Physical Exercise to Redynamize Interoception in Substance use Disorders


Cite item

Full Text

Abstract

Physical exercise is considered a promising medication-free and cost-effective adjunct treatment for substance use disorders (SUD). Nevertheless, evidence regarding the effectiveness of these interventions is currently limited, thereby signaling the need to better understand the mechanisms underlying their impact on SUD, in order to reframe and optimize them. Here we advance that physical exercise could be re-conceptualized as an "interoception booster", namely as a way to help people with SUD to better decode and interpret bodily-related signals associated with transient states of homeostatic imbalances that usually trigger consumption. We first discuss how mismatches between current and desired bodily states influence the formation of reward-seeking states in SUD, in light of the insular cortex brain networks. Next, we detail effort perception during physical exercise and discuss how it can be used as a relevant framework for re-dynamizing interoception in SUD. We conclude by providing perspectives and methodological considerations for applying the proposed approach to mixed-design neurocognitive research on SUD.

About the authors

Damien Brevers

Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY), UCLouvain

Author for correspondence.
Email: info@benthamscience.net

Joël Billieux

Institute of Psychology, University of Lausann

Email: info@benthamscience.net

Philippe de Timary

Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY)

Email: info@benthamscience.net

Olivier Desmedt

Institute of Psychology, University of Lausanne

Email: info@benthamscience.net

Pierre Maurage

Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY)

Email: info@benthamscience.net

José Perales

Department of Experimental Psychology, University of Granada

Email: info@benthamscience.net

Samuel Suárez-Suárez

Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY)

