The relationship of cognitive impairment and clinical manifestations of myasthenia gravis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND. There are many studies in the literature suggesting that cognitive impairment is more pronounced in patients with myasthenia gravis compared with healthy people, but there is no explanation of the reasons and mechanisms. However, the reverse character — the influence of intellectual-mnestic disorders on the course of myasthenia gravis — has not been studied enough.

AIM. To compare clinical, anamnestiс, laboratory and instrumental data in patients with myasthenia gravis according to the presence or absence of cognitive impairment.

MATERIAL AND METHODS. 61 patients with a confirmed diagnosis of myasthenia gravis were divided into 2 groups according to the Montreal cognitive test. Patients scoring 25 or less were assigned to the first group, those scoring 26 points or more to the second group.

A comparative assessment was made according to the myasthenia gravis impairment index, age of onset, duration of the disease, duration of hospitalization, severity of myasthenia gravis according to clinical scales, body mass index, electroneuromyography data, levels of antibodies to the acetylcholine receptor and skeletal muscles, and daily doses of the drugs received.

RESULTS. In the 1st group, there was a significantly higher score on the Generalised Disorders subscale of the Myasthenia Gravis Impairment Index; the severity of Quantitative myasthenia gravis score was significantly higher in the 1st group than in the 2nd both for the total score and for the Musculoskeletal Lesions subscale. On average, 49 mg more pyridostigmine bromide was required in the first group, while the average body mass index was significantly lower in the first group.

CONCLUSION. The presence of a cognitive deficit in patients with myasthenia gravis may worsen the clinical picture of the disease, which should be taken into account by clinicians, especially in elderly patients, who are at increased risk of developing cognitive disorders.

Full Text

Restricted Access

About the authors

Ailer R. Alibekov

North-Western State Medical University named after I.I. Mechnikov; Vsevolozhsk clinical interdistrict hospital

Author for correspondence.
Email: alibekov.ailer@gmail.com
ORCID iD: 0000-0001-5308-6985
SPIN-code: 1112-9540

M.D., Postgraduate Student, Depart. of Neurology named after Acad. S.N. Davidenkov

Russian Federation, St. Petersburg; Vsevolozhsk

Vitaliy V. Goldobin

North-Western State Medical University named after I.I. Mechnikov

Email: vitalii.goldobin@szgmu.ru
ORCID iD: 0000-0001-9245-8067
SPIN-code: 4344-5782

M.D., D. Sci. (Med.), Prof., Head of the Depart., Depart. of Neurology named after Acad. S.N. Davidenkov

Russian Federation, St. Petersburg

Hosiddin F. Yuldashev

North-Western State Medical University named after I.I. Mechnikov

Email: kh.yuldashev96@gmail.com
ORCID iD: 0000-0003-3781-5871

M.D., Postgraduate Student, Depart. of Neurology named after Acad. S.N. Davidenkov

Russian Federation, St. Petersburg

Elena G. Klocheva

North-Western State Medical University named after I.I. Mechnikov

Email: elena.klocheva@szgmu.ru
ORCID iD: 0000-0001-6814-0454
SPIN-code: 6220-5349

M.D., D. Sci. (Med.), Prof., Depart. of Neurology named after Acad. S.N. Davidenkov

Russian Federation, St. Petersburg

Andrey A. Zuev

North-Western State Medical University named after I.I. Mechnikov

Email: andrey.zuev@szgmu.ru
ORCID iD: 0000-0002-6163-5718
SPIN-code: 4457-3510

M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Neurology named after Acad. S.N. Davidenkov

