-51. doi: 10.1007/s15006-021-9782-1 PMID: 33904093
  37. Campbell, R.C.; Ruggenenti, P.; Remuzzi, G. Proteinuria in diabetic nephropathy: Treatment and evolution. Curr. Diab. Rep., 2003, 3(6), 497-504. doi: 10.1007/s11892-003-0014-0 PMID: 14611747
  38. Baldea, A.J. Effect of aging on renal function plus monitoring and support. Surg. Clin. North Am., 2015, 95(1), 71-83. doi: 10.1016/j.suc.2014.09.003 PMID: 25459543
  39. A/L B Vasanth Rao, VR; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr., 2019, 13(1), 754-762. doi: 10.1016/j.dsx.2018.11.054 PMID: 30641802
  40. Najafian, B.; Fogo, A.B.; Lusco, M.A.; Alpers, C.E. AJKD atlas of renal pathology: Diabetic nephropathy. Am. J. Kidney dis., 2015, 66(5), e37-e38. doi: 10.1053/j.ajkd.2015.08.010 PMID: 26498421
  41. Najafian, B.; Alpers, C.E.; Fogo, A.B. Pathology of human diabetic nephropathy. Contrib. Nephrol., 2011, 170, 36-47. doi: 10.1159/000324942 PMID: 21659756
  42. Hong, D.; Zheng, T.; Jia-qing, S.; Jian, W.; Zhi-hong, L.; Lei-shi, L. Nodular glomerular lesion: A later stage of diabetic nephropathy? Diabetes Res. Clin. Pract., 2007, 78(2), 189-195. doi: 10.1016/j.diabres.2007.03.024 PMID: 17683824
  43. An, X.; Zhang, L.; Yuan, Y.; Wang, B.; Yao, Q.; Li, L.; Zhang, J.; He, M.; Zhang, J. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci. Rep., 2017, 7(1), 6413. doi: 10.1038/s41598-017-06844-2 PMID: 28743882
  44. Maezawa, Y.; Takemoto, M.; Yokote, K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J. Diabetes Investig., 2015, 6(1), 3-15. doi: 10.1111/jdi.12255 PMID: 25621126
  45. Bakris, G.L.; Fonseca, V.A.; Sharma, K.; Wright, E.M. Renal sodium–glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int., 2009, 75(12), 1272-1277. doi: 10.1038/ki.2009.87 PMID: 19357717
  46. Gronda, E.; Jessup, M.; Iacoviello, M.; Palazzuoli, A.; Napoli, C. Glucose metabolism in the kidney: Neurohormonal activation and heart failure development. J. Am. Heart Assoc., 2020, 9(23), e018889. doi: 10.1161/JAHA.120.018889 PMID: 33190567
  47. Gilbert, R.E.; Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int., 1999, 56(5), 1627-1637. doi: 10.1046/j.1523-1755.1999.00721.x PMID: 10571771
  48. Russo, G.T.; De Cosmo, S.; Viazzi, F.; Mirijello, A.; Ceriello, A.; Guida, P.; Giorda, C.; Cucinotta, D.; Pontremoli, R.; Fioretto, P. Diabetic kidney disease in the elderly: prevalence and clinical correlates. BMC Geriatr., 2018, 18(1), 38. doi: 10.1186/s12877-018-0732-4 PMID: 29394888
  49. Kanwar, Y.S.; Sun, L.; Xie, P.; Liu, F.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol., 2011, 6(1), 395-423. doi: 10.1146/annurev.pathol.4.110807.092150 PMID: 21261520
  50. Xiong, Y.; Zhou, L. The signaling of cellular senescence in diabetic nephropathy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16. doi: 10.1155/2019/7495629 PMID: 31687085
  51. Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol., 2019, 15(6), 327-345. doi: 10.1038/s41581-019-0135-6 PMID: 30894700
  52. Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015, 58(3), 443-455. doi: 10.1007/s00125-014-3462-y PMID: 25481708
  53. Siddiqi, F.S.; Majumder, S.; Thai, K.; Abdalla, M.; Hu, P.; Advani, S.L.; White, K.E.; Bowskill, B.B.; Guarna, G.; dos Santos, C.C.; Connelly, K.A.; Advani, A. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J. Am. Soc. Nephrol., 2016, 27(7), 2021-2034. doi: 10.1681/ASN.2014090898 PMID: 26534922
  54. Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol., 2018, 2018, 1-13. doi: 10.1155/2018/1875870 PMID: 29808088
  55. Zhan, M.; Kanwar, Y.S. An enigma: does a high-protein diet accelerate renal damage in humans? Lessons from diabetic animal models. Am. J. Physiol. Renal Physiol., 2020, 318(4), F979-F981. doi: 10.1152/ajprenal.00076.2020 PMID: 32174145
  56. Koya, D.; Jirousek, M.R.; Lin, Y.W.; Ishii, H.; Kuboki, K.; King, G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest., 1997, 100(1), 115-126. doi: 10.1172/JCI119503 PMID: 9202063
  57. Schena, F.P.; Gesualdo, L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol., 2005, 16(3_suppl_1)(Suppl. 1), S30-S33. doi: 10.1681/ASN.2004110970 PMID: 15938030
  58. Grabias, B.M.; Konstantopoulos, K. The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am. J. Physiol. Renal Physiol., 2014, 306(5), F473-F485. doi: 10.1152/ajprenal.00503.2013 PMID: 24352503
  59. Coward, R.J.M.; Welsh, G.I.; Yang, J.; Tasman, C.; Lennon, R.; Koziell, A.; Satchell, S.; Holman, G.D.; Kerjaschki, D.; Tavaré, J.M.; Mathieson, P.W.; Saleem, M.A. The human glomerular podocyte is a novel target for insulin action. Diabetes, 2005, 54(11), 3095-3102. doi: 10.2337/diabetes.54.11.3095 PMID: 16249431
  60. Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. Involvement of the AMPK–PTEN pathway in insulin resistance induced by high glucose in cultured rat podocytes. Int. J. Biochem. Cell Biol., 2014, 51, 120-130. doi: 10.1016/j.biocel.2014.04.008 PMID: 24747132
  61. Piwkowska, A.; Rogacka, D.; Jankowski, M.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun., 2010, 393(2), 268-273. doi: 10.1016/j.bbrc.2010.01.119 PMID: 20123087
  62. Rogacka, D.; Piwkowska, A.; Jankowski, M.; Kocbuch, K.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells. J. Cell. Physiol., 2010, 225(2), 577-584. doi: 10.1002/jcp.22242 PMID: 20506529
  63. Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp. Cell Res., 2016, 349(2), 328-338. doi: 10.1016/j.yexcr.2016.11.005 PMID: 27836811
  64. Welsh, G.I.; Hale, L.J.; Eremina, V.; Jeansson, M.; Maezawa, Y.; Lennon, R.; Pons, D.A.; Owen, R.J.; Satchell, S.C.; Miles, M.J.; Caunt, C.J.; McArdle, C.A.; Pavenstädt, H.; Tavaré, J.M.; Herzenberg, A.M.; Kahn, C.R.; Mathieson, P.W.; Quaggin, S.E.; Saleem, M.A.; Coward, R.J.M. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab., 2010, 12(4), 329-340. doi: 10.1016/j.cmet.2010.08.015 PMID: 20889126
  65. Jiang, W.; Xiao, T.; Han, W.; Xiong, J.; He, T.; Liu, Y.; Huang, Y.; Yang, K.; Bi, X.; Xu, X.; Yu, Y.; Li, Y.; Gu, J.; Zhang, J.; Huang, Y.; Zhang, B.; Zhao, J. Klotho inhibits PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy. Mol. Cell. Endocrinol., 2019, 494, 110490. doi: 10.1016/j.mce.2019.110490 PMID: 31207271
  66. Liu, L.; Yang, L.; Chang, B.; Zhang, J.; Guo, Y.; Yang, X. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren. Fail., 2018, 40(1), 492-497. doi: 10.1080/0886022X.2018.1489287 PMID: 30200803
  67. Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003. doi: 10.1080/15548627.2017.1309485 PMID: 28441075
  68. Allen, D.A.; Harwood, S.M.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J., 2003, 17(8), 1-21. doi: 10.1096/fj.02-0130fje PMID: 12670885
  69. Igarashi, M.; Wakasaki, H.; Takahara, N.; Ishii, H.; Jiang, Z.Y.; Yamauchi, T.; Kuboki, K.; Meier, M.; Rhodes, C.J.; King, G.L. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J. Clin. Invest., 1999, 103(2), 185-195. doi: 10.1172/JCI3326 PMID: 9916130
  70. Adhikary, L.; Chow, F.; Nikolic-Paterson, D.J.; Stambe, C.; Dowling, J.; Atkins, R.C.; Tesch, G.H. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia, 2004, 47(7), 1210-1222. doi: 10.1007/s00125-004-1437-0 PMID: 15232685
  71. Meldrum, K.K.; Meldrum, D.R.; Hile, K.L.; Yerkes, E.B.; Ayala, A.; Cain, M.P.; Rink, R.C.; Casale, A.J.; Kaefer, M.A. p38 MAPK mediates renal tubular cell TNF-α production and TNF-α-dependent apoptosis during simulated ischemia. Am. J. Physiol. Cell Physiol., 2001, 281(2), C563-C570. doi: 10.1152/ajpcell.2001.281.2.C563 PMID: 11443055
  72. Zhou, L.; Xu, D.; Sha, W.; Shen, L.; Lu, G.; Yin, X.; Wang, M. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med., 2015, 13(1), 352. doi: 10.1186/s12967-015-0710-y PMID: 26552447
  73. Garagliano, J.M.; Katsurada, A.; Miyata, K.; Derbenev, A.V.; Zsombok, A.; Navar, L.G.; Satou, R. Advanced glycation end products stimulate angiotensinogen production in renal proximal tubular cells. Am. J. Med. Sci., 2019, 357(1), 57-66. doi: 10.1016/j.amjms.2018.10.008 PMID: 30466736
  74. Forbes, J.M.; Thallas, V.; Thomas, M.C.; Founds, H.W.; Burns, W.C.; Jerums, G.; Cooper, M.E. The breakdown of pre-existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J., 2003, 17(12), 1762-1764. doi: 10.1096/fj.02-1102fje PMID: 12958202
  75. Curran, C.S.; Kopp, J.B. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front. Med. (Lausanne), 2022, 9, 970423. doi: 10.3389/fmed.2022.970423 PMID: 36017003
  76. Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798. doi: 10.3389/fphar.2017.00798 PMID: 29163178
  77. Zatz, R.; Dunn, B.R.; Meyer, T.W.; Anderson, S.; Rennke, H.G.; Brenner, B.M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest., 1986, 77(6), 1925-1930. doi: 10.1172/JCI112521 PMID: 3011862
  78. Hostetter, T.H.; Troy, J.L.; Brenner, B.M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int., 1981, 19(3), 410-415. doi: 10.1038/ki.1981.33 PMID: 7241881
  79. Singh, R.; Singh, A.K.; Alavi, N.; Leehey, D.J. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J. Am. Soc. Nephrol., 2003, 14(4), 873-880. doi: 10.1097/01.ASN.0000060804.40201.6E PMID: 12660321
  80. Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens., 2007, 21(1), 20-27. doi: 10.1038/sj.jhh.1002101 PMID: 17096009
  81. Vidotti, D.B.; Casarini, D.E.; Cristovam, P.C.; Leite, C.A.; Schor, N.; Boim, M.A. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am. J. Physiol. Renal Physiol., 2004, 286(6), F1039-F1045. doi: 10.1152/ajprenal.00371.2003 PMID: 14722017
  82. Satirapoj, B. Nephropathy in diabetes. Adv. Exp. Med. Biol., 2013, 771, 107-122. doi: 10.1007/978-1-4614-5441-0_11 PMID: 23393675
  83. He, W.; Miao, F.J.P.; Lin, D.C.H.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004, 429(6988), 188-193. doi: 10.1038/nature02488 PMID: 15141213
  84. Vallon, V.; Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol., 2011, 1(3), 1175-1232. doi: 10.1002/cphy.c100049 PMID: 23733640
  85. Vallon, V.; Blantz, R.C.; Thomson, S. Glomerular hyperfiltration and the salt paradox in early corrected type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol., 2003, 14(2), 530-537. doi: 10.1097/01.ASN.0000051700.07403.27 PMID: 12538755
  86. Abbate, M.; Remuzzi, G. Proteinuria as a mediator of tubulointerstitial injury. Kidney Blood Press. Res., 1999, 22(1-2), 37-46. doi: 10.1159/000025907 PMID: 10352406
  87. Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454. doi: 10.2337/db08-0057 PMID: 18511445
  88. Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55(1), 225-233. doi: 10.2337/diabetes.55.01.06.db05-0894 PMID: 16380497
  89. Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269. doi: 10.2174/092986710793348581 PMID: 20939814
  90. Kumar, S.; Kim, Y.R.; Vikram, A.; Naqvi, A.; Li, Q.; Kassan, M.; Kumar, V.; Bachschmid, M.M.; Jacobs, J.S.; Kumar, A.; Irani, K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1714-1719. doi: 10.1073/pnas.1614112114 PMID: 28137876
  91. Lee, E.A.; Seo, J.Y.; Jiang, Z.; Yu, M.R.; Kwon, M.K.; Ha, H.; Lee, H.B. Reactive oxygen species mediate high glucose–induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int., 2005, 67(5), 1762-1771. doi: 10.1111/j.1523-1755.2005.00274.x PMID: 15840023
  92. Zhan, M.; Brooks, C.; Liu, F.; Sun, L.; Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int., 2013, 83(4), 568-581. doi: 10.1038/ki.2012.441 PMID: 23325082
  93. Zhan, M.; Usman, I.; Yu, J.; Ruan, L.; Bian, X.; Yang, J.; Yang, S.; Sun, L.; Kanwar, Y.S. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clin. Sci. (Lond.), 2018, 132(12), 1297-1314. doi: 10.1042/CS20180005 PMID: 29760122
  94. Zhan, M.; Usman, I.M.; Sun, L.; Kanwar, Y.S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol., 2015, 26(6), 1304-1321. doi: 10.1681/ASN.2014050457 PMID: 25270067
  95. Goldfine, A.B.; Shoelson, S.E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest., 2017, 127(1), 83-93. doi: 10.1172/JCI88884 PMID: 28045401
  96. Zhang, H.; Nair, V.; Saha, J.; Atkins, K.B.; Hodgin, J.B.; Saunders, T.L.; Myers, M.G., Jr; Werner, T.; Kretzler, M.; Brosius, F.C. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int., 2017, 92(4), 909-921. doi: 10.1016/j.kint.2017.03.027 PMID: 28554737
  97. Toth-Manikowski, S.; Atta, M.G. Diabetic kidney disease: Pathophysiology and therapeutic targets. J. Diabetes Res., 2015, 2015, 1-16. doi: 10.1155/2015/697010 PMID: 26064987
  98. García-García, P.M.; Getino-Melián, M.A.; Domínguez-Pimentel, V.; Navarro-González, J.F. Inflammation in diabetic kidney disease. World J. Diabetes, 2014, 5(4), 431-443. doi: 10.4239/wjd.v5.i4.431 PMID: 25126391
  99. Donate-Correa, J.; Martín-Núñez, E.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic nephropathy. J. Diabetes Res., 2015, 2015, 1-9. doi: 10.1155/2015/948417 PMID: 25785280
  100. Weigert, C.; Sauer, U.; Brodbeck, K.; Pfeiffer, A.; Häring, H.U.; Schleicher, E.D. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J. Am. Soc. Nephrol., 2000, 11(11), 2007-2016. doi: 10.1681/ASN.V11112007 PMID: 11053476
  101. Gruden, G.; Zonca, S.; Hayward, A.; Thomas, S.; Maestrini, S.; Gnudi, L.; Viberti, G.C. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes, 2000, 49(4), 655-661. doi: 10.2337/diabetes.49.4.655 PMID: 10871205
  102. Wada, J.; Makino, H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol., 2016, 12(1), 13-26. doi: 10.1038/nrneph.2015.175 PMID: 26568190
  103. Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol., 2020, 16(4), 206-222. doi: 10.1038/s41581-019-0234-4 PMID: 31942046
  104. Hong, J.N.; Li, W.W.; Wang, L.L.; Guo, H.; Jiang, Y.; Gao, Y.J.; Tu, P.F.; Wang, X.M. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice. Chin. Med., 2017, 12(1), 13. doi: 10.1186/s13020-017-0134-0 PMID: 28529539
  105. Fu, J.; Akat, K.M.; Sun, Z.; Zhang, W.; Schlondorff, D.; Liu, Z.; Tuschl, T.; Lee, K.; He, J.C. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J. Am. Soc. Nephrol., 2019, 30(4), 533-545. doi: 10.1681/ASN.2018090896 PMID: 30846559
  106. Wang, X.; Yao, B.; Wang, Y.; Fan, X.; Wang, S.; Niu, A.; Yang, H.; Fogo, A.; Zhang, M.Z.; Harris, R.C. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes, 2017, 66(2), 494-504. doi: 10.2337/db16-0773 PMID: 27815317
  107. Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. Pentraxin-3 attenuates renal damage in diabetic nephropathy by promoting M2 macrophage differentiation. Inflammation, 2015, 38(5), 1739-1747. doi: 10.1007/s10753-015-0151-z PMID: 25761429
  108. Tang, P.M.K.; Zhang, Y.; Xiao, J.; Tang, P.C.T.; Chung, J.Y.F.; Li, J.; Xue, V.W.; Huang, X.R.; Chong, C.C.N.; Ng, C.F.; Lee, T.L.; To, K.F.; Nikolic-Paterson, D.J.; Lan, H.Y. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage–myofibroblast transition. Proc. Natl. Acad. Sci. USA, 2020, 117(34), 20741-20752. doi: 10.1073/pnas.1917663117 PMID: 32788346
  109. Tang, P.M.K.; Nikolic-Paterson, D.J.; Lan, H.Y. Macrophages: Versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol., 2019, 15(3), 144-158. doi: 10.1038/s41581-019-0110-2 PMID: 30692665
  110. Awad, A.S.; You, H.; Gao, T.; Cooper, T.K.; Nedospasov, S.A.; Vacher, J.; Wilkinson, P.F.; Farrell, F.X.; Brian Reeves, W. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int., 2015, 88(4), 722-733. doi: 10.1038/ki.2015.162 PMID: 26061548
  111. Moriwaki, Y.; Inokuchi, T.; Yamamoto, A.; Ka, T.; Tsutsumi, Z.; Takahashi, S.; Yamamoto, T. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol., 2007, 44(4), 215-218. doi: 10.1007/s00592-007-0007-6 PMID: 17767370
  112. Pavkov, M.E.; Weil, E.J.; Fufaa, G.D.; Nelson, R.G.; Lemley, K.V.; Knowler, W.C.; Niewczas, M.A.; Krolewski, A.S. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int., 2016, 89(1), 226-234. doi: 10.1038/ki.2015.278 PMID: 26398493
  113. Huang, K.; Huang, J.; Xie, X.; Wang, S.; Chen, C.; Shen, X.; Liu, P.; Huang, H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med., 2013, 65, 528-540. doi: 10.1016/j.freeradbiomed.2013.07.029 PMID: 23891678
  114. Chen, Y.; Liang, Y.; Hu, T.; Wei, R.; Cai, C.; Wang, P.; Wang, L.; Qiao, W.; Feng, L. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med., 2017, 14(5), 4181-4193. doi: 10.3892/etm.2017.5098 PMID: 29104634
  115. Shao, Y.; Lv, C.; Wu, C.; Zhou, Y.; Wang, Q. Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway. Diabetes Metab. Res. Rev., 2016, 32(6), 534-543. doi: 10.1002/dmrr.2788 PMID: 26891083
  116. Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 139-152. doi: 10.1042/CS20120198 PMID: 23075333
  117. Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442. doi: 10.1681/ASN.2007091048 PMID: 18256353
  118. Alicic, R.Z.; Johnson, E.J.; Tuttle, K.R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis., 2018, 25(2), 181-191. doi: 10.1053/j.ackd.2017.12.002 PMID: 29580582
  119. Wada, T.; Furuichi, K.; Sakai, N.; Iwata, Y.; Yoshimoto, K.; Shimizu, M.; Takeda, S.I.; Takasawa, K.; Yoshimura, M.; Kida, H.; Kobayashi, K.I.; Mukaida, N.; Naito, T.; Matsushima, K.; Yokoyama, H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int., 2000, 58(4), 1492-1499. doi: 10.1046/j.1523-1755.2000.00311.x PMID: 11012884
  120. Guzik, T.J.; Harrison, D.G. Endothelial NF-kappaB as a mediator of kidney damage: the missing link between systemic vascular and renal disease? Circ. Res., 2007, 101(3), 227-229. doi: 10.1161/CIRCRESAHA.107.158295 PMID: 17673681
  121. Tang, P.M.K.; Zhang, Y.Y.; Hung, J.S.C.; Chung, J.Y.F.; Huang, X.R.; To, K.F.; Lan, H.Y. DPP4/CD32b/NF-κB circuit: A novel druggable target for inhibiting crp-driven diabetic nephropathy. Mol. Ther., 2021, 29(1), 365-375. doi: 10.1016/j.ymthe.2020.08.017 PMID: 32956626
  122. Wang, W.J.; Cai, G.Y.; Chen, X.M. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget, 2017, 8(38), 64520-64533. doi: 10.18632/oncotarget.17327 PMID: 28969091
  123. Prattichizzo, F.; De Nigris, V.; Mancuso, E.; Spiga, R.; Giuliani, A.; Matacchione, G.; Lazzarini, R.; Marcheselli, F.; Recchioni, R.; Testa, R.; La Sala, L.; Rippo, M.R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol., 2018, 15, 170-181. doi: 10.1016/j.redox.2017.12.001 PMID: 29253812
  124. Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972. doi: 10.1172/JCI64098 PMID: 23454759
  125. Ovadya, Y.; Krizhanovsky, V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014, 15(6), 627-642. doi: 10.1007/s10522-014-9529-9 PMID: 25217383
  126. López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217. doi: 10.1016/j.cell.2013.05.039 PMID: 23746838
  127. Ohashi, S.; Abe, H.; Takahashi, T.; Yamamoto, Y.; Takeuchi, M.; Arai, H.; Nagata, K.; Kita, T.; Okamoto, H.; Yamamoto, H.; Doi, T. Advanced glycation end products increase collagen-specific chaperone protein in mouse diabetic nephropathy. J. Biol. Chem., 2004, 279(19), 19816-19823. doi: 10.1074/jbc.M310428200 PMID: 15004023
  128. Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol Med, 2015(1), S32-S40. doi: 10.2119/molmed.2015.00067 PMID: 26605646
  129. Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ. Cardiovasc. Genet., 2015, 8(1), 150-158. doi: 10.1161/CIRCGENETICS.114.000671 PMID: 25472959
  130. Chung, H.Y.; Sung, B.; Jung, K.J.; Zou, Y.; Yu, B.P. The molecular inflammatory process in aging. Antioxid. Redox Signal., 2006, 8(3-4), 572-581. doi: 10.1089/ars.2006.8.572 PMID: 16677101
  131. Stenvinkel, P.; Larsson, T.E. Chronic kidney disease: A clinical model of premature aging. Am. J. Kidney Dis., 2013, 62(2), 339-351. doi: 10.1053/j.ajkd.2012.11.051 PMID: 23357108
  132. Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362. doi: 10.1016/j.cell.2008.01.020 PMID: 18267068
  133. Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380. doi: 10.1038/sj.emboj.7600244 PMID: 15152190
  134. Satoh, A.; Brace, C.S.; Rensing, N.; Cliften, P.; Wozniak, D.F.; Herzog, E.D.; Yamada, K.A.; Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab., 2013, 18(3), 416-430. doi: 10.1016/j.cmet.2013.07.013 PMID: 24011076
  135. Zhao, Y.; Banerjee, S.; Dey, N.; LeJeune, W.S.; Sarkar, P.S.; Brobey, R.; Rosenblatt, K.P.; Tilton, R.G.; Choudhary, S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes, 2011, 60(7), 1907-1916. doi: 10.2337/db10-1262 PMID: 21593200
  136. O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal aging: Causes and consequences. J. Am. Soc. Nephrol., 2017, 28(2), 407-420. doi: 10.1681/ASN.2015121308 PMID: 28143966
  137. Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075. doi: 10.1038/nature06639 PMID: 18305538
  138. Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293. doi: 10.1016/j.molcel.2010.09.023 PMID: 20965422
  139. Ding, Y.; Kim, S.; Lee, S.Y.; Koo, J.K.; Wang, Z.; Choi, M.E. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol., 2014, 25(12), 2835-2846. doi: 10.1681/ASN.2013101068 PMID: 24854279
  140. Condon, K.J.; Sabatini, D.M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci., 2019, 132(21), jcs222570. doi: 10.1242/jcs.222570 PMID: 31722960
  141. Li, Y.; Chen, Y. AMPK and autophagy. Adv. Exp. Med. Biol., 2019, 1206, 85-108. doi: 10.1007/978-981-15-0602-4_4 PMID: 31776981
  142. Fang, L.; Zhou, Y.; Cao, H.; Wen, P.; Jiang, L.; He, W.; Dai, C.; Yang, J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One, 2013, 8(4), e60546. doi: 10.1371/journal.pone.0060546 PMID: 23593240
  143. Catrina, S.B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia, 2021, 64(4), 709-716. doi: 10.1007/s00125-021-05380-z PMID: 33496820
  144. Yeo, E.J. Hypoxia and aging. Exp. Mol. Med., 2019, 51(6), 1-15. PMID: 31221957
  145. Yamamoto, T.; Takabatake, Y.; Kimura, T.; Takahashi, A.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.; Matsui, I.; Kitamura, H.; Matsusaka, T.; Niimura, F.; Yanagita, M.; Isaka, Y.; Rakugi, H. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy, 2016, 12(5), 801-813. doi: 10.1080/15548627.2016.1159376 PMID: 26986194
  146. Jiang, N.; Zhao, H.; Han, Y.; Li, L.; Xiong, S.; Zeng, L.; Xiao, Y.; Wei, L.; Xiong, X.; Gao, P.; Yang, M.; Liu, Y.; Sun, L. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1–mediated control of mitochondrial dynamics. Cell Prolif., 2020, 53(11), e12909. doi: 10.1111/cpr.12909 PMID: 32975326
  147. Bellot, G.; Garcia-Medina, R.; Gounon, P.; Chiche, J.; Roux, D.; Pouysségur, J.; Mazure, N.M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 2009, 29(10), 2570-2581. doi: 10.1128/MCB.00166-09 PMID: 19273585
  148. Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055. doi: 10.1172/JCI41376 PMID: 20335657
  149. Liu, W.J.; Huang, W.F.; Ye, L.; Chen, R.H.; Yang, C.; Wu, H.L.; Pan, Q.J.; Liu, H.F. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3182-3189. PMID: 29863264. PMID: 29863264
  150. Naguib, M.; Rashed, L.A. Serum level of the autophagy biomarker Beclin-1 in patients with diabetic kidney disease. Diabetes Res. Clin. Pract., 2018, 143, 56-61. doi: 10.1016/j.diabres.2018.06.022 PMID: 29959950
  151. Shiels, P.G.; McGuinness, D.; Eriksson, M.; Kooman, J.P.; Stenvinkel, P. The role of epigenetics in renal ageing. Nat. Rev. Nephrol., 2017, 13(8), 471-482. doi: 10.1038/nrneph.2017.78 PMID: 28626222
  152. Sugita, E.; Hayashi, K.; Hishikawa, A.; Itoh, H. Epigenetic alterations in podocytes in diabetic nephropathy. Front. Pharmacol., 2021, 12, 759299. doi: 10.3389/fphar.2021.759299 PMID: 34630127
  153. Hayashi, K.; Sasamura, H.; Nakamura, M.; Sakamaki, Y.; Azegami, T.; Oguchi, H.; Tokuyama, H.; Wakino, S.; Hayashi, K.; Itoh, H. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int., 2015, 88(4), 745-753. doi: 10.1038/ki.2015.178 PMID: 26108068
  154. Wan, F.; Tang, Y.W.; Tang, X.L.; Li, Y.Y.; Yang, R.C. TET2 mediated demethylation is involved in the protective effect of triptolide on podocytes. Am. J. Transl. Res., 2021, 13(3), 1233-1244. PMID: 33841652
  155. Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504. doi: 10.1038/nm.3363 PMID: 24141423
  156. Young, G.H.; Wu, V.C. Klotho methylation is linked to uremic toxins and chronic kidney disease. Kidney Int., 2012, 81(7), 611-612. doi: 10.1038/ki.2011.461 PMID: 22419041
  157. Verzola, D.; Gandolfo, M.T.; Gaetani, G.; Ferraris, A.; Mangerini, R.; Ferrario, F.; Villaggio, B.; Gianiorio, F.; Tosetti, F.; Weiss, U.; Traverso, P.; Mji, M.; Deferrari, G.; Garibotto, G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1563-F1573. doi: 10.1152/ajprenal.90302.2008 PMID: 18768588
  158. Westhoff, J.H.; Schildhorn, C.; Jacobi, C.; Hömme, M.; Hartner, A.; Braun, H.; Kryzer, C.; Wang, C.; von Zglinicki, T.; Kränzlin, B.; Gretz, N.; Melk, A. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol., 2010, 21(2), 327-336. doi: 10.1681/ASN.2009010072 PMID: 19959722
  159. Cheng, H.; Fan, X.; Lawson, W.E.; Paueksakon, P.; Harris, R.C. Telomerase deficiency delays renal recovery in mice after ischemia–reperfusion injury by impairing autophagy. Kidney Int., 2015, 88(1), 85-94. doi: 10.1038/ki.2015.69 PMID: 25760322
  160. Sharma, K.; Karl, B.; Mathew, A.V.; Gangoiti, J.A.; Wassel, C.L.; Saito, R.; Pu, M.; Sharma, S.; You, Y.H.; Wang, L.; Diamond-Stanic, M.; Lindenmeyer, M.T.; Forsblom, C.; Wu, W.; Ix, J.H.; Ideker, T.; Kopp, J.B.; Nigam, S.K.; Cohen, C.D.; Groop, P.H.; Barshop, B.A.; Natarajan, L.; Nyhan, W.L.; Naviaux, R.K. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol., 2013, 24(11), 1901-1912. doi: 10.1681/ASN.2013020126 PMID: 23949796
  161. Wauer, T.; Simicek, M.; Schubert, A.; Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature, 2015, 524(7565), 370-374. doi: 10.1038/nature14879 PMID: 26161729
  162. Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524(7565), 309-314. doi: 10.1038/nature14893 PMID: 26266977
  163. Chen, K.; Dai, H.; Yuan, J.; Chen, J.; Lin, L.; Zhang, W.; Wang, L.; Zhang, J.; Li, K.; He, Y. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis., 2018, 9(2), 105. doi: 10.1038/s41419-017-0127-z PMID: 29367621
  164. Sun, C.Y.; Cheng, M.L.; Pan, H.C.; Lee, J.H.; Lee, C.C. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget, 2017, 8(44), 77722-77733. doi: 10.18632/oncotarget.20773 PMID: 29100420
  165. Shimizu, H.; Bolati, D.; Adijiang, A.; Enomoto, A.; Nishijima, F.; Dateki, M.; Niwa, T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol., 2010, 299(5), C1110-C1117. doi: 10.1152/ajpcell.00217.2010 PMID: 20720180
  166. Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med., 2013, 60, 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011 PMID: 23434764
  167. Böger, R.H.; Bode-Böger, S.M.; Szuba, A.; Tsao, P.S.; Chan, J.R.; Tangphao, O.; Blaschke, T.F.; Cooke, J.P. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation, 1998, 98(18), 1842-1847. doi: 10.1161/01.CIR.98.18.1842 PMID: 9799202
  168. Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev., 1998, 78(2), 547-581. doi: 10.1152/physrev.1998.78.2.547 PMID: 9562038
  169. Pérez-Gallardo, R.V.; Noriega-Cisneros, R.; Esquivel-Gutiérrez, E.; Calderón-Cortés, E.; Cortés-Rojo, C.; Manzo-Avalos, S.; Campos-García, J.; Salgado-Garciglia, R.; Montoya-Pérez, R.; Boldogh, I.; Saavedra-Molina, A. Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J. Bioenerg. Biomembr., 2014, 46(6), 511-518. doi: 10.1007/s10863-014-9594-4 PMID: 25425473
  170. Lieber, M.R.; Karanjawala, Z.E. Ageing, repetitive genomes and DNA damage. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 69-75. doi: 10.1038/nrm1281 PMID: 14708011
  171. Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein klotho. Mol. Membr. Biol., 2013, 30(8), 369-385. doi: 10.3109/09687688.2013.837518 PMID: 24124751
  172. Kim, J.H.; Hwang, K.H.; Park, K.S.; Kong, I.D.; Cha, S.K. Biological role of anti-aging protein klotho. J. Lifestyle Med., 2015, 5(1), 1-6. doi: 10.15280/jlm.2015.5.1.1 PMID: 26528423
  173. Drew, D.A.; Katz, R.; Kritchevsky, S.; Ix, J.; Shlipak, M.; Gutiérrez, O.M.; Newman, A.; Hoofnagle, A.; Fried, L.; Semba, R.D.; Sarnak, M. Association between soluble klotho and change in kidney function: The health aging and body composition study. J. Am. Soc. Nephrol., 2017, 28(6), 1859-1866. doi: 10.1681/ASN.2016080828 PMID: 28104822
  174. Xu, Y.; Sun, Z. Molecular basis of klotho: From gene to function in aging. Endocr. Rev., 2015, 36(2), 174-193. doi: 10.1210/er.2013-1079 PMID: 25695404
  175. Ohnishi, M.; Razzaque, M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J., 2010, 24(9), 3562-3571. doi: 10.1096/fj.09-152488 PMID: 20418498
  176. Asai, O.; Nakatani, K.; Tanaka, T.; Sakan, H.; Imura, A.; Yoshimoto, S.; Samejima, K.; Yamaguchi, Y.; Matsui, M.; Akai, Y.; Konishi, N.; Iwano, M.; Nabeshima, Y.; Saito, Y. Decreased renal α-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int., 2012, 81(6), 539-547. doi: 10.1038/ki.2011.423 PMID: 22217880
  177. Miao, J.; Huang, J.; Luo, C.; Ye, H.; Ling, X.; Wu, Q.; Shen, W.; Zhou, L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol. Rep., 2021, 9(2), e14696. doi: 10.14814/phy2.14696 PMID: 33463897
  178. Zhou, D.; Tan, R.J.; Fu, H.; Liu, Y. Wnt/β-catenin signaling in kidney injury and repair: A double-edged sword. Lab. Invest., 2016, 96(2), 156-167. doi: 10.1038/labinvest.2015.153 PMID: 26692289
  179. He, W.; Dai, C.; Li, Y.; Zeng, G.; Monga, S.P.; Liu, Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol., 2009, 20(4), 765-776. doi: 10.1681/ASN.2008060566 PMID: 19297557
  180. Zhou, L.; Li, Y.; Hao, S.; Zhou, D.; Tan, R.J.; Nie, J.; Hou, F.F.; Kahn, M.; Liu, Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol., 2015, 26(1), 107-120. doi: 10.1681/ASN.2014010085 PMID: 25012166
  181. Luo, C.; Zhou, S.; Zhou, Z.; Liu, Y.; Yang, L.; Liu, J.; Zhang, Y.; Li, H.; Liu, Y.; Hou, F.F.; Zhou, L. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol., 2018, 29(4), 1238-1256. doi: 10.1681/ASN.2017050574 PMID: 29440280
  182. Kitada, M.; Kume, S.; Takeda-Watanabe, A.; Kanasaki, K.; Koya, D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 153-164. doi: 10.1042/CS20120190 PMID: 23075334
  183. Ogura, Y.; Kitada, M.; Koya, D. Sirtuins and renal oxidative stress. Antioxidants, 2021, 10(8), 1198. doi: 10.3390/antiox10081198 PMID: 34439446
  184. Tanaka, Y.; Kume, S.; Kitada, M.; Kanasaki, K.; Uzu, T.; Maegawa, H.; Koya, D. Autophagy as a therapeutic target in diabetic nephropathy. Exp. Diabetes Res., 2012, 2012, 1-12. doi: 10.1155/2012/628978 PMID: 22028701
  185. Chuang, P.Y.; Cai, W.; Li, X.; Fang, L.; Xu, J.; Yacoub, R.; He, J.C.; Lee, K. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol., 2017, 313(3), F621-F628. doi: 10.1152/ajprenal.00255.2017 PMID: 28615249
  186. Kume, S.; Kitada, M.; Kanasaki, K.; Maegawa, H.; Koya, D. Anti-aging molecule, Sirt1: A novel therapeutic target for diabetic nephropathy. Arch. Pharm. Res., 2013, 36(2), 230-236. doi: 10.1007/s12272-013-0019-4 PMID: 23361587
  187. Ledford, H. Sirtuin protein linked to longevity in mammals. Nature, 2012. doi: 10.1038/nature.2012.10074
  188. Someya, S.; Yu, W.; Hallows, W.C.; Xu, J.; Vann, J.M.; Leeuwenburgh, C.; Tanokura, M.; Denu, J.M.; Prolla, T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010, 143(5), 802-812. doi: 10.1016/j.cell.2010.10.002 PMID: 21094524
  189. Cai, J.; Liu, Z.; Huang, X.; Shu, S.; Hu, X.; Zheng, M.; Tang, C.; Liu, Y.; Chen, G.; Sun, L.; Liu, H.; Liu, F.; Cheng, J.; Dong, Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int., 2020, 97(1), 106-118. doi: 10.1016/j.kint.2019.08.028 PMID: 31787254
  190. Bonafè, M.; Sabbatinelli, J.; Olivieri, F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res. Rev., 2020, 59, 101027. doi: 10.1016/j.arr.2020.101027 PMID: 32068123
  191. Tennen, R.I.; Chua, K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci., 2011, 36(1), 39-46. doi: 10.1016/j.tibs.2010.07.009 PMID: 20729089
  192. Ji, L.; Chen, Y.; Wang, H.; Zhang, W.; He, L.; Wu, J.; Liu, Y. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int. J. Oncol., 2019, 55(1), 103-115. doi: 10.3892/ijo.2019.4800 PMID: 31115579
  193. Hasegawa, K.; Wakino, S.; Yoshioka, K.; Tatematsu, S.; Hara, Y.; Minakuchi, H.; Washida, N.; Tokuyama, H.; Hayashi, K.; Itoh, H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun., 2008, 372(1), 51-56. doi: 10.1016/j.bbrc.2008.04.176 PMID: 18485895
  194. Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 367-377. doi: 10.1038/nrm2391 PMID: 18401346
  195. Ryan, A.S. Insulin resistance with aging: Effects of diet and exercise. Sports Med., 2000, 30(5), 327-346. doi: 10.2165/00007256-200030050-00002 PMID: 11103847
  196. Engfeldt, P.; Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl., 1988, 19, 26-29. PMID: 3069692
  197. Han, L.L.; Bai, X.J.; Lin, H.L.; Sun, X.F.; Chen, X.M. Association between kidney and cardiac diastolic function in Chinese subjects without overt disease: Correlation with ageing and inflammatory markers. Eur. J. Clin. Invest., 2011, 41(10), 1077-1086. doi: 10.1111/j.1365-2362.2011.02503.x PMID: 21413979
  198. Matoba, K.; Takeda, Y.; Nagai, Y.; Kawanami, D.; Utsunomiya, K.; Nishimura, R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(14), 3393. doi: 10.3390/ijms20143393 PMID: 31295940
  199. Satirapoj, B.; Dispan, R.; Radinahamed, P.; Kitiyakara, C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol., 2018, 19(1), 246. doi: 10.1186/s12882-018-1043-x PMID: 30241508
  200. Yang, X.; Liu, S.; Zhang, R.; Sun, B.; Zhou, S.; Chen, R.; Yu, P. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease. J. Diabetes Investig., 2018, 9(3), 602-609. doi: 10.1111/jdi.12753 PMID: 28940849
  201. Wu, C.; Wang, Q.; Lv, C.; Qin, N.; Lei, S.; Yuan, Q.; Wang, G. The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin. Diabetes Res. Clin. Pract., 2014, 106(2), 343-350. doi: 10.1016/j.diabres.2014.08.026 PMID: 25263500
  202. Fountoulakis, N.; Maltese, G.; Gnudi, L.; Karalliedde, J. Reduced levels of anti-ageing hormone klotho predict renal function decline in type 2 diabetes. J. Clin. Endocrinol. Metab., 2018, 103(5), 2026-2032. doi: 10.1210/jc.2018-00004 PMID: 29509906
  203. Ruggenenti, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Petrov Iliev, I.; Pisanu, G.; Perna, A.; Russo, A.; Diadei, O.; Martinetti, D.; Cannata, A.; Carrara, F.; Ferrari, S.; Stucchi, N.; Remuzzi, G.; Fontana, L. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: A randomized controlled trial. Diabetes, 2017, 66(1), 75-86. doi: 10.2337/db16-0607 PMID: 27634224
  204. Chu, S.H.; Yang, D.; Wang, Y.; Yang, R.; Qu, L.; Zeng, H. Effect of resveratrol on the repair of kidney and brain injuries and its regulation on klotho gene in d-galactose-induced aging mice. Bioorg. Med. Chem. Lett., 2021, 40, 127913. doi: 10.1016/j.bmcl.2021.127913 PMID: 33705905
  205. Fouque, D.; Pelletier, S.; Mafra, D.; Chauveau, P. Nutrition and chronic kidney disease. Kidney Int., 2011, 80(4), 348-357. doi: 10.1038/ki.2011.118 PMID: 21562470
  206. Kume, S.; Koya, D. Autophagy: A novel therapeutic target for diabetic nephropathy. Diabetes Metab. J., 2015, 39(6), 451-460. doi: 10.4093/dmj.2015.39.6.451 PMID: 26706914
  207. Liu, C.; Liu, H.; Fang, Y.; Jiang, S.; Zhu, J.; Ding, X. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction. Clin. Invest. Med., 2014, 37(3), 142. doi: 10.25011/cim.v37i3.21381 PMID: 24895989
  208. Liu, Y. Rapamycin and chronic kidney disease: Beyond the inhibition of inflammation. Kidney Int., 2006, 69(11), 1925-1927. doi: 10.1038/sj.ki.5001543 PMID: 16724087
  209. Houde, V.P.; Brûlé, S.; Festuccia, W.T.; Blanchard, P.G.; Bellmann, K.; Deshaies, Y.; Marette, A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 2010, 59(6), 1338-1348. doi: 10.2337/db09-1324 PMID: 20299475
  210. You, H.; Gao, T.; Cooper, T.K.; Brian Reeves, W.; Awad, A.S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol., 2013, 305(12), F1719-F1727. doi: 10.1152/ajprenal.00141.2013 PMID: 24173355
  211. Sharma, D.; Bhattacharya, P.; Kalia, K.; Tiwari, V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res. Clin. Pract., 2017, 128, 91-108. doi: 10.1016/j.diabres.2017.04.010 PMID: 28453961
  212. Bolignano, D.; Cernaro, V.; Gembillo, G.; Baggetta, R.; Buemi, M.; D’Arrigo, G. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS One, 2017, 12(6), e0178699. doi: 10.1371/journal.pone.0178699 PMID: 28570649
  213. Zhao, Y.; Zhang, W.; Jia, Q.; Feng, Z.; Guo, J.; Han, X.; Liu, Y.; Shang, H.; Wang, Y.; Liu, W.J. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Front. Physiol., 2019, 9, 1939. doi: 10.3389/fphys.2018.01939 PMID: 30719008
  214. Aghadavod, E.; Soleimani, A.; Hamidi, G.; Keneshlou, F.; Heidari, A.; Asemi, Z. Effects of high-dose vitamin E supplementation on markers of cardiometabolic risk and oxidative stress in patients with diabetic nephropathy: A randomized double-blinded controlled trial. Iran. J. Kidney Dis., 2018, 12(3), 156-162. PMID: 29891745
  215. Wu, C.; Qin, N.; Ren, H.; Yang, M.; Liu, S.; Wang, Q. Metformin regulating mir-34a pathway to inhibit egr1 in rat mesangial cells cultured with high glucose. Int. J. Endocrinol., 2018, 2018, 1-15. doi: 10.1155/2018/6462793 PMID: 29681936
  216. Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med., 2019, 380(24), 2295-2306. doi: 10.1056/NEJMoa1811744 PMID: 30990260
  217. Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204. doi: 10.1152/ajprenal.00520.2013 PMID: 24226524
  218. Jayarathne, H.S.M.; Debarba, L.K.; Jaboro, J.J.; Ginsburg, B.C.; Miller, R.A.; Sadagurski, M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell, 2022, 21(7), e13653. doi: 10.1111/acel.13653 PMID: 35707855
  219. Miller, R.A.; Harrison, D.E.; Allison, D.B.; Bogue, M.; Debarba, L.; Diaz, V.; Fernandez, E.; Galecki, A.; Garvey, W.T.; Jayarathne, H.; Kumar, N.; Javors, M.A.; Ladiges, W.C.; Macchiarini, F.; Nelson, J.; Reifsnyder, P.; Rosenthal, N.A.; Sadagurski, M.; Salmon, A.B.; Smith, D.L., Jr; Snyder, J.M.; Lombard, D.B.; Strong, R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5(21), e140019. doi: 10.1172/jci.insight.140019 PMID: 32990681
  220. Snyder, J.M.; Casey, K.M.; Galecki, A.; Harrison, D.E.; Jayarathne, H.; Kumar, N.; Macchiarini, F.; Rosenthal, N.; Sadagurski, M.; Salmon, A.B.; Strong, R.; Miller, R.A.; Ladiges, W. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice. Geroscience, 2023, 45(1), 385-397. doi: 10.1007/s11357-022-00641-0 PMID: 35974129
  221. Kröller-Schön, S.; Knorr, M.; Hausding, M.; Oelze, M.; Schuff, A.; Schell, R.; Sudowe, S.; Scholz, A.; Daub, S.; Karbach, S.; Kossmann, S.; Gori, T.; Wenzel, P.; Schulz, E.; Grabbe, S.; Klein, T.; Münzel, T.; Daiber, A. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc. Res., 2012, 96(1), 140-149. doi: 10.1093/cvr/cvs246 PMID: 22843705
  222. Rodríguez-Iturbe, B.; Quiroz, Y.; Shahkarami, A.; Li, Z.; Vaziri, N.D. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int., 2005, 68(3), 1041-1047. doi: 10.1111/j.1523-1755.2005.00496.x PMID: 16105034
  223. Kawahara, T.L.A.; Michishita, E.; Adler, A.S.; Damian, M.; Berber, E.; Lin, M.; McCord, R.A.; Ongaigui, K.C.L.; Boxer, L.D.; Chang, H.Y.; Chua, K.F. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell, 2009, 136(1), 62-74. doi: 10.1016/j.cell.2008.10.052 PMID: 19135889
  224. Han, S.J.; Kim, H.J.; Kim, D.J.; Sheen, S.S.; Chung, C.H.; Ahn, C.W.; Kim, S.H.; Cho, Y.W.; Park, S.W.; Kim, S.K.; Kim, C.S.; Kim, K.W.; Lee, K.W. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: A prospective randomized double-blind multicenter study. Diabetol. Metab. Syndr., 2015, 7(1), 64. doi: 10.1186/s13098-015-0060-1 PMID: 26300986
  225. Gu, Y.Y.; Lu, F.H.; Huang, X.R.; Zhang, L.; Mao, W.; Yu, X.Q.; Liu, X.S.; Lan, H.Y. Non-coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease. Front. Pharmacol., 2021, 11, 583528. doi: 10.3389/fphar.2020.583528 PMID: 33574750
  226. Esmaeili, S.; Motamedrad, M.; Hemmati, M.; Mehrpour, O.; Khorashadizadeh, M. Prevention of kidney cell damage in hyperglycaemia condition by adiponectin. Cell Biochem. Funct., 2019, 37(3), 148-152. doi: 10.1002/cbf.3380 PMID: 30908696
  227. Hickson, L.J.; Langhi Prata, L.G.P.; Bobart, S.A.; Evans, T.K.; Giorgadze, N.; Hashmi, S.K.; Herrmann, S.M.; Jensen, M.D.; Jia, Q.; Jordan, K.L.; Kellogg, T.A.; Khosla, S.; Koerber, D.M.; Lagnado, A.B.; Lawson, D.K.; LeBrasseur, N.K.; Lerman, L.O.; McDonald, K.M.; McKenzie, T.J.; Passos, J.F.; Pignolo, R.J.; Pirtskhalava, T.; Saadiq, I.M.; Schaefer, K.K.; Textor, S.C.; Victorelli, S.G.; Volkman, T.L.; Xue, A.; Wentworth, M.A.; Wissler Gerdes, E.O.; Zhu, Y.; Tchkonia, T.; Kirkland, J.L. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456. doi: 10.1016/j.ebiom.2019.08.069 PMID: 31542391
  228. Zhang, D.; Ma, M.; Liu, Y. Protective effects of incretin against age-related diseases. Curr. Drug Deliv., 2019, 16(9), 793-806. doi: 10.2174/1567201816666191010145029 PMID: 31622202
  229. Coppolino, G.; Leporini, C.; Rivoli, L.; Ursini, F.; di Paola, E.D.; Cernaro, V.; Arturi, F.; Bolignano, D.; Russo, E.; De Sarro, G.; Andreucci, M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol. Res., 2018, 129, 274-294. doi: 10.1016/j.phrs.2017.12.001 PMID: 29223646
  230. Shi, J.X.; Huang, Q. Glucagon-like peptide-1 protects mouse podocytes against high glucose-induced apoptosis, and suppresses reactive oxygen species production and proinflammatory cytokine secretion, through sirtuin 1 activation in vitro. Mol. Med. Rep., 2018, 18(2), 1789-1797. doi: 10.3892/mmr.2018.9085 PMID: 29845208

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024