Email: info@benthamscience.net

Antoine Bechara

Department of Psychology, University of Southern California, Los Angeles

Email: info@benthamscience.net

References

  1. Bouchard, C.; Blair, S.N.; Haskell, W.L. Physical activity and health, 2nd ed.; Human kinetics.: Bloomsbury Publishing, 2012. doi: 10.5040/9781492595717
  2. Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev., 2013, 37(8), 1622-1644. doi: 10.1016/j.neubiorev.2013.06.011 PMID: 23806439
  3. Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast., 2017, 2(2), 127-152. doi: 10.3233/BPL-160040 PMID: 29765853
  4. Sothmann, M.S.; Buckworth, J.; Claytor, R.P.; Cox, R.H.; White-Welkley, J.; Dishman, R.K. Exercise training and the cross-stressor adaptation hypothesis. Exerc. Sport Sci. Rev., 1996, 24, 267-288. doi: 10.1249/00003677-199600240-00011 PMID: 8744253
  5. Chen, C.; Nakagawa, S.; An, Y.; Ito, K.; Kitaichi, Y.; Kusumi, I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front. Neuroendocrinol., 2017, 44, 83-102. doi: 10.1016/j.yfrne.2016.12.001 PMID: 27956050
  6. Klaperski, S.; von Dawans, B.; Heinrichs, M.; Fuchs, R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: A randomized controlled trial. J. Behav. Med., 2014, 37(6), 1118-1133. doi: 10.1007/s10865-014-9562-9 PMID: 24659155
  7. Landers, D.M.; Arent, S.M. Physical activity and mental health. Handbook of sport psychology; Singer, R.; Hausenblas, H; Janelle, C., Ed.; s Wiley: New York, 2001, pp. 740-765.
  8. Boecker, H.; Sprenger, T.; Spilker, M.E.; Henriksen, G.; Koppenhoefer, M.; Wagner, K.J.; Valet, M.; Berthele, A.; Tolle, T.R. The runner’s high: Opioidergic mechanisms in the human brain. Cereb. Cortex, 2008, 18(11), 2523-2531. doi: 10.1093/cercor/bhn013 PMID: 18296435
  9. Harber, V.J.; Sutton, J.R. Endorphins and exercise. Sports Med., 1984, 1(2), 154-171. doi: 10.2165/00007256-198401020-00004 PMID: 6091217
  10. Meeusen, R. Exercise and the brain: Insight in new therapeutic modalities. Ann. Transplant., 2005, 10(4), 49-51. PMID: 17037089
  11. Salmon, P. Effects of physical exercise on anxiety, depression, and sensitivity to stress. Clin. Psychol. Rev., 2001, 21(1), 33-61. doi: 10.1016/S0272-7358(99)00032-X PMID: 11148895
  12. Wipfli, B.; Landers, D.; Nagoshi, C.; Ringenbach, S. An examination of serotonin and psychological variables in the relationship between exercise and mental health. Scand. J. Med. Sci. Sports, 2011, 21(3), 474-481. doi: 10.1111/j.1600-0838.2009.01049.x PMID: 20030777
  13. Chen, C.; Nakagawa, S.; Kitaichi, Y.; An, Y.; Omiya, Y.; Song, N.; Koga, M.; Kato, A.; Inoue, T.; Kusumi, I. The role of medial prefrontal corticosterone and dopamine in the antidepressant-like effect of exercise. Psychoneuroendocrinology, 2016, 69, 1-9. doi: 10.1016/j.psyneuen.2016.03.008 PMID: 27003115
  14. Moake, T.R.; Patel, A.S. A cross-stressor adaptation perspective on challenge stressors, dietary behavior, and exercise of college students. Soc. Sci. J., 2021, 1-10. doi: 10.1080/03623319.2020.1867948
  15. Archer, T.; Badgaiyan, R.D.; Blum, K. Physical exercise interventions for drug addictive disorder. J. Reward Defic. Syndr. Addict. Sci., 2017, 3(1), 17-20. doi: 10.17756/jrdsas.2017-036 PMID: 29034367
  16. Weinstock, J.; Wadeson, H.K.; VanHeest, J.L. Exercise as an adjunct treatment for opiate agonist treatment: Review of the current research and implementation strategies. Subst. Abus., 2012, 33(4), 350-360. doi: 10.1080/08897077.2012.663327 PMID: 22989278
  17. Wang, D.; Wang, Y.; Wang, Y.; Li, R.; Zhou, C. Impact of physical exercise on substance use disorders: A meta-analysis. PLoS One, 2014, 9(10), e110728. doi: 10.1371/journal.pone.0110728 PMID: 25330437
  18. Zhang, Z.; Liu, X. A systematic review of exercise intervention program for people with substance use disorder. Front. Psychiatry, 2022, 13, 817927. doi: 10.3389/fpsyt.2022.817927 PMID: 35360135
  19. Araos, P.; Vergara-Moragues, E.; Pedraz, M.; Pavón, F.J.; Campos Cloute, R.; Calado, M.; Ruiz, J.J.; García-Marchena, N.; Gornemann, I.; Torrens, M.; Rodríguez de Fonseca, F. Psychopathological comorbidity in cocaine users in outpatient treatment. Adicciones, 2014, 26(1), 15-26. doi: 10.20882/adicciones.124 PMID: 24652395
  20. Bresin, K.; Mekawi, Y.; Verona, E. The effect of laboratory manipulations of negative affect on alcohol craving and use: A meta-analysis. Psychol. Addict. Behav., 2018, 32(6), 617-627. doi: 10.1037/adb0000383 PMID: 30010350
  21. Greenwald, M.K. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol. Stress, 2018, 9, 84-104. doi: 10.1016/j.ynstr.2018.08.003 PMID: 30238023
  22. Colledge, F.; Cody, R.; Buchner, U.G.; Schmidt, A.; Pühse, U.; Gerber, M.; Wiesbeck, G.; Lang, U.E.; Walter, M. Excessive exercise-a meta-review. Front. Psychiatry, 2020, 11, 521572. doi: 10.3389/fpsyt.2020.521572 PMID: 33329076
  23. Giménez-Meseguer, J.; Tortosa-Martínez, J.; Cortell-Tormo, J. The benefits of physical exercise on mental disorders and quality of life in substance use disorders patients. Systematic review and meta-analysis. Int. J. Environ. Res. Public Health, 2020, 17(10), 3680. doi: 10.3390/ijerph17103680 PMID: 32456164
  24. Gür, F.; Can Gür, G. Is exercise a useful intervention in the treatment of alcohol use disorder? systematic review and meta-analysis. Am. J. Health Promot., 2020, 34(5), 520-537. doi: 10.1177/0890117120913169 PMID: 32212949
  25. Hallgren, M.; Vancampfort, D.; Giesen, E.S.; Lundin, A.; Stubbs, B. Exercise as treatment for alcohol use disorders: Systematic review and meta-analysis. Br. J. Sports Med., 2017, 51(14), 1058-1064. doi: 10.1136/bjsports-2016-096814 PMID: 28087569
  26. Klinsophon, T.; Thaveeratitham, P.; Sitthipornvorakul, E.; Janwantanakul, P. Effect of exercise type on smoking cessation: A meta-analysis of randomized controlled trials. BMC Res. Notes, 2017, 10(1), 442. doi: 10.1186/s13104-017-2762-y PMID: 28874175
  27. Lardier, D.T.; Coakley, K.E.; Holladay, K.R.; Amorim, F.T.; Zuhl, M.N. Exercise as a useful intervention to reduce alcohol consumption and improve physical fitness in individuals with alcohol use disorder: A systematic review and meta-analysis. Front. Psychol., 2021, 12, 675285. doi: 10.3389/fpsyg.2021.675285 PMID: 34305729
  28. Thompson, T.P.; Horrell, J.; Taylor, A.H.; Wanner, A.; Husk, K.; Wei, Y.; Creanor, S.; Kandiyali, R.; Neale, J.; Sinclair, J.; Nasser, M.; Wallace, G. Physical activity and the prevention, reduction, and treatment of alcohol and other drug use across the lifespan (The PHASE review): A systematic review. Ment. Health Phys. Act., 2020, 19, 100360. doi: 10.1016/j.mhpa.2020.100360 PMID: 33020704
  29. De La Garza, R., II; Yoon, J.H.; Thompson-Lake, D.G.Y.; Haile, C.N.; Eisenhofer, J.D.; Newton, T.F.; Mahoney, J.J., III Treadmill exercise improves fitness and reduces craving and use of cocaine in individuals with concurrent cocaine and tobacco-use disorder. Psychiatry Res., 2016, 245, 133-140. doi: 10.1016/j.psychres.2016.08.003 PMID: 27541349
  30. Hallgren, M.; Herring, M.P.; Vancampfort, D.; Hoang, M.T.; Andersson, V.; Andreasson, S.; Abrantes, A.M. Changes in craving following acute aerobic exercise in adults with alcohol use disorder. J. Psychiatr. Res., 2021, 142, 243-249. doi: 10.1016/j.jpsychires.2021.08.007 PMID: 34391078
  31. Sari, S.; Bilberg, R.; Jensen, K.; Søgaard-Nielsen, A.; Nielsen, B.; Roessler, K.K. Physical exercise as a supplement to outpatient treatment of alcohol use disorders-a randomized controlled trial. BMC Psychol., 2013, 1(1), 23. doi: 10.1186/2050-7283-1-23
  32. Fontes, E.B.; Bortolotti, H.; Grandjean da Costa, K.; Machado de Campos, B.; Castanho, G.K.; Hohl, R.; Noakes, T.; Min, L.L. Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br. J. Sports Med., 2020, 54(2), 110-115. doi: 10.1136/bjsports-2018-100295 PMID: 31420319
  33. Costa, K.G.; Cabral, D.A.; Hohl, R.; Fontes, E.B. Rewiring the addicted brain through a psychobiological model of physical exercise. Front. Psychiatry, 2019, 10, 600. doi: 10.3389/fpsyt.2019.00600 PMID: 31507468
  34. Cabé, N.; Lanièpce, A.; Pitel, A.L. Physical activity: A promising adjunctive treatment for severe alcohol use disorder. Addict. Behav., 2021, 113, 106667. doi: 10.1016/j.addbeh.2020.106667 PMID: 33074123
  35. Paulus, M.P.; Stewart, J.L.; Haase, L. Treatment approaches for interoceptive dysfunctions in drug addiction. Front. Psychiatry, 2013, 4, 137. doi: 10.3389/fpsyt.2013.00137 PMID: 24151471
  36. Thal, S.B.; Maunz, L.A.; Quested, E.; Bright, S.J.; Myers, B.; Ntoumanis, N. Behavior change techniques in physical activity interventions for adults with substance use disorders: A systematic review. Psychol. Addict. Behav., 2023, 37(3), 416-433. doi: 10.1037/adb0000842 PMID: 35666890
  37. Koob, G.; Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol., 2001, 24(2), 97-129. doi: 10.1016/S0893-133X(00)00195-0 PMID: 11120394
  38. Miller, M.; Kiverstein, J.; Rietveld, E. Embodying addiction: A predictive processing account. Brain Cogn., 2020, 138, 105495. doi: 10.1016/j.bandc.2019.105495 PMID: 31877434
  39. Naqvi, N.H.; Gaznick, N.; Tranel, D.; Bechara, A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann. N. Y. Acad. Sci., 2014, 1316(1), 53-70. doi: 10.1111/nyas.12415 PMID: 24690001
  40. Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci., 2005, 8(11), 1481-1489. doi: 10.1038/nn1579 PMID: 16251991
  41. DeWitt, S.J.; Ketcherside, A.; McQueeny, T.M.; Dunlop, J.P.; Filbey, F.M. The hyper-sentient addict: An exteroception model of addiction. Am. J. Drug Alcohol Abuse, 2015, 41(5), 374-381. doi: 10.3109/00952990.2015.1049701 PMID: 26154169
  42. Jasinska, A.J.; Stein, E.A.; Kaiser, J.; Naumer, M.J.; Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neurosci. Biobehav. Rev., 2014, 38, 1-16. doi: 10.1016/j.neubiorev.2013.10.013 PMID: 24211373
  43. Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev., 2019, 99(4), 2115-2140. doi: 10.1152/physrev.00014.2018 PMID: 31507244
  44. Zilverstand, A.; Huang, A.S.; Alia-Klein, N.; Goldstein, R.Z. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 2018, 98(5), 886-903. doi: 10.1016/j.neuron.2018.03.048 PMID: 29879391
  45. Drummond, D.C.; Litten, R.Z.; Lowman, C.; Hunt, W.A. Craving research: Future directions. Addiction, 2000, 95(8)(Suppl. 2), 247-255. doi: 10.1080/09652140050111816 PMID: 11002919
  46. Kozlowski, L.T.; Wilkinson, D.A. Use and misuse of the concept of craving by alcohol, tobacco, and drug researchers. Addiction, 1987, 82(1), 31-36. doi: 10.1111/j.1360-0443.1987.tb01430.x PMID: 3470042
  47. Pickens, R.W.; Johanson, C.E. Craving: Consensus of status and agenda for future research. Drug Alcohol Depend., 1992, 30(2), 127-131. doi: 10.1016/0376-8716(92)90017-7 PMID: 1633752
  48. Tiffany, S.T.; Conklin, C.A. A cognitive processing model of alcohol craving and compulsive alcohol use. Addiction, 2000, 95(8), 145-153. doi: 10.1080/09652140050111717 PMID: 11002909
  49. Naqvi, N.H.; Bechara, A. The insula and drug addiction: An interoceptive view of pleasure, urges, and decision-making. Brain Struct. Funct., 2010, 214(5-6), 435-450. doi: 10.1007/s00429-010-0268-7 PMID: 20512364
  50. Kiverstein, J.; Miller, M.; Rietveld, E. The feeling of grip: Novelty, error dynamics, and the predictive brain. Synthese, 2019, 196(7), 2847-2869. doi: 10.1007/s11229-017-1583-9
  51. Paulus, M.P.; Tapert, S.F.; Schulteis, G. The role of interoception and alliesthesia in addiction. Pharmacol. Biochem. Behav., 2009, 94(1), 1-7. doi: 10.1016/j.pbb.2009.08.005 PMID: 19698739
  52. Pezzulo, G.; Rigoli, F.; Friston, K.J. Hierarchical active inference: A theory of motivated control. Trends Cogn. Sci., 2018, 22(4), 294-306. doi: 10.1016/j.tics.2018.01.009 PMID: 29475638
  53. Van de Cruys, S. Affective value in the predictive mind. Philosophy and Predictive Processing: 24; Metzinger, T; Wiese, W., Ed.; MIND Group: Frankfurt am Main, 2017. doi: 10.15502/9783958573253
  54. Joffily, M.; Coricelli, G. Emotional valence and the free-energy principle. PLOS Comput. Biol., 2013, 9(6), e1003094. doi: 10.1371/journal.pcbi.1003094 PMID: 23785269
  55. Muela, I.; Navas, J.F.; Ventura-Lucena, J.M.; Perales, J.C. How to pin a compulsive behavior down: A systematic review and conceptual synthesis of compulsivity-sensitive items in measures of behavioral addiction. Addict. Behav., 2022, 134, 107410. doi: 10.1016/j.addbeh.2022.107410 PMID: 35780595
  56. Naqvi, N.H.; Bechara, A. The hidden island of addiction: The insula. Trends Neurosci., 2009, 32(1), 56-67. doi: 10.1016/j.tins.2008.09.009 PMID: 18986715
  57. Paulus, M.P. Neural basis of reward and craving-a homeostatic point of view. Dialogues Clin. Neurosci., 2007, 9(4), 379-387. doi: 10.31887/DCNS.2007.9.4/mpaulus PMID: 18286798
  58. Paulus, M.P. Decision-making dysfunctions in psychiatry-altered homeostatic processing? Science, 2007, 318(5850), 602-606. doi: 10.1126/science.1142997 PMID: 17962553
  59. Brody, A.L.; Mandelkern, M.A.; London, E.D.; Childress, A.R.; Lee, G.S.; Bota, R.G.; Ho, M.L.; Saxena, S.; Baxter, L.R., Jr; Madsen, D.; Jarvik, M.E. Brain metabolic changes during cigarette craving. Arch. Gen. Psychiatry, 2002, 59(12), 1162-1172. doi: 10.1001/archpsyc.59.12.1162 PMID: 12470133
  60. Kilts, C.D.; Gross, R.E.; Ely, T.D.; Drexler, K.P.G. The neural correlates of cue-induced craving in cocaine-dependent women. Am. J. Psychiatry, 2004, 161(2), 233-241. doi: 10.1176/appi.ajp.161.2.233 PMID: 14754771
  61. Kilts, C.D.; Schweitzer, J.B.; Quinn, C.K.; Gross, R.E.; Faber, T.L.; Muhammad, F.; Ely, T.D.; Hoffman, J.M.; Drexler, K.P.G. Neural activity related to drug craving in cocaine addiction. Arch. Gen. Psychiatry, 2001, 58(4), 334-341. doi: 10.1001/archpsyc.58.4.334 PMID: 11296093
  62. Wang, G.J.; Volkow, N.D.; Fowler, J.S.; Cervany, P.; Hitzemann, R.J.; Pappas, N.R.; Wong, C.T.; Felder, C. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci., 1999, 64(9), 775-784. doi: 10.1016/S0024-3205(98)00619-5 PMID: 10075110
  63. Gaznick, N.; Tranel, D.; McNutt, A.; Bechara, A. Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine Tob. Res., 2014, 16(4), 445-453. doi: 10.1093/ntr/ntt172 PMID: 24169814
  64. Naqvi, N.H.; Rudrauf, D.; Damasio, H.; Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science, 2007, 315(5811), 531-534. doi: 10.1126/science.1135926 PMID: 17255515
  65. Suñer-Soler, R.; Grau, A.; Gras, M.E.; Font-Mayolas, S.; Silva, Y.; Dávalos, A.; Cruz, V.; Rodrigo, J.; Serena, J. Smoking cessation 1 year poststroke and damage to the insular cortex. Stroke, 2012, 43(1), 131-136. doi: 10.1161/STROKEAHA.111.630004 PMID: 22052507
  66. Bienkowski, P.; Zatorski, P.; Baranowska, A.; Ryglewicz, D.; Sienkiewicz-Jarosz, H. Insular lesions and smoking cessation after first-ever ischemic stroke: A 3-month follow-up. Neurosci. Lett., 2010, 478(3), 161-164. doi: 10.1016/j.neulet.2010.05.008 PMID: 20470864
  67. Joutsa, J.; Moussawi, K.; Siddiqi, S.H.; Abdolahi, A.; Drew, W.; Cohen, A.L.; Ross, T.J.; Deshpande, H.U.; Wang, H.Z.; Bruss, J.; Stein, E.A.; Volkow, N.D.; Grafman, J.H.; van Wijngaarden, E.; Boes, A.D.; Fox, M.D. Brain lesions disrupting addiction map to a common human brain circuit. Nat. Med., 2022, 28(6), 1249-1255. doi: 10.1038/s41591-022-01834-y PMID: 35697842
  68. Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci., 2002, 3(8), 655-666. doi: 10.1038/nrn894 PMID: 12154366
  69. Craig, A.D. How do you feel--now? The anterior insula and human awareness. Nat. Rev. Neurosci., 2009, 10(1), 59-70. doi: 10.1038/nrn2555 PMID: 19096369
  70. Gogolla, N. The insular cortex. Curr. Biol., 2017, 27(12), R580-R586. doi: 10.1016/j.cub.2017.05.010 PMID: 28633023
  71. Nieuwenhuys, R. The insular cortex Prog. Brain Res; , 2012, 195, pp. 123-163. doi: 10.1016/B978-0-444-53860-4.00007-6 PMID: 22230626
  72. Noël, X.; Brevers, D.; Bechara, A. A neurocognitive approach to understanding the neurobiology of addiction. Curr. Opin. Neurobiol., 2013, 23(4), 632-638. doi: 10.1016/j.conb.2013.01.018 PMID: 23395462
  73. Noël, X.; Brevers, D.; Bechara, A. A triadic neurocognitive approach to addiction for clinical interventions. Front. Psychiatry, 2013, 4, 179. doi: 10.3389/fpsyt.2013.00179 PMID: 24409155
  74. Chang, L.J.; Yarkoni, T.; Khaw, M.W.; Sanfey, A.G. Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cereb. Cortex, 2013, 23(3), 739-749. doi: 10.1093/cercor/bhs065 PMID: 22437053
  75. Deen, B.; Pitskel, N.B.; Pelphrey, K.A. Three systems of insular functional connectivity identified with cluster analysis. Cereb. Cortex, 2011, 21(7), 1498-1506. doi: 10.1093/cercor/bhq186 PMID: 21097516
  76. Droutman, V.; Bechara, A.; Read, S.J. Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Front. Behav. Neurosci., 2015, 9, 309. doi: 10.3389/fnbeh.2015.00309 PMID: 26635559
  77. Droutman, V.; Read, S.J.; Bechara, A. Revisiting the role of the insula in addiction. Trends Cogn. Sci., 2015, 19(7), 414-420. doi: 10.1016/j.tics.2015.05.005 PMID: 26066588
  78. Fermin, A.S.R.; Friston, K.; Yamawaki, S. An insula hierarchical network architecture for active interoceptive inference. R. Soc. Open Sci., 2022, 9(6), 220226. doi: 10.1098/rsos.220226 PMID: 35774133
  79. Molnar-Szakacs, I.; Uddin, L.Q. Anterior insula as a gatekeeper of executive control. Neurosci. Biobehav. Rev., 2022, 139, 104736. doi: 10.1016/j.neubiorev.2022.104736 PMID: 35700753
  80. Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci., 2015, 16(1), 55-61. doi: 10.1038/nrn3857 PMID: 25406711
  81. Uddin, L.Q.; Kinnison, J.; Pessoa, L.; Anderson, M.L. Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J. Cogn. Neurosci., 2014, 26(1), 16-27. doi: 10.1162/jocn_a_00462 PMID: 23937691
  82. Paulus, M.P.; Feinstein, J.S.; Khalsa, S.S. An active inference approach to interoceptive psychopathology. Annu. Rev. Clin. Psychol., 2019, 15(1), 97-122. doi: 10.1146/annurev-clinpsy-050718-095617 PMID: 31067416
  83. Wilson, S.J. Constructing Craving: Applying the theory of constructed emotion to urge states. Curr. Dir. Psychol. Sci., 2022, 31(4), 347-354. doi: 10.1177/09637214221098055 PMID: 36213317
  84. Gray, M.A.; Critchley, H.D. Interoceptive basis to craving. Neuron, 2007, 54(2), 183-186. doi: 10.1016/j.neuron.2007.03.024 PMID: 17442239
  85. Janes, A.C.; Krantz, N.L.; Nickerson, L.D.; Frederick, B.B.; Lukas, S.E. Craving and Cue reactivity in nicotine-dependent tobacco smokers is associated with different insula networks. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2020, 5(1), 76-83. doi: 10.1016/j.bpsc.2019.09.005 PMID: 31706906
  86. Tiffany, S.T. Evaluating relationships between craving and drug use. Addiction, 2000, 95(7), 1106-1107. doi: 10.1046/j.1360-0443.2000.957110613.x PMID: 10962776
  87. Koob, G.F. Drug addiction: The yin and yang of hedonic homeostasis. Neuron, 1996, 16(5), 893-896. doi: 10.1016/S0896-6273(00)80109-9 PMID: 8630244
  88. Tatum, A.L.; Seevers, M.H. Theories of drug addiction. Physiol. Rev., 1931, 11(2), 107-121. doi: 10.1152/physrev.1931.11.2.107
  89. Wise, R.A.; Koob, G.F. The development and maintenance of drug addiction. Neuropsychopharmacol., 2014, 39(2), 254-262. doi: 10.1038/npp.2013.261 PMID: 24121188
  90. Baumeister, R.F. Addiction, cigarette smoking, and voluntary control of action: Do cigarette smokers lose their free will? Addict. Behav. Rep., 2017, 5, 67-84. doi: 10.1016/j.abrep.2017.01.003 PMID: 29450229
  91. Brevers, D.; Sescousse, G.; Maurage, P.; Billieux, J. Examining neural reactivity to gambling cues in the age of online betting. Curr. Behav. Neurosci. Rep., 2019, 6(3), 59-71. doi: 10.1007/s40473-019-00177-2 PMID: 31396472
  92. Devoto, F.; Zapparoli, L.; Spinelli, G.; Scotti, G.; Paulesu, E. How the harm of drugs and their availability affect brain reactions to drug cues: A meta-analysis of 64 neuroimaging activation studies. Transl. Psychiatry, 2020, 10(1), 429. doi: 10.1038/s41398-020-01115-7 PMID: 33318467
  93. Ekhtiari, H.; Zare-Bidoky, M.; Sangchooli, A.; Janes, A.C.; Kaufman, M.J.; Oliver, J.A.; Prisciandaro, J.J.; Wüstenberg, T.; Anton, R.F.; Bach, P.; Baldacchino, A.; Beck, A.; Bjork, J.M.; Brewer, J.; Childress, A.R.; Claus, E.D.; Courtney, K.E.; Ebrahimi, M.; Filbey, F.M.; Ghahremani, D.G.; Azbari, P.G.; Goldstein, R.Z.; Goudriaan, A.E.; Grodin, E.N.; Hamilton, J.P.; Hanlon, C.A.; Hassani-Abharian, P.; Heinz, A.; Joseph, J.E.; Kiefer, F.; Zonoozi, A.K.; Kober, H.; Kuplicki, R.; Li, Q.; London, E.D.; McClernon, J.; Noori, H.R.; Owens, M.M.; Paulus, M.P.; Perini, I.; Potenza, M.; Potvin, S.; Ray, L.; Schacht, J.P.; Seo, D.; Sinha, R.; Smolka, M.N.; Spanagel, R.; Steele, V.R.; Stein, E.A.; Steins-Loeber, S.; Tapert, S.F.; Verdejo-Garcia, A.; Vollstädt-Klein, S.; Wetherill, R.R.; Wilson, S.J.; Witkiewitz, K.; Yuan, K.; Zhang, X.; Zilverstand, A. A methodological checklist for fMRI drug cue reactivity studies: Development and expert consensus. Nat. Protoc., 2022, 17(3), 567-595. doi: 10.1038/s41596-021-00649-4 PMID: 35121856
  94. Wilson, S.J.; Creswell, K.G.; Sayette, M.A.; Fiez, J.A. Ambivalence about smoking and cue-elicited neural activity in quitting-motivated smokers faced with an opportunity to smoke. Addict. Behav., 2013, 38(2), 1541-1549. doi: 10.1016/j.addbeh.2012.03.020 PMID: 22483100
  95. Field, M.; Di Lemma, L.; Christiansen, P.; Dickson, J. Automatic avoidance tendencies for alcohol cues predict drinking after detoxification treatment in alcohol dependence. Psychol. Addict. Behav., 2017, 31(2), 171-179. doi: 10.1037/adb0000232 PMID: 27935726
  96. Spruyt, A.; De Houwer, J.; Tibboel, H.; Verschuere, B.; Crombez, G.; Verbanck, P.; Hanak, C.; Brevers, D.; Noël, X. On the predictive validity of automatically activated approach/avoidance tendencies in abstaining alcohol-dependent patients. Drug Alcohol Depend., 2013, 127(1-3), 81-86. doi: 10.1016/j.drugalcdep.2012.06.019 PMID: 22776440
  97. Townshend, J.M.; Duka, T. Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol. Clin. Exp. Res., 2007, 31(8), 1349-1357. doi: 10.1111/j.1530-0277.2007.00429.x PMID: 17550367
  98. Bollen, Z.; Field, M.; Billaux, P.; Maurage, P. Attentional bias in alcohol drinkers: A systematic review of its link with consumption variables. Neurosci. Biobehav. Rev., 2022, 139, 104703. doi: 10.1016/j.neubiorev.2022.104703 PMID: 35643118
  99. Lambert, L.; Serre, F.; Thirioux, B.; Jaafari, N.; Roux, P.; Jauffret-Roustide, M.; Lalanne, L.; Daulouède, J.P.; Auriacombe, M. Link between perception of treatment need and craving reports in addiction. Front. Psychiatry, 2022, 12, 790203. doi: 10.3389/fpsyt.2021.790203 PMID: 35173637
  100. Moeller, S.J.; Konova, A.B.; Goldstein, R.Z. Multiple ambiguities in the measurement of drug craving. Addiction, 2015, 110(2), 205-206. doi: 10.1111/add.12726 PMID: 25602040
  101. Sayette, M.A.; Martin, C.S.; Wertz, J.M.; Perrott, M.A.; Peters, A.R. The effects of alcohol on cigarette craving in heavy smokers and tobacco chippers. Psychol. Addict. Behav., 2005, 19(3), 263-270. doi: 10.1037/0893-164X.19.3.263 PMID: 16187804
  102. Shiffman, S.; Engberg, J.B.; Paty, J.A.; Perz, W.G.; Gnys, M.; Kassel, J.D.; Hickcox, M. A day at a time: Predicting smoking lapse from daily urge. J. Abnorm. Psychol., 1997, 106(1), 104-116. doi: 10.1037/0021-843X.106.1.104 PMID: 9103722
  103. Wertz, J.M.; Sayette, M.A. A review of the effects of perceived drug use opportunity on self-reported urge. Exp. Clin. Psychopharmacol., 2001, 9(1), 3-13. doi: 10.1037/1064-1297.9.1.3 PMID: 11519632
  104. Gwaltney, C.J.; Shiffman, S.; Balabanis, M.H.; Paty, J.A. Dynamic self-efficacy and outcome expectancies: Prediction of smoking lapse and relapse. J. Abnorm. Psychol., 2005, 114(4), 661-675. doi: 10.1037/0021-843X.114.4.661 PMID: 16351387
  105. Gwaltney, C.J.; Shiffman, S.; Sayette, M.A. Situational correlates of abstinence self-efficacy. J. Abnorm. Psychol., 2005, 114(4), 649-660. doi: 10.1037/0021-843X.114.4.649 PMID: 16351386
  106. Duncan, E.; Boshoven, W.; Harenski, K.; Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Tracy, H.; Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Tracy, H.; Jovanovic, T.; Hu, X.; Drexler, K.; Kilts, C. An fMRI study of the interaction of stress and cocaine cues on cocaine craving in cocaine-dependent men. Am. J. Addict., 2007, 16(3), 174-182. doi: 10.1080/10550490701375285 PMID: 17612820
  107. Sinha, R. How does stress lead to risk of alcohol relapse? Alcohol Res., 2012, 34(4), 432-440. PMID: 23584109
  108. Brevers, D.; Bechara, A.; Kilts, C.D.; Antoniali, V.; Bruylant, A.; Verbanck, P.; Kornreich, C.; Noël, X. Competing Motivations: Proactive response inhibition toward addiction-related stimuli in quitting-motivated individuals. J. Gambl. Stud., 2018, 34(3), 785-806. doi: 10.1007/s10899-017-9722-2 PMID: 29067545
  109. Breese, G.R.; Chu, K.; Dayas, C.V.; Funk, D.; Knapp, D.J.; Koob, G.F.; Lê, D.A.; O’Dell, L.E.; Overstreet, D.H.; Roberts, A.J.; Sinha, R.; Valdez, G.R.; Weiss, F. Stress enhancement of craving during sobriety: A risk for relapse. Alcohol. Clin. Exp. Res., 2005, 29(2), 185-195. doi: 10.1097/01.ALC.0000153544.83656.3C PMID: 15714042
  110. Sinha, R.; Garcia, M.; Paliwal, P.; Kreek, M.J.; Rounsaville, B.J. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch. Gen. Psychiatry, 2006, 63(3), 324-331. doi: 10.1001/archpsyc.63.3.324 PMID: 16520439
  111. Sinha, R. How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl.), 2001, 158(4), 343-359. doi: 10.1007/s002130100917 PMID: 11797055
  112. Sinha, R. The role of stress in addiction relapse. Curr. Psychiatry Rep., 2007, 9(5), 388-395. doi: 10.1007/s11920-007-0050-6 PMID: 17915078
  113. Sinha, R. Modeling stress and drug craving in the laboratory: Implications for addiction treatment development. Addict. Biol., 2009, 14(1), 84-98. doi: 10.1111/j.1369-1600.2008.00134.x PMID: 18945295
  114. Abbiss, C.R.; Peiffer, J.J.; Meeusen, R.; Skorski, S. Role of ratings of perceived exertion during self-paced exercise: What are we actually measuring? Sports Med., 2015, 45(9), 1235-1243. doi: 10.1007/s40279-015-0344-5 PMID: 26054383
  115. Goodwin, G.M.; McCloskey, D.I.; Mitchell, J.H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol., 1972, 226(1), 173-190. doi: 10.1113/jphysiol.1972.sp009979 PMID: 4263680
  116. Johansson, J.E. On the influence of muscular activity on respiration and cardiac activity. Skand. Arch. Physiol., 1894, 5(1), 20-66. doi: 10.1111/j.1748-1716.1894.tb00192.x
  117. Zuntz, N.; Geppert, J. On the nature of normal respiratory stimuli and the site of their action. Pflugers Arch., 1886, 38(1), 337-338. doi: 10.1007/BF01654665
  118. Williamson, J.W.; Fadel, P.J.; Mitchell, J.H. New insights into central cardiovascular control during exercise in humans: A central command update. Exp. Physiol., 2006, 91(1), 51-58. doi: 10.1113/expphysiol.2005.032037 PMID: 16239250
  119. Borg, G.A. Perceived exertion as an indicator of somatic stress. Scand. J. Reh. Med., 1970, 2(2), 92-98.
  120. Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc., 1982, 14(5), 377-381. doi: 10.1249/00005768-198205000-00012 PMID: 7154893
  121. Morree, H.M.; Klein, C.; Marcora, S.M. Perception of effort reflects central motor command during movement execution. Psychophysiology, 2012, 49(9), 1242-1253. doi: 10.1111/j.1469-8986.2012.01399.x PMID: 22725828
  122. Duncan, M.J.; Al-Nakeeb, Y.; Scurr, J. Perceived exertion is related to muscle activity during leg extension exercise. Res. Sports Med., 2006, 14(3), 179-189. doi: 10.1080/15438620600854728 PMID: 16967770
  123. Lagally, K.M.; Robertson, R.J.; Gallagher, K.; Goss, F.L.; Jakicic, J.M.; Lephart, S.M.; McCAW, S.T.; Goodpaster, B. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Med. Sci. Sports Exerc., 2002, 34(3), 552-559. doi: 10.1097/00005768-200203000-00025 PMID: 11880823
  124. Asmussen, E.; Johansen, S.H.; Jørgensen, M.; Nielsen, M. On the nervous factors controlling respiration and circulation during exercise. Experiments with Curarization. Acta Physiol. Scand., 1965, 63(3), 343-350. doi: 10.1111/j.1748-1716.1965.tb04073.x PMID: 14324070
  125. Leonard, B.; Mitchell, J.H.; Mizuno, M.; Rube, N.; Saltin, B.; Secher, N.H. Partial neuromuscular blockade and cardiovascular responses to static exercise in man. J. Physiol., 1985, 359(1), 365-379. doi: 10.1113/jphysiol.1985.sp015590 PMID: 3999043
  126. Gallagher, K.M.; Fadel, P.J.; Smith, S.A.; Norton, K.H.; Querry, R.G.; Olivencia-Yurvati, A.; Raven, P.B. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise. J. Appl. Physiol., 2001, 91(5), 2351-2358. doi: 10.1152/jappl.2001.91.5.2351 PMID: 11641380
  127. Gandevia, S.C.; Killian, K.; McKenzie, D.K.; Crawford, M.; Allen, G.M.; Gorman, R.B.; Hales, J.P. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J. Physiol., 1993, 470(1), 85-107. doi: 10.1113/jphysiol.1993.sp019849 PMID: 8308755
  128. Williamson, J.W.; McColl, R.; Mathews, D.; Mitchell, J.H.; Raven, P.B.; Morgan, W.P. Hypnotic manipulation of effort sense during dynamic exercise: Cardiovascular responses and brain activation. J. Appl. Physiol., 2001, 90(4), 1392-1399. doi: 10.1152/jappl.2001.90.4.1392 PMID: 11247939
  129. Williamson, J.W.; McColl, R.; Mathews, D.; Mitchell, J.H.; Raven, P.B.; Morgan, W.P. Brain activation by central command during actual and imagined handgrip under hypnosis. J. Appl. Physiol., 2002, 92(3), 1317-1324. doi: 10.1152/japplphysiol.00939.2001 PMID: 11842073
  130. St Clair Gibson, A.; Lambert, E.V.; Rauch, L.H.G.; Tucker, R.; Baden, D.A.; Foster, C.; Noakes, T.D. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med., 2006, 36(8), 705-722. doi: 10.2165/00007256-200636080-00006 PMID: 16869711
  131. Noakes, T.D.; St Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br. J. Sports Med., 2004, 38(4), 511-514. doi: 10.1136/bjsm.2003.009860 PMID: 15273198
  132. Hampson, D.B.; Gibson, A.S.; Lambert, M.I.; Noakes, T.D. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med., 2001, 31(13), 935-952. doi: 10.2165/00007256-200131130-00004 PMID: 11708402
  133. Vieira, J.G.; Sardeli, A.V.; Dias, M.R.; Filho, J.E.; Campos, Y.; Sant’Ana, L.; Leitão, L.; Reis, V.; Wilk, M.; Novaes, J.; Vianna, J. Effects of resistance training to muscle failure on acute fatigue: A systematic review and meta-analysis. Sports Med., 2022, 52(5), 1103-1125. doi: 10.1007/s40279-021-01602-x PMID: 34881412