Russian Federation, St. Petersburg

References

  1. Myasthenia gravis: diagnosis and treatment. Lobzin SV editor. SPb.: SpetsLit; 2015. 160 p. (In Russ.)
  2. Alekseeva TM, Kryuchkova VV, Stuchevskaya TR, Khalmurzina AN. Epidemiologic studies of myasthenia gravis: literature review. Nervno-myshechnye bolezni. 2018;8(3):12–18. (In Russ.) doi: 10.17650/2222-8721-2018-8-3-12-18.
  3. Bubuioc A-M, Kudebayeva A, Turuspekova S et al. The epidemiology of myasthenia gravis. J Med Life. 2021;14:7–16. doi: 10.25122/jml-2020-0145.
  4. Kryuchkova VV. Kliniko-epidemiologicheskoe i immunologicheskoe issledovanie myasthenii v Sankt-Peterburge. Dis. ... kand. med. nauk. SPb.; 2022. http://www.almazovcentre.ru/wp-content/uploads/%D0%94%D0%B8%D1%81%D1%81%D0%B5%D1%80%D1%82%D0%B0%D1%86%D0%B8%D1%8F-%D0%9A%D1%80%D1%8E%D1%87%D0%BA%D0%BE%D0%B2%D0%B0-%D0%92.%D0%92.-.pdf (access date: 15.11.2022). (In Russ.)
  5. Lai C-H, Tseng H-F. Nationwide population-based epidemiological study of myasthenia gravis in Taiwan. Neuroepidemiology. 2010;35:66–71. doi: 10.1159/000311012.
  6. Overton M, Pihlsgård M, Elmståhl S. Prevalence and incidence of mild cognitive impairment across subtypes, age, and sex. Dement Geriatr Cogn Disord. 2019;47:219–232. doi: 10.1159/000499763.
  7. De la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol. 2012;2012:1–15. doi: 10.1155/2012/367516.
  8. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 2009;8:1006–1018. doi: 10.1016/S1474-4422(09)70236-4.
  9. Jellinger KA. Morphologic diagnosis of “vascular dementia” — A critical update. J Neurol Sci. 2008;270:1–12. doi: 10.1016/j.jns.2008.03.006.
  10. Erkkinen MG, Kim M-O, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10:033118. doi: 10.1101/cshperspect.a033118.
  11. Restivo DA, Centonze D, Alesina A, Marchese-Ragona R. Masthenia gravis associated with SARS-CoV-2 infection. Ann Intern Med. 2020;173(12):1027–1028. doi: 10.7326/L20-0845.
  12. Ceban F, Ling S, Lui LMW et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain Behav Immun. 2022;101:93–135. doi: 10.1016/j.bbi.2021.12.020.
  13. Xodjiyeva DT, Ismoilova NB. Determination of the status of cognitive functions in patients with myastenia through complex neuropsychological test data. Zhurnal nevrologii i neyrokhi-rurgicheskikh issledovaniy. 2022;3(3):48–51. (In Russ.) doi: 10.5281/zenodo.6759516.
  14. Hu X, Lu Z, Mao Z, Yin J. Association between myasthenia gravis and cognitive function: A systematic review and meta-analysis. Ann Indian Acad Neurol. 2015;18:131–137. doi: 10.4103/0972-2327.156560.
  15. Klaus B, Müller P, van Wickeren N et al. Structural and functional brain alterations in patients with myasthenia gravis. Brain Commun. 2022;4(1):1–12. doi: 10.1093/braincomms/fcac018.
  16. Marra C, Marsili F, Quaranta D, Evoli A. Determinants of cognitive impairment in elderly myasthenia gravis patients. Muscle Nerve. 2009;40:952–959. doi: 10.1002/mus.21478.
  17. Ciesielska N, Sokołowski R, Mazur E et al. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr Pol. 2016;50:1039–1052. doi: 10.12740/PP/45368.
  18. Barnett C, Bril V, Kapral M et al. Development and validation of the Myasthenia Gravis Impairment Index. Neurology. 2016;87(9):879–886. doi: 10.1212/WNL.0000000000002971.
  19. De Meel RHP, Barnett C, Bril V et al. Myasthenia gravis impairment index: sensitivity for change in generalized muscle weakness. J Neuromuscul Dis. 2020;7:297–300. doi: 10.3233/JND-200484.
  20. Kaltsatou A, Fotiou D, Tsiptsios D, Orologas A. Cognitive impairment as a central cholinergic deficit in patients with myasthenia gravis. BBA Clin. 2015;3:299–303. doi: 10.1016/j.bbacli.2015.04.003.
  21. Ren Z, Li Y, Li X et al. Associations of body mass index, waist circumference and waist-to-height ratio with cognitive impairment among Chinese older adults: Based on the CLHLS. J Affect Disord. 2021;295:463–470. doi: 10.1016/j.jad.2021.08.093.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of QMGS (Quantitative myasthenia gravis score); OMD = oculomotor disorders; BD = bulbar disorders; RD = respiratory disorders; MSD = musculoskeletal disorders; OS = overall QMGS score.

Download (167KB)
3. Fig. 2. Distribution of myasthenia gravis severity according to the MGFA Classification.

Download (78KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies