An Updated Review For Hyperuricemia and Gout Management; Special Focus on the Available Drug Delivery Systems and Clinical Trials


Citar

Texto integral

Resumo

Background:Hyperuricemia belongs to metabolic syndromes where increased uric acid levels are identified in the blood serum. Such a syndrome could be responsible for kidney stone formation, gout, hypertension, and chronic kidney diseases. It has been reported that cardiovascular risks have been linked with hyperuricemia. Gout is of the most frequent manifestations due to hyperuricemia; its management involves various pharmacological available options and dietary changes. Throughout the literature, various dosage forms are studied as alternative options to the present drug delivery systems.

Objective:To update and summarize the current information for gout and hyperuricemia management.

Methods:Authors have performed a thorough literature research from 2010-2023 using keywords such as hyperuricemia, gout, diagnosis, guidelines, drug delivery and clinical trials. The databases used were PubMed, ScienceDirect. According to our inclusion criteria, all studies which include the previous terms, as well as drugs or other molecules that can be applied for gout and/or hyperuricemia management, were added.

Results:In this article, authors have summarized the pathogenesis, diagnosis and updated guidelines for gout and hyperuricemia management. Moreover, the authors have reviewed and discussed current drug delivery systems found in the literature, including drugs targeting the above disorders. Finally, the available clinical trials assessing the efficacy of newer drugs or combinations of the past ones, are being discussed.

Conclusion:The available drugs and dosage forms are limited, and therefore, scientific society should focus on the development of more efficient drug delivery systems for hyperuricemia and gout management.

Sobre autores

Ioannis Karantas

, Apostolos Loukas Medical Centre

Email: info@benthamscience.net

Androulla Miliotou

Department of Health Sciences, KES College

Autor responsável pela correspondência
Email: info@benthamscience.net

Panoraia Siafaka

Department of Life Sciences, Faculty of Pharmacy, School of Sciences, European University Cyprus

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Gustafsson, D.; Unwin, R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrol., 2013, 14(1), 164. doi: 10.1186/1471-2369-14-164 PMID: 23895142
  2. Desideri, G.; Castaldo, G.; Lombardi, A.; Mussap, M.; Testa, A.; Pontremoli, R.; Punzi, L.; Borghi, C. Is it time to revise the normal range of serum uric acid levels? Eur. Rev. Med. Pharmacol. Sci., 2014, 18(9), 1295-1306. PMID: 24867507
  3. George, C.; Minter, D.A. Hyperuricemia. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
  4. Skoczyńska, M.; Chowaniec, M.; Szymczak, A.; Langner-Hetmańczuk, A.; Maciążek-Chyra, B.; Wiland, P. Pathophysiology of hyperuricemia and its clinical significance – a narrative review. Reumatologia, 2020, 58(5), 312-323. doi: 10.5114/reum.2020.100140 PMID: 33227090
  5. Yokose, C.; McCormick, N.; Choi, H.K. The role of diet in hyperuricemia and gout. Curr. Opin. Rheumatol., 2021, 33(2), 135-144. doi: 10.1097/BOR.0000000000000779 PMID: 33399399
  6. Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221. doi: 10.3390/ijms22179221 PMID: 34502127
  7. Mahadita, G.W.; Suwitra, K. The role of hyperuricemia in the pathogenesis and progressivity of chronic kidney disease. Open Access Maced. J. Med. Sci., 2021, 9, 428-435. doi: 10.3889/oamjms.2021.7100
  8. Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of hyperuricemia and urate-lowering treatments. Front. Med., 2018, 5, 160. doi: 10.3389/fmed.2018.00160 PMID: 29904633
  9. Yu, W.; Cheng, J.D. Uric acid and cardiovascular disease: an update from molecular mechanism to clinical perspective. Front. Pharmacol., 2020, 11, 582680. doi: 10.3389/fphar.2020.582680 PMID: 33304270
  10. Chen, C.; Lü, J.M.; Yao, Q. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: An overview. Med. Sci. Monit., 2016, 22, 2501-2512. doi: 10.12659/MSM.899852 PMID: 27423335
  11. Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol., 2020, 16(7), 380-390. doi: 10.1038/s41584-020-0441-1 PMID: 32541923
  12. Suresh, E.; Das, P. Recent advances in management of gout. QJM, 2012, 105(5), 407-417. doi: 10.1093/qjmed/hcr242 PMID: 22198943
  13. Bove, M.; Cicero, A.F.G.; Veronesi, M.; Borghi, C. An evidence-based review on urate-lowering treatments: Implications for optimal treatment of chronic hyperuricemia. Vasc. Health Risk Manag., 2017, 13, 23-28. doi: 10.2147/VHRM.S115080 PMID: 28223818
  14. Singh, S.; Parashar, P.; Kanoujia, J.; Singh, I.; Saha, S.; Saraf, S.A. Transdermal potential and anti-gout efficacy of Febuxostat from niosomal gel. J. Drug Deliv. Sci. Technol., 2017, 39, 348-361. doi: 10.1016/j.jddst.2017.04.020
  15. Kim, H.S.; Lee, C.M.; Yun, Y.H.; Kim, Y.S.; Yoon, S. Synthesis and drug release properties of melanin added functional allopurinol incorporated starch-based biomaterials. Int. J. Biol. Macromol., 2022, 209, 1477-1485. doi: 10.1016/j.ijbiomac.2022.04.116
  16. Avena-Woods, C.; Hilas, O. Febuxostat (Uloric), a new treatment option for gout. P&T, 2010, 35(2), 82-85.
  17. Becker, M.A.; Baraf, H.S.B.; Yood, R.A.; Dillon, A.; Vázquez-Mellado, J.; Ottery, F.D.; Khanna, D.; Sundy, J.S. Long-term safety of pegloticase in chronic gout refractory to conventional treatment. Ann. Rheum. Dis., 2013, 72(9), 1469-1474. doi: 10.1136/annrheumdis-2012-201795
  18. FDA. FDA-Biologic License Application (BLA): 125293, Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (Accessed on: 2023-03-02).
  19. FDA. FDA-New Drug Application (NDA): 207988, Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=207988 (Accessed on: 2023-03-02).
  20. Kimura, Y.; Tsukui, D.; Kono, H. Uric acid in inflammation and the pathogenesis of atherosclerosis. Int. J. Mol. Sci., 2021, 22(22), 12394. doi: 10.3390/ijms222212394 PMID: 34830282
  21. Park, J.H.; Jo, Y.I.; Lee, J.H. Renal effects of uric acid: Hyperuricemia and hypouricemia. Korean J. Intern. Med., 2020, 35(6), 1291-1304. doi: 10.3904/kjim.2020.410 PMID: 32872730
  22. Vargas-Santos, A.B.; Taylor, W.J.; Neogi, T. Gout classification criteria: Update and implications. Curr. Rheumatol. Rep., 2016, 18(7), 46. doi: 10.1007/s11926-016-0594-8 PMID: 27342957
  23. Eckenstaler, R.; Benndorf, R.A. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout—an update. Int. J. Mol. Sci., 2021, 22(13), 6678. doi: 10.3390/ijms22136678 PMID: 34206432
  24. Torres, R.J.; Puig, J.G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis., 2007, 2(1), 48. doi: 10.1186/1750-1172-2-48 PMID: 18067674
  25. Matuszkiewicz-Rowinska, J.; Malyszko, J. Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press. Res., 2020, 45(5), 645-660. doi: 10.1159/000509934 PMID: 32998135
  26. Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep., 2014, 16(2), 400. doi: 10.1007/s11926-013-0400-9 PMID: 24357445
  27. Singh, H.; Torralba, K.D. Therapeutic challenges in the management of gout in the elderly. Geriatrics, 2008, 63(7), 13-18, 20. PMID: 18593209
  28. Li, Q.; Li, X.; Wang, J.; Liu, H.; Kwong, J.S.W.; Chen, H.; Li, L.; Chung, S.C.; Shah, A.; Chen, Y.; An, Z.; Sun, X.; Hemingway, H.; Tian, H.; Li, S. Diagnosis and treatment for hyperuricemia and gout: A systematic review of clinical practice guidelines and consensus statements. BMJ Open, 2019, 9(8), e026677. doi: 10.1136/bmjopen-2018-026677 PMID: 31446403
  29. Roddy, E.; Doherty, M. Treatment of hyperuricaemia and gout. Clin. Med., 2013, 13(4), 400-403. doi: 10.7861/clinmedicine.13-4-400
  30. Dalbeth, N.; Lauterio, T.J.; Wolfe, H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther., 2014, 36(10), 1465-1479. doi: 10.1016/j.clinthera.2014.07.017 PMID: 25151572
  31. Lu, J.; He, Y.; Terkeltaub, R.; Sun, M.; Ran, Z.; Xu, X.; Wang, C.; Li, X.; Hu, S.; Xue, X.; Yan, F.; Zhang, H.; Yin, H.; Shi, Y.; Dalbeth, N.; Li, C. Colchicine prophylaxis is associated with fewer gout flares after COVID-19 vaccination. Ann. Rheum. Dis., 2022, 81(8), 1189-1193. doi: 10.1136/annrheumdis-2022-222199 PMID: 35277390
  32. Tao, H.; Mo, Y.; Liu, W.; Wang, H. A review on gout: Looking back and looking ahead. Int. Immunopharmacol., 2023, 117, 109977. doi: 10.1016/j.intimp.2023.109977 PMID: 37012869
  33. FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; Levy, G.; Libbey, C.; Mount, D.; Pillinger, M.H.; Rosenthal, A.; Singh, J.A.; Sims, J.E.; Smith, B.J.; Wenger, N.S.; Bae, S.S.; Danve, A.; Khanna, P.P.; Kim, S.C.; Lenert, A.; Poon, S.; Qasim, A.; Sehra, S.T.; Sharma, T.S.K.; Toprover, M.; Turgunbaev, M.; Zeng, L.; Zhang, M.A.; Turner, A.S.; Neogi, T. 2020 American college of rheumatology guideline for the management of gout. Arthritis Care Res., 2020, 72(6), 744-760. doi: 10.1002/acr.24180 PMID: 32391934
  34. Terkeltaub, R. Management of gout and hyperuricemia. In: Rheumatology; Elsevier, 2015; pp. 1575-1582. doi: 10.1016/B978-0-323-09138-1.00189-3
  35. Stamp, L.K.; Chapman, P.T.; Barclay, M.L.; Horne, A.; Frampton, C.; Tan, P.; Drake, J.; Dalbeth, N. How much allopurinol does it take to get to target urate? Comparison of actual dose with creatinine clearance-based dose. Arthritis Res. Ther., 2018, 20(1), 255. doi: 10.1186/s13075-018-1755-0 PMID: 30446002
  36. Saag, K.G.; Becker, M.A.; Whelton, A.; Hunt, B.; Castillo, M.; Kisfalvi, K.; Gunawardhana, L. Efficacy and safety of febuxostat extended and immediate release in patients with gout and renal impairment: A phase III placebo-controlled study. Arthritis Rheumatol., 2019, 71(1), 143-153. doi: 10.1002/art.40685 PMID: 30073793
  37. Azevedo, V.F.; Kos, I.A.; Vargas-Santos, A.B.; da Rocha, C.P.G.; dos Santos, P.E. Benzbromarone in the treatment of gout. Adv. Rheumatol., 2019, 59(1), 37. doi: 10.1186/s42358-019-0080-x PMID: 31391099
  38. Zhao, Z.; Liu, J.; Yuan, L.; Yang, Z.; Kuang, P.; Liao, H.; Luo, J.; Feng, H.; Zheng, F.; Chen, Y.; Wu, T.; Guo, J.; Cao, Y.; Yang, Y.; Lin, C.; Zhang, Q.; Chen, J.; Pang, J. Discovery of novel benzbromarone analogs with improved pharmacokinetics and benign toxicity profiles as antihyperuricemic agents. Eur. J. Med. Chem., 2022, 242, 114682. doi: 10.1016/j.ejmech.2022.114682 PMID: 36001935
  39. Okur, N.Ü.; Siafaka, P.I.; Polat, D.Ç.; Karadağ, A.E.; Köprülü, R.E.P.; Karantas, I.D.; Mutlu, G.; Çağlar, E.Ş.; Okur, M.E. Phytochemical compounds loaded to nanocarriers as potential therapeutic substances for Alzheimer’s disease-could they be effective? Curr. Pharm. Des., 2022, 28(30), 2437-2460. doi: 10.2174/1381612828666220411104128 PMID: 35410592
  40. Rahmi, E.P.; Kumolosasi, E.; Jalil, J.; Husain, K.; Buang, F.; Abd Razak, A.F.; Jamal, J.A. Anti-hyperuricemic and anti-inflammatory effects of Marantodes pumilum as potential treatment for gout. Front. Pharmacol., 2020, 11, 289. doi: 10.3389/fphar.2020.00289 PMID: 32256360
  41. Wu, Z.; Xue, Q.; Zhao, Z.; Zhou, P.; Zhou, Q.; Zhang, Z.; Deng, J.; Yang, K.; Fan, H.; Wang, Y.; Wang, Z. Suppressive effect of huzhentongfeng on experimental gouty arthritis: An in vivo and in vitro study. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-15. doi: 10.1155/2019/2969364 PMID: 31871475
  42. Ye, N.S. A minireview of analytical methods for the geographical origin analysis of teas (Camellia sinensis). Crit. Rev. Food Sci. Nutr., 2012, 52(9), 775-780. doi: 10.1080/10408398.2010.508568 PMID: 22698268
  43. Zhu, C.; Tai, L.L.; Wan, X.; Li, D.; Zhao, Y.Q.; Xu, Y. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharm. Biol., 2017, 55(1), 2123-2128. doi: 10.1080/13880209.2017.1377736 PMID: 28938867
  44. Shi, M.; Lu, Y.; Wu, J.; Zheng, Z.; Lv, C.; Ye, J.; Qin, S.; Zeng, C. Beneficial effects of theaflavins on metabolic syndrome: From molecular evidence to gut microbiome. Int. J. Mol. Sci., 2022, 23(14), 7595. doi: 10.3390/ijms23147595 PMID: 35886943
  45. Chen, Y.; Luo, L.; Hu, S.; Gan, R.; Zeng, L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit. Rev. Food Sci. Nutr., 2022, 3, 1-26. doi: 10.1080/10408398.2022.2040417 PMID: 35236179
  46. Afify, H.; Abo-Youssef, A.M.; Abdel-Rahman, H.M.; Allam, S.; Azouz, A.A. The modulatory effects of cinnamaldehyde on uric acid level and IL-6/JAK1/STAT3 signaling as a promising therapeutic strategy against benign prostatic hyperplasia. Toxicol. Appl. Pharmacol., 2020, 402, 115122. doi: 10.1016/j.taap.2020.115122 PMID: 32628957
  47. Wang, S.Y.; Yang, C.W.; Liao, J.W.; Zhen, W.W.; Chu, F.H.; Chang, S.T. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine, 2008, 15(11), 940-945. doi: 10.1016/j.phymed.2008.06.002 PMID: 18693097
  48. Li, Q.; Lin, H.; Niu, Y.; Liu, Y.; Wang, Z.; Song, L.; Gao, L.; Li, L. Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. Eur. J. Pharmacol., 2020, 888, 173490. doi: 10.1016/j.ejphar.2020.173490 PMID: 32827538
  49. Qin, Z.; Wang, S.; Lin, Y.; Zhao, Y.; Yang, S.; Song, J.; Xie, T.; Tian, J.; Wu, S.; Du, G. Antihyperuricemic effect of mangiferin aglycon derivative J99745 by inhibiting xanthine oxidase activity and urate transporter 1 expression in mice. Acta Pharm. Sin. B, 2018, 8(2), 306-315. doi: 10.1016/j.apsb.2017.05.004 PMID: 29719791
  50. Li, X.; Jin, W.; Zhang, W.; Zheng, G. The inhibitory kinetics and mechanism of quercetin-3-O-rhamnoside and chlorogenic acid derived from Smilax china L. EtOAc fraction on xanthine oxidase. Int. J. Biol. Macromol., 2022, 213, 447-455. doi: 10.1016/j.ijbiomac.2022.05.188 PMID: 35660039
  51. Wu, X.H.; Wang, C.Z.; Wang, S.Q.; Mi, C.; He, Y.; Zhang, J.; Zhang, Y.W.; Anderson, S.; Yuan, C.S. Anti-hyperuricemia effects of allopurinol are improved by Smilax riparia, a traditional Chinese herbal medicine. J. Ethnopharmacol., 2015, 162, 362-368. doi: 10.1016/j.jep.2015.01.012 PMID: 25617746
  52. Huang, L.; Deng, J.; Chen, G.; Zhou, M.; Liang, J.; Yan, B.; Shu, J.; Liang, Y.; Huang, H. The anti-hyperuricemic effect of four astilbin stereoisomers in Smilax glabra on hyperuricemic mice. J. Ethnopharmacol., 2019, 238, 111777. doi: 10.1016/j.jep.2019.03.004 PMID: 30851369
  53. Wu, X.H.; Ruan, J.L.; Zhang, J.; Wang, S.Q.; Zhang, Y.W. Pallidifloside D, a saponin glycoside constituent from Smilax riparia, resist to hyperuricemia based on URAT1 and GLUT9 in hyperuricemic mice. J. Ethnopharmacol., 2014, 157, 201-205. doi: 10.1016/j.jep.2014.09.034 PMID: 25267580
  54. Hou, P.Y.; Mi, C.; He, Y.; Zhang, J.; Wang, S.Q.; Yu, F.; Anderson, S.; Zhang, Y.W.; Wu, X.H. Pallidifloside D from Smilax riparia enhanced allopurinol effects in hyperuricemia mice. Fitoterapia, 2015, 105, 43-48. doi: 10.1016/j.fitote.2015.06.002 PMID: 26051087
  55. Endrini, S.; Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Marsiati, H. Phytochemical profiling, in vitro and in vivo xanthine oxidase inhibition and antihyperuricemic activity of Christia vespertilionis leaf. Biocatal. Agric. Biotechnol., 2023, 48, 102645. doi: 10.1016/j.bcab.2023.102645
  56. Bao, R.; Chen, Q.; Li, Z.; Wang, D.; Wu, Y.; Liu, M.; Zhang, Y.; Wang, T. Eurycomanol alleviates hyperuricemia by promoting uric acid excretion and reducing purine synthesis. Phytomedicine, 2022, 96, 153850. doi: 10.1016/j.phymed.2021.153850 PMID: 34785103
  57. Nutraceutical on Hyperuricemia. https://clinicaltrials.gov/ct2/show/study/NCT04161872?cond=hyperuricemia&draw=2&rank=2
  58. Danve, A.; Sehra, S.T.; Neogi, T. Role of diet in hyperuricemia and gout. Best Pract. Res. Clin. Rheumatol., 2021, 35(4), 101723. doi: 10.1016/j.berh.2021.101723 PMID: 34802900
  59. García-Arroyo, F.E.; Gonzaga, G.; Muñoz-Jiménez, I.; Blas-Marron, M.G.; Silverio, O.; Tapia, E.; Soto, V.; Ranganathan, N.; Ranganathan, P.; Vyas, U.; Irvin, A.; Ir, D.; Robertson, C.E.; Frank, D.N.; Johnson, R.J.; Sánchez-Lozada, L.G. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS One, 2018, 13(8), e0202901. doi: 10.1371/journal.pone.0202901 PMID: 30142173
  60. Russell, M.D.; Rutherford, A.I.; Ellis, B.; Norton, S.; Douiri, A.; Gulliford, M.C.; Cope, A.P.; Galloway, J.B. Management of gout following 2016/2017 European (EULAR) and British (BSR) guidelines: An interrupted time-series analysis in the United Kingdom. Lancet Reg. Health Eur., 2022, 18, 100416. doi: 10.1016/j.lanepe.2022.100416 PMID: 35814340
  61. Kim, H.S.; Yun, Y.H.; Shim, W.G.; Yoon, S.D. Preparation and evaluation of functional allopurinol imprinted starch based biomaterials for transdermal drug delivery. Int. J. Biol. Macromol., 2021, 175, 217-228. doi: 10.1016/j.ijbiomac.2021.02.004 PMID: 33548320
  62. Abdulaal, W.H.; Alhakamy, N.A.; Hosny, K.M. Preparation and characterization of a thioctic acid nanostructured lipid carrier to enhance the absorption profile and limit the nephrotoxicity associated with allopurinol in the treatment of gout. J. Drug Deliv. Sci. Technol., 2021, 66, 102859. doi: 10.1016/j.jddst.2021.102859
  63. Ali, Z.; Din, F.; Zahid, F.; Sohail, S.; Imran, B.; Khan, S.; Malik, M.; Zeb, A.; Khan, G.M. Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout. BMC Pharmacol. Toxicol., 2022, 23(1), 86. doi: 10.1186/s40360-022-00625-y PMID: 36443818
  64. Patel, B.; Thakkar, H. Formulation development of fast dissolving microneedles loaded with cubosomes of febuxostat: In vitro and in vivo evaluation. Pharmaceutics., 2023, 15(1), 224. doi: 10.3390/pharmaceutics15010224 PMID: 36678853
  65. Bhatt, S.; Sharma, J.B.; Kamboj, R.; Kumar, M.; Saini, V.; Mandge, S. Design and optimization of febuxostat-loaded nano lipid carriers using full factorial design. Turk. J. Pharm. Sci., 2021, 18(1), 61-67. doi: 10.4274/tjps.galenos.2019.32656
  66. Ahuja, B.K.; Jena, S.K.; Paidi, S.K.; Bagri, S.; Suresh, S. Formulation, optimization and in vitro–in vivo evaluation of febuxostat nanosuspension. Int. J. Pharm., 2015, 478(2), 540-552. doi: 10.1016/j.ijpharm.2014.12.003 PMID: 25490182
  67. Vohra, A.M.; Patel, C.V.; Kumar, P.; Thakkar, H.P. Development of dual drug loaded solid self microemulsifying drug delivery system: Exploring interfacial interactions using QbD coupled risk based approach. J. Mol. Liq., 2017, 242, 1156-1168. doi: 10.1016/j.molliq.2017.08.002
  68. Sharma, O.P.; Patel, V.; Mehta, T. Design of experiment approach in development of febuxostat nanocrystal: Application of Soluplus® as stabilizer. Powder Technol., 2016, 302, 396-405. doi: 10.1016/j.powtec.2016.09.004
  69. Sheng, X.; Tang, J.; Bao, J.; Shi, X.; Su, W. Enhancement of in vitro dissolution and in vivo performance/oral absorption of FEB-poloxamer-TPGS solid dispersion. J. Drug Deliv. Sci. Technol., 2018, 46, 408-415. doi: 10.1016/j.jddst.2018.06.005
  70. Al-Amodi, Y.A.; Hosny, K.M.; Alharbi, W.S.; Safo, M.K.; El-Say, K.M. Investigating the potential of transmucosal delivery of febuxostat from oral lyophilized tablets loaded with a self-nanoemulsifying delivery system. Pharmaceutics., 2020, 12(6), 534. doi: 10.3390/pharmaceutics12060534 PMID: 32531910
  71. Habib, B.A.; Abd El-Samiae, A.S.; El-Houssieny, B.M.; Tag, R. Formulation, characterization, optimization, and in-vivo performance of febuxostat self-nano-emulsifying system loaded sublingual films. Drug Deliv., 2021, 28(1), 1321-1333. doi: 10.1080/10717544.2021.1927247 PMID: 34176376
  72. Froelich, A.; Osmałek, T.; Snela, A.; Kunstman, P.; Jadach, B.; Olejniczak, M.; Roszak, G.; Białas, W. Novel microemulsion-based gels for topical delivery of indomethacin: Formulation, physicochemical properties and in vitro drug release studies. J. Colloid Interface Sci., 2017, 507, 323-336. doi: 10.1016/j.jcis.2017.08.011 PMID: 28806653
  73. Chandrasekar, D.; Sistla, R.; Ahmad, F.J.; Khar, R.K.; Diwan, P.V. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials, 2007, 28(3), 504-512. doi: 10.1016/j.biomaterials.2006.07.046 PMID: 16996126
  74. Salahuddin, N.; Gaber, M.; Elneanaey, S.; Snowdon, M.R.; Abdelwahab, M.A. Co-delivery of norfloxacin and tenoxicam in Ag-TiO2/poly(lactic acid) nanohybrid. Int. J. Biol. Macromol., 2021, 180, 771-781. doi: 10.1016/j.ijbiomac.2021.03.033 PMID: 33705836
  75. Ammar, H.O.; Ghorab, M.; El-Nahhas, S.A.; Higazy, I.M. Proniosomes as a carrier system for transdermal delivery of tenoxicam. Int. J. Pharm., 2011, 405(1-2), 142-152. doi: 10.1016/j.ijpharm.2010.11.003 PMID: 21129461
  76. Mahamat Nor, S.B.; Woi, P.M.; Ng, S.H. Characterisation of ionic liquids nanoemulsion loaded with piroxicam for drug delivery system. J. Mol. Liq., 2017, 234, 30-39. doi: 10.1016/j.molliq.2017.03.042
  77. Liu, M.; Chen, L.; Zhao, Y.; Gan, L.; Zhu, D.; Xiong, W.; Lv, Y.; Xu, Z.; Hao, Z.; Chen, L. Preparation, characterization and properties of liposome-loaded polycaprolactone microspheres as a drug delivery system. Colloids Surf. A Physicochem. Eng. Asp., 2012, 395, 131-136. doi: 10.1016/j.colsurfa.2011.12.017
  78. Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: An ancient drug with novel applications. Br. J. Dermatol., 2018, 178(2), 350-356. doi: 10.1111/bjd.15896 PMID: 28832953
  79. Zoghebi, K.A.; Bousoik, E.; Parang, K.; Elsaid, K.A. Design and biological evaluation of colchicine-CD44-targeted peptide conjugate in an in vitro model of crystal induced inflammation. Molecules., 2019, 25(1), 46. doi: 10.3390/molecules25010046 PMID: 31877739
  80. Morad, H.; Jahanshahi, M.; Akbari, J.; Saeedi, M.; Gill, P.; Enayatifard, R. Novel topical and transdermal delivery of colchicine with chitosan based biocomposite nanofiberous system; formulation, optimization, characterization, ex vivo skin deposition/permeation, and anti-melanoma evaluation. Mater. Chem. Phys., 2021, 263(263), 124381. doi: 10.1016/j.matchemphys.2021.124381
  81. El-Feky, G.S.; El-Naa, M.M.; Mahmoud, A.A. Flexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigation. J. Drug Deliv. Sci. Technol., 2019, 49(49), 24-34. doi: 10.1016/j.jddst.2018.10.036
  82. Lv, B.; Yang, G.; Wei, Y.; Lei, Y.; Ding, Y.; Gong, W.; Wang, Y.; Gao, C.; Han, C. A pharmacokinetic and pharmacodynamic evaluation of colchicine sustained-release pellets for preventing gout. J. Drug Deliv. Sci. Technol., 2022, 67(67), 103051. doi: 10.1016/j.jddst.2021.103051
  83. Zeng, Z.; Feng, H.; Hao, M.; Zhang, Y. One-pot approach to form in situ colchicine-containing nano-hydroxyapatite within microemulsion composite system for sustained transdermal delivery. Compos. Commun., 2021, 25(February), 100698. doi: 10.1016/j.coco.2021.100698
  84. Zhang, Y.; Zhang, N.; Song, H.; Li, H.; Wen, J.; Tan, X.; Zheng, W. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv., 2019, 26(1), 70-77. doi: 10.1080/10717544.2018.1559258 PMID: 30744424
  85. Abdulbaqi, I.M.; Darwis, Y.; Abou Assi, R.; Abdul Karim Khan, N. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. Ther., 2018, 12, 795-813. doi: 10.2147/DDDT.S158018 PMID: 29670336
  86. Liu, Y.; Zhu, X.; Ji, S.; Huang, Z.; Zang, Y.; Ding, Y.; Zhang, J.; Ding, Z. Transdermal delivery of colchicine using dissolvable microneedle arrays for the treatment of acute gout in a rat model. Drug Deliv., 2022, 29(1), 2984-2994. doi: 10.1080/10717544.2022.2122632 PMID: 36101018
  87. Lei, Y.; Yang, G.; Du, F.; Yi, J.; Quan, L.; Liu, H.; Zhou, X.; Gong, W.; Han, J.; Wang, Y.; Gao, C. Formulation and evaluation of a drug-in-adhesive patch for transdermal delivery of colchicine. Pharmaceutics, 2022, 14(10), 2245. doi: 10.3390/pharmaceutics14102245 PMID: 36297680
  88. Sun, J.; Zhuang, P.; Wen, S.; Ge, M.; Zhou, Z.; Li, D.; Liu, C.; Mei, X. Folic acid-modified lysozyme protected gold nanoclusters as an effective anti-inflammatory drug for rapid relief of gout flares in hyperuricemic rats. Mater. Des., 2022, 217, 110642. doi: 10.1016/j.matdes.2022.110642
  89. Cho, J.; Kim, S.H.; Yang, B.; Jung, J.M.; Kwon, I.; Lee, D.S. Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment. J. Control. Release, 2020, 324, 532-544. doi: 10.1016/j.jconrel.2020.05.037 PMID: 32454120
  90. Zhang, X.; Xu, D.; Jin, X.; Liu, G.; Liang, S.; Wang, H.; Chen, W.; Zhu, X.; Lu, Y. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J. Control. Release, 2017, 255, 54-61. doi: 10.1016/j.jconrel.2017.03.019 PMID: 28288895
  91. Kim, S.; Kim, M.; Jung, S.; Kwon, K.; Park, J.; Kim, S.; Kwon, I.; Tae, G. Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect. J. Control. Release, 2019, 309, 181-189. doi: 10.1016/j.jconrel.2019.07.038 PMID: 31356840
  92. Tran, L.; Das, S.; Zhao, L.; Finn, M.G.; Gaucher, E.A. Oral delivery of nanoparticles carrying ancestral uricase enzyme protects against hyperuricemia in knockout mice. Biomacromolecules., 2023, 24(5), 2003-2008. doi: 10.1021/acs.biomac.2c01388 PMID: 37126604
  93. Hao, Y.; Li, H.; Cao, Y.; Chen, Y.; Lei, M.; Zhang, T.; Xiao, Y.; Chu, B.; Qian, Z. Uricase and horseradish peroxidase hybrid CaHPO4 nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J. Biomed. Nanotechnol., 2019, 15(5), 951-965. doi: 10.1166/jbn.2019.2752 PMID: 30890227
  94. Kiyani, M.M.; Butt, M.A.; Rehman, H.; Ali, H.; Hussain, S.A.; Obaid, S.; Arif Hussain, M.; Mahmood, T.; Bokhari, S.A.I. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice. J. Trace Elem. Med. Biol., 2019, 56, 169-177. doi: 10.1016/j.jtemb.2019.08.012 PMID: 31479800
  95. Wang, Q.; Yang, Q.; Cao, X.; Wei, Q.; Firempong, C.K.; Guo, M.; Shi, F.; Xu, X.; Deng, W.; Yu, J. Enhanced oral bioavailability and anti-gout activity of 6-shogaol-loaded solid lipid nanoparticles. Int. J. Pharm., 2018, 550(1-2), 24-34. doi: 10.1016/j.ijpharm.2018.08.028 PMID: 30125653
  96. Weng, W.; Wang, Q.; Wei, C.; Man, N.; Zhang, K.; Wei, Q.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int. J. Pharm., 2019, 572, 118735. doi: 10.1016/j.ijpharm.2019.118735 PMID: 31705971
  97. Wang, X.; Zhang, Y.; Zhang, M.; Kong, H.; Wang, S.; Cheng, J.; Qu, H.; Zhao, Y. Novel carbon dots derived from Puerariae lobatae radix and their anti-gout effects. Molecules., 2019, 24(22), 4152. doi: 10.3390/molecules24224152 PMID: 31744056
  98. Chen, Z.; Han, B.; Liao, L.; Hu, X.; Hu, Q.; Gao, Y.; Qiu, Y. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis. J. Drug Deliv. Sci. Technol., 2020, 55(55), 101487. doi: 10.1016/j.jddst.2019.101487
  99. Karunakaran, S.; Hari, R. Comparative antioxidant and anti-gout activities of Citrullus colocynthis loaded fruit silver nanoparticles with its ethanolic extract. Avicenna J. Med. Biotechnol., 2022, 14(4), 303-309. doi: 10.18502/ajmb.v14i4.10485 PMID: 36504570
  100. Xu, W.; Liang, M.; Su, W.; Yang, J.; Pu, F.; Xie, Z.; Jin, K.; Polyakov, N.E.; Dushkin, A.V.; Su, W. Self-assembled nanocapsules of celery (Apium graveolens Linn) seed oil: Mechanochemical preparation, characterization and urate-lowering activity. J. Drug Deliv. Sci. Technol., 2021, 66, 102810. doi: 10.1016/j.jddst.2021.102810
  101. Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal gel formulation of alpha phellandrene for the transdermal delivery in gout. Adv. Pharm. Bull., 2020, 11(1), 137-149. doi: 10.34172/apb.2021.015 PMID: 33747861
  102. Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharmacother., 2019, 118, 109195. doi: 10.1016/j.biopha.2019.109195 PMID: 31362244
  103. Mustafa Kiyani, M.M.; Sohail, M.F.; Shahnaz, G.; Rehman, H.; Akhtar, M.F.; Nawaz, I.; Mahmood, T.; Manzoor, M.; Imran Bokhari, S.A. Evaluation of turmeric nanoparticles as anti-gout agent: Modernization of a traditional drug. Medicina., 2019, 55(1), 10. doi: 10.3390/medicina55010010 PMID: 30642012
  104. Pandit, R.S.; Gaikwad, S.C.; Agarkar, G.A.; Gade, A.K.; Rai, M. Curcumin nanoparticles: Physico-chemical fabrication and its in vitro efficacy against human pathogens. 3. Biotech., 2015, 5(6), 991-997. doi: 10.1007/s13205-015-0302-9
  105. Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2022, 8, 368-380. doi: 10.1016/j.bioactmat.2021.06.003 PMID: 34541407
  106. Xiong, H.; Zhou, Y.; Zhou, Q.; He, D.; Deng, X.; Sun, Q.; Zhang, J. Nanocapsule assemblies as effective enzyme delivery systems against hyperuricemia. Nanomedicine, 2016, 12(6), 1557-1566. doi: 10.1016/j.nano.2016.02.010 PMID: 27013130
  107. Ruiz-Miyazawa, K.W.; Staurengo-Ferrari, L.; Pinho-Ribeiro, F.A.; Fattori, V.; Zaninelli, T.H.; Badaro-Garcia, S.; Borghi, S.M.; Andrade, K.C.; Clemente-Napimoga, J.T.; Alves-Filho, J.C.; Cunha, T.M.; Fraceto, L.F.; Cunha, F.Q.; Napimoga, M.H.; Casagrande, R.; Verri, W.A., Jr 15d-PGJ2-loaded nanocapsules ameliorate experimental gout arthritis by reducing pain and inflammation in a PPAR-gamma-sensitive manner in mice. Sci. Rep., 2018, 8(1), 13979. doi: 10.1038/s41598-018-32334-0 PMID: 30228306
  108. Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics., 2023, 15(2), 484. doi: 10.3390/pharmaceutics15020484 PMID: 36839807
  109. Üstündağ Okur, N.; Siafaka, P.I.; Gökçe, E.H. Challenges in oral drug delivery and applications of lipid nanoparticles as potent oral drug carriers for managing cardiovascular risk factors. Curr. Pharm. Biotechnol., 2020, 21 doi: 10.2174/1389201021666200804155535
  110. Ita, K.B. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol., 2014, 24(3), 245-250. doi: 10.1016/S1773-2247(14)50041-X
  111. Zhu, R.; Niu, Y.; Zhou, W.; Wang, S.; Mao, J.; Guo, Y.; Lei, Y.; Xiong, X.; Li, Y.; Guo, L. Effect of nanoparticles on gouty arthritis: A systematic review and meta-analysis. BMC Musculoskelet. Disord., 2023, 24(1), 124. doi: 10.1186/s12891-023-06186-3 PMID: 36788552
  112. Albert, J.A.; Hosey, T.; LaMoreaux, B. Increased efficacy and tolerability of pegloticase in patients with uncontrolled gout co-treated with methotrexate: A retrospective study. Rheumatol. Ther., 2020, 7(3), 639-648. doi: 10.1007/s40744-020-00222-7 PMID: 32720081
  113. Janssens, H.J.E.M.; Janssen, M.; van de Lisdonk, E.H.; van Riel, P.L.C.M.; van Weel, C. Use of oral prednisolone or naproxen for the treatment of gout arthritis: A double-blind, randomised equivalence trial. Lancet., 2008, 371(9627), 1854-1860. doi: 10.1016/S0140-6736(08)60799-0 PMID: 18514729
  114. Cammalleri, L.; Malaguarnera, M. Rasburicase represents a new tool for hyperuricemia in tumor lysis syndrome and in gout. Int. J. Med. Sci., 2007, 4(2), 83-93. doi: 10.7150/ijms.4.83 PMID: 17396159
  115. Zeng, W.C.; Li, Q.H.; Tang, A.J.; Li, H.G.; Chen, L.F.; Wei, X.N.; Liang, J.J.; Zheng, D.H.; Dai, L.; Mo, Y.Q. AB1057 efficacy and safety of low-dose rasburicase in combination with conventional urate-lowering therapy for refractory chronic gouty arthritis: A pilot study in. Ann. Rheum. Dis., 2022, 81(S1), 1650.1-1650. doi: 10.1136/annrheumdis-2022-eular.3450
  116. Ivanov, D.D.; Sinjchenko, O.V.; Golovach, I.Y.; Bevzenko, T.B.; Ivanova, M.D. THU0687 The Impact of Urate-Lowering Therapy on Kidney Function (IMPULSKF): Preliminary Results; BMJ Publishing Group Ltd and European League Against Rheumatism, 2018, pp. -537. doi: 10.1136/annrheumdis-2018-eular.3962
  117. Terkeltaub, R.; Lee, J.; Min, J.; Shin, S.; Saag, K.G. Serum urate–lowering efficacy and safety of tigulixostat in gout patients with hyperuricemia: A randomized, double-blind, placebo-controlled, dose-finding trial. Arthritis. Rheumatol., 2023, 75(7), 1275-1284. doi: 10.1002/art.42447 PMID: 36649008
  118. Noori, S.; Mirzababaei, A.; Amini, M.R.; Clark, C.C.T.; Mirzaei, K. Effect of orlistat on serum uric acid level in adults: A systematic review and meta-analysis of randomised controlled trials. Int. J. Clin. Pract., 2021, 75(11), e14674. doi: 10.1111/ijcp.14674 PMID: 34324762
  119. Tang, H.; Cui, B.; Chen, Y.; Chen, L.; Wang, Z.; Zhang, N.; Yang, Y.; Wang, X.; Xie, X.; Sun, L.; Dang, W.; Wang, X.; Li, R.; Zou, J.; Zhao, Y.; Liu, Y. Safety and efficacy of SHR4640 combined with febuxostat for primary hyperuricemia: A multicenter, randomized, double-blind, phase II study. Ther. Adv. Musculoskelet. Dis., 2022. doi: 10.1177/1759720X211067304
  120. Terkeltaub, R.; Clark, D.; Tosone, C.; Kandinov, B.; Zhang, P.; Dahl, N.; Grujic, D.; Goldfarb, D. POS1157 safety and efficacy of alln-346 oral enzyme therapy in patients with hyperuricemia and chronic kidney disease (CKD): Results of the phase 2a study 201. Ann. Rheum. Dis., 2022, 81(907), 907.1-907. doi: 10.1136/annrheumdis-2022-eular.1662
  121. Klück, V.; Jansen, T.L.T.A.; Janssen, M.; Comarniceanu, A.; Efdé, M.; Tengesdal, I.W.; Schraa, K.; Cleophas, M.C.P.; Scribner, C.L.; Skouras, D.B.; Marchetti, C.; Dinarello, C.A.; Joosten, L.A.B. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet. Rheumatol., 2020, 2(5), e270-e280. doi: 10.1016/S2665-9913(20)30065-5 PMID: 33005902

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024