  134. Robertson, R.J.; Noble, B.J. Perception of physical exertion: Methods, mediators, and applications. Exerc. Sport Sci. Rev., 1997, 25, 407-452. doi: 10.1249/00003677-199700250-00017 PMID: 9213100
  135. Pageaux, B. Perception of effort in exercise science: Definition, measurement and perspectives. Eur. J. Sport Sci., 2016, 16(8), 885-894. doi: 10.1080/17461391.2016.1188992 PMID: 27240002
  136. Mauger, L. Factors affecting the regulation of pacing: Current perspectives. Open Access J. Sports Med., 2014, 5, 209-214. doi: 10.2147/OAJSM.S38599 PMID: 25228823
  137. Wallman-Jones, A.; Perakakis, P.; Tsakiris, M.; Schmidt, M. Physical activity and interoceptive processing: Theoretical considerations for future research. Int. J. Psychophysiol., 2021, 166, 38-49. doi: 10.1016/j.ijpsycho.2021.05.002 PMID: 33965423
  138. Eston, R.; Faulkner, J.; St Clair Gibson, A.; Noakes, T.; Parfitt, G. The effect of antecedent fatiguing activity on the relationship between perceived exertion and physiological activity during a constant load exercise task. Psychophysiology, 2007, 44(5), 779-786. doi: 10.1111/j.1469-8986.2007.00558.x PMID: 17617170
  139. Joseph, T.; Johnson, B.; Battista, R.A.; Wright, G.; Dodge, C.; Porcari, J.P.; De Koning, J.J.; Foster, C. Perception of fatigue during simulated competition. Med. Sci. Sports Exerc., 2008, 40(2), 381-386. doi: 10.1249/mss.0b013e31815a83f6 PMID: 18202562
  140. Horstman, D.H.; Morgan, W.P.; Cymerman, A.; Stokes, J. Perception of effort during constant work to self-imposed exhaustion. Percept. Mot. Skills, 1979, 48(3_s)(Suppl.), 1111-1126. doi: 10.2466/pms.1979.48.3c.1111 PMID: 492879
  141. Tucker, R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br. J. Sports Med., 2009, 43(6), 392-400. doi: 10.1136/bjsm.2008.050799 PMID: 19224911
  142. Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med., 2009, 43(6), e1. doi: 10.1136/bjsm.2009.057562 PMID: 19224909
  143. Albertus, Y.; Tucker, R.; Gibson, A.S.C.; Lambert, E.; Hampson, D.B.; Noakes, T.D. Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med. Sci. Sports Exerc., 2005, 37(3), 461-468. doi: 10.1249/01.MSS.0000155700.72702.76 PMID: 15741846
  144. Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci., 2015, 16(7), 419-429. doi: 10.1038/nrn3950 PMID: 26016744
  145. Paulus, M.P.; Stein, M.B. Interoception in anxiety and depression. Brain Struct. Funct., 2010, 214(5-6), 451-463. doi: 10.1007/s00429-010-0258-9 PMID: 20490545
  146. Pezzulo, G.; Barca, L.; Friston, K.J. Active inference and cognitive-emotional interactions in the brain. Behav. Brain Sci., 2015, 38, e85. doi: 10.1017/S0140525X14001009 PMID: 26786300
  147. Pezzulo, G.; Rigoli, F.; Friston, K. Active inference, homeostatic regulation and adaptive behavioural control. Prog. Neurobiol., 2015, 134, 17-35. doi: 10.1016/j.pneurobio.2015.09.001 PMID: 26365173
  148. Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.E.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.; Seth, A.K.; Petzschner, F.H. Allostatic Self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci., 2016, 10, 550. doi: 10.3389/fnhum.2016.00550 PMID: 27895566
  149. Seth, A.K.; Friston, K.J. Active interoceptive inference and the emotional brain., Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1708), 20160007. doi: 10.1098/rstb.2016.0007 PMID: 28080966
  150. Friston, K. Hierarchical models in the brain. PLOS Comput. Biol., 2008, 4(11), e1000211. doi: 10.1371/journal.pcbi.1000211 PMID: 18989391
  151. Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci., 2010, 11(2), 127-138. doi: 10.1038/nrn2787 PMID: 20068583
  152. Friston, K.J.; Daunizeau, J.; Kiebel, S.J. Reinforcement learning or active inference? PLoS One, 2009, 4(7), e6421. doi: 10.1371/journal.pone.0006421 PMID: 19641614
  153. Friston, K.; Schwartenbeck, P.; FitzGerald, T.; Moutoussis, M.; Behrens, T.; Dolan, R.J. The anatomy of choice: Active inference and agency. Front. Hum. Neurosci., 2013, 7, 598. doi: 10.3389/fnhum.2013.00598 PMID: 24093015
  154. Baden, D.A.; McLean, T.L.; Tucker, R.; Noakes, T.D.; St Clair Gibson, A. Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function * Commentary. Br. J. Sports Med., 2005, 39(10), 742-746. doi: 10.1136/bjsm.2004.016980 PMID: 16183771
  155. Williamson, J.W.; Nobrega, A.C.L.; McColl, R.; Mathews, D.; Winchester, P.; Friberg, L.; Mitchell, J.H. Activation of the insular cortex during dynamic exercise in humans. J. Physiol., 1997, 503(2), 277-283. doi: 10.1111/j.1469-7793.1997.277bh.x PMID: 9306272
  156. Williamson, J.W.; McColl, R.; Mathews, D.; Ginsburg, M.; Mitchell, J.H. Activation of the insular cortex is affected by the intensity of exercise. J. Appl. Physiol., 1999, 87(3), 1213-1219. doi: 10.1152/jappl.1999.87.3.1213 PMID: 10484598
  157. Fontes, E.B.; Okano, A.H.; De Guio, F.; Schabort, E.J.; Min, L.L.; Basset, F.A.; Stein, D.J.; Noakes, T.D. Brain activity and perceived exertion during cycling exercise: An fMRI study. Br. J. Sports Med., 2015, 49(8), 556-560. doi: 10.1136/bjsports-2012-091924 PMID: 23729175
  158. Hilty, L.; Langer, N.; Pascual-Marqui, R.; Boutellier, U.; Lutz, K. Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise. Eur. J. Neurosci., 2011, 34(12), 2035-2042. doi: 10.1111/j.1460-9568.2011.07909.x PMID: 22097899
  159. Hilty, L.; Jäncke, L.; Luechinger, R.; Boutellier, U.; Lutz, K. Limitation of physical performance in a muscle fatiguing handgrip exercise is mediated by thalamo-insular activity. Hum. Brain Mapp., 2011, 32(12), 2151-2160. doi: 10.1002/hbm.21177 PMID: 21154789
  160. Rauch, H.G.L.; Schönbächler, G.; Noakes, T.D. Neural correlates of motor vigour and motor urgency during exercise. Sports Med., 2013, 43(4), 227-241. doi: 10.1007/s40279-013-0025-1 PMID: 23456492
  161. Lutz, K. Functional brain anatomy of exercise regulation. Prog. Brain Res., 2028, 240, 341-352. doi: 10.1016/bs.pbr.2018.07.006
  162. Saper, C.B. Convergence of autonomic and limbic connections in the insular cortex of the rat. J. Comp. Neurol., 1982, 210(2), 163-173. doi: 10.1002/cne.902100207 PMID: 7130477
  163. Cechetto, D.R.; Saper, C.B. Role of the cerebral cortex in autonomic function. Central Regulation of Autonomic Functions; Loewy, A.D; Spyer, K.M., Ed.; Oxford University Press: Oxford, UK, 1990, pp. 208-223.
  164. Haile, L.; Gallagher, M. Perceived exertion laboratory manual: From standard practice to contemporary application. (Springer Science + Business Media,)2015, doi: 10.1007/978-1-4939-1917-8
  165. Marcora, S. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J. Appl. Physiol., 2010, 108(2), 454-456. doi: 10.1152/japplphysiol.00976.2009a PMID: 20118347
  166. Marcora, S.M.; Staiano, W. The limit to exercise tolerance in humans: Mind over muscle? Eur. J. Appl. Physiol., 2010, 109(4), 763-770. doi: 10.1007/s00421-010-1418-6 PMID: 20221773
  167. Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol., 2009, 106(3), 857-864. doi: 10.1152/japplphysiol.91324.2008 PMID: 19131473
  168. Nowak, M.; Holm, S.; Biering-Sørensen, F.; Secher, N.H.; Friberg, L. Central command" and insular activation during attempted foot lifting in paraplegic humans. Hum. Brain Mapp., 2005, 25(2), 259-265. doi: 10.1002/hbm.20097 PMID: 15849712
  169. Nowak, M.; Olsen, K.S.; Law, I.; Holm, S.; Paulson, O.B.; Secher, N.H. Command-related distribution of regional cerebral blood flow during attempted handgrip. J. Appl. Physiol., 1999, 86(3), 819-824. doi: 10.1152/jappl.1999.86.3.819 PMID: 10066691
  170. Haile, L.; Ledezma, C.M.; Koch, K.A.; Shouey, L.B.; Aaron, D.J.; Goss, F.L.; Robertson, R.J. Predicted, actual and session muscle pain and perceived exertion during cycle exercise in young men. Med. Sci. Sports Exerc., 2008, 40(S301), 208. doi: 10.1249/01.mss.0000323631.85365.e1
  171. Kane, I.; Robertson, R.J.; Fertman, C.; McConnaha, W.R.; Nagle, E.F.; Rabin, B.S.; Rubinstein, E.N. Predicted and actual exercise discomfort in middle school children. Med. Sci. Sports Exerc., 2010, 42(5), 1013-1021. doi: 10.1249/MSS.0b013e3181c3aa62 PMID: 19996994
  172. Poulton, R.; Trevena, J.; Reeder, A.I.; Richards, R. Physical health correlates of overprediction of physical discomfort during exercise. Behav. Res. Ther., 2002, 40(4), 401-414. doi: 10.1016/S0005-7967(01)00019-5 PMID: 12002897
  173. Stanley, D.M.; Cumming, J. Are we having fun yet? Testing the effects of imagery use on the affective and enjoyment responses to acute moderate exercise. Psychol. Sport Exerc., 2010, 11(6), 582-590. doi: 10.1016/j.psychsport.2010.06.010
  174. Hardy, C.J.; Rejeski, W.J. Not what, but how one feels: The measurement of affect during exercise. J. Sport Exerc. Psychol., 1989, 11(3), 304-317. doi: 10.1123/jsep.11.3.304
  175. Ekkekakis, P.; Lind, E. Exercise does not feel the same when you are overweight: The impact of self-selected and imposed intensity on affect and exertion. Int. J. Obes., 2006, 30(4), 652-660. doi: 10.1038/sj.ijo.0803052 PMID: 16130028
  176. Parfitt, G.; Rose, E.A.; Burgess, W.M. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br. J. Health Psychol., 2006, 11(1), 39-53. doi: 10.1348/135910705X43606 PMID: 16480554
  177. Wankel, L. The importance of enjoyment to adherence and psychological benefits from physical activity. Int. J. Sport Psychol., 1993, 24(2), 151-169.
  178. Schacter, D.L. Adaptive constructive processes and the future of memory. Am. Psychol., 2012, 67(8), 603-613. doi: 10.1037/a0029869 PMID: 23163437
  179. D’Argembeau, A.; Mathy, A. Tracking the construction of episodic future thoughts. J. Exp. Psychol. Gen., 2011, 140(2), 258-271. doi: 10.1037/a0022581 PMID: 21401291
  180. D’Argembeau, A.; Salmon, E. The neural basis of semantic and episodic forms of self-knowledge: Insights from functional neuroimaging. Adv. Exp. Med. Biol., 2012, 739, 276-290. doi: 10.1007/978-1-4614-1704-0_18 PMID: 22399409
  181. Szpunar, K.K. Episodic future thought. Perspect. Psychol. Sci., 2010, 5(2), 142-162. doi: 10.1177/1745691610362350 PMID: 26162121
  182. Demblon, J.; D’Argembeau, A. The organization of prospective thinking: Evidence of event clusters in freely generated future thoughts. Conscious. Cogn., 2014, 24, 75-83. doi: 10.1016/j.concog.2014.01.002 PMID: 24491433
  183. Schacter, D.L.; Benoit, R.G.; Szpunar, K.K. Episodic future thinking: Mechanisms and functions. Curr. Opin. Behav. Sci., 2017, 17, 41-50. doi: 10.1016/j.cobeha.2017.06.002 PMID: 29130061
  184. Dolan, R.J.; Fletcher, P.C. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature, 1997, 388(6642), 582-585. doi: 10.1038/41561 PMID: 9252188
  185. Wu, J.Q.; Szpunar, K.K.; Godovich, S.A.; Schacter, D.L.; Hofmann, S.G. Episodic future thinking in generalized anxiety disorder. J. Anxiety Disord., 2015, 36, 1-8. doi: 10.1016/j.janxdis.2015.09.005 PMID: 26398003
  186. Benoit, R.G.; Anderson, M.C. Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 2012, 76(2), 450-460. doi: 10.1016/j.neuron.2012.07.025 PMID: 23083745
  187. Benoit, R.G.; Gilbert, S.J.; Frith, C.D.; Burgess, P.W. Rostral prefrontal cortex and the focus of attention in prospective memory. Cereb. Cortex, 2012, 22(8), 1876-1886. doi: 10.1093/cercor/bhr264 PMID: 21976356
  188. Benoit, R.G.; Szpunar, K.K.; Schacter, D.L. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16550-16555. doi: 10.1073/pnas.1419274111 PMID: 25368170
  189. Bandura, A. The assessment and predictive generality of self-percepts of efficacy. J. Behav. Ther. Exp. Psychiatry, 1982, 13(3), 195-199. doi: 10.1016/0005-7916(82)90004-0 PMID: 7142408
  190. Abrantes, A.M.; Battle, C.L.; Strong, D.R.; Ing, E.; Dubreuil, M.E.; Gordon, A.; Brown, R.A. Exercise preferences of patients in substance abuse treatment. Ment. Health Phys. Act., 2011, 4(2), 79-87. doi: 10.1016/j.mhpa.2011.08.002 PMID: 22125581
  191. Lind, E.; Welch, A.S.; Ekkekakis, P. Do ‘mind over muscle’ strategies work? Examining the effects of attentional association and dissociation on exertional, affective and physiological responses to exercise. Sports Med., 2009, 39(9), 743-764. doi: 10.2165/11315120-000000000-00000 PMID: 19691364
  192. Gallagher, S. How the Body Shapes the Mind; