A new method for determining the buckling resistance in the nonlinear range of strains for a column supported by rotational stiffeners

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An innovational method for solving the Euler–Bernoulli problem of an overall buckling of the uniform column supported by rotational springs of stiffnesses γ1, γ2, N ∙ m free from traditional simplifications (invariable flexural stiffness and length) is given. It is based on a natural and comprehensive constraint on the restored axis length. A system of algebraic equations relating the critical stress σcr to the nonlinear compression diagram ε(σ) of the material, the slenderness of the column λ and the values γ1, γ2 has been obtained, solved and verified in important special cases. It is shown that columns of the same material with the same so-called the reduced spring stiffnesses have identical dependencies σcr(λ). It is shown that columns with λ ≤ λmin12) cannot be buckled by any axial load F for various types of ε(σ) (Ramberg–Osgood, rational fraction, polynomial, etc.).

Texto integral

Acesso é fechado

Sobre autores

V. Chistyakov

Physical and Technical Institute of RAS named after A.F.Ioffe

Autor responsável pela correspondência
Email: v.chistyakov@mail.ioffe.ru
Rússia, Saint-Peterbourg

S. Soloviev

Physical and Technical Institute of RAS named after A.F.Ioffe

Email: serge.soloviev@mail.ioffe.ru
Rússia, Saint-Peterbourg

Bibliografia

  1. Hu Ku., David C. Lai. Effective length factor for restrained beam-column // J. Struct. Eng. 1986. V. 112. № 2. P. 241–256. https://doi.org/10.1061/%28ASCE%290733-9445%281986%29112%3A2%28241%29
  2. Huang Z.-F., Tan K.-H. Rankine approach for fire resistance of axially-and-flexurally restrained steel columns // J. Constr. Steel Res. 2003. V. 59. № 12. P. 1553–1571. https://doi.org/10.1016/s0143-974x(03)00103-2
  3. Cai Jian Guo, Xu Yi Xiang, Feng Jian, Zhang Jin. Buckling and post-buckling of rotationally restrained columns with imperfections // Scie. China. Phys., Mech. & Astron. 2012. V. 55. P. 1519–1522. https://doi.org/10.1007/s11433-012-4811-9
  4. Yaylı M. Ö., Yerel Kandemir S. Buckling analysis of a column with rotational springs at both ends in aircraft column // Sustainable Aviation, Springer International Publishing, Switzerland. 2016. P. 159–165. https://doi.org/10.1007/978-3-319-34181-1_14
  5. Cao K., Guo Y.-J., Xu J. Buckling analysis of columns ended by rotation-stiffness spring hinges // Int. J. of Steel Struct. 2016. V. 16. P. 1–9. https://doi.org/10.1007/s13296-016-3001-4
  6. Chistyakov V. V., Soloviev S. M. Buckling in inelastic regime of a uniform console with symmetrical cross section: computer modeling using Maple 18 // Discr. & Contin. Mod. & Appl. Comp. Sci. 2023. V. 31. № 2. P. 174–188. https://doi.org/10.22363/2658-4670-2023-31-2-174-188
  7. Chistyakov V. V. Analytical and numerical modelling of a buckling in a plastic regime of a homogeneous console with symmetrical cross section/ Technical Physics ” 2023, iss. 12, p. 1588–1591, https://doi.org/10.61011/TP.2023.12.57715.f207-23
  8. Ramberg, W., Osgood, W. R. Description of stress–strain curves by three parameters // Technical Note. 1943. № 902.
  9. Anakhaev K.N. On the Calculation of Nonlinear Buckling of a Bar / Mechanics of Solids, 2021. v. 56, № 5. p. 684–689. https://doi.org/10.3103/S002565442105006X
  10. Wang Y.Q., Yuan H.X., Chang T, Du X.X., Yu M. Compressive buckling strength of extruded aluminum alloy I-section columns with fixed-pinned end conditions // Thin-Walled Struct. 2017. V. 119. P. 396–403. https://doi.org/10.1016/j.tws.2017.06.034
  11. Zhou Sh.R., Shi L.L., Xiong G., Kang Sh.B., Qin Y.L., Yan H.Q. Global buckling behavior of bamboo scrimber box columns under axial compression: Experimental tests and numerical modelling // J. Build. Eng. Part A. 2023. P. 10543. https://doi.org/10.1016/j.jobe.2022.105435
  12. Chen Jiao, Zhipeng Chen, Qiuwei Zhang et al. Compressive strength and impact resistance of Al2O3/Al composite structures fabricated by digital light processing // Ceram. Int. 2022. V. 48. № 24. P. 36091–36100. https://doi.org/10.1016/j.ceramint.2022.08.150

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. a) Loading diagram of a curved column; b) bending profile in the ratio scale: vertical black dash-dotted line – boundaries of convexity regions I, II and III y(z), red dots – slope of pf 1 axis at point A, red dotted line – slope q1 at inflection point (IP) 1, blue dots – slope of pf 2 axis at point B, blue dotted line – slope q2 at IP 2, green long dotted line – line of inflection points, horizontal black dotted line – tangent at the point of maximum deviation y.

Baixar (140KB)
3. Fig. 2. a) Dependence σcr(λ), Pa (6.1) for an I-beam S = 51.3 cm2, ix = 3.6 cm, Al 6061 T6 alloy [10] for the same spring stiffnesses in the range γ = 0–50 MN m; b) 3D graph σcr(λ,γ) for bamboo columns 100×100×20 [11], green – physical sheet, red – non-physical.

Baixar (347KB)
4. Fig. 3. a) Compression diagram of the Al + 15% Al2O3 composite: circles are experimental points [12], black dotted line is σ(ε), Pa, fourth-order polynomial, gray solid line is Hooke's law, red is the ε(σ) dependence of the fifth-order polynomial, green (right) is the tangent modulus of elasticity Et, Pa; b) minimum flexibility as a function of the stiffness of identical springs γ, N ∙ m for a 20K1 I-beam made of the composite.

Baixar (256KB)
5. Fig. 4. a) Dependences σ(λ), Pa (7.4) for column support on an ideal hinge and rigid fixing for linear (gray) and polynomial n = 5 (black) compression diagrams, I-beam 20K1, Al + 15% Al2O3; b) dependence of σ, Pa, on λ, γ1, N ∙ m (8.3) for the same profile.

Baixar (270KB)
6. Fig. 5. a) Curves σ(γ1 = γ2, N ∙ m), Pa and σ(γ1,γ2 = 0), Pa for I-beam 20K1 made of composite Al + 15 wt.% Al2O3 at λ = 50 (~2.5 m); b) projection of surface “ridge” σ, Pa, from γ1,γ2, N ∙ m with values ​​χ i according to (9.1) onto coordinate plane (Oσγ1) (border of blue with upper blue-gray) and line of its intersection with (Oσγ1) (border of blue with lower gray).

Baixar (208KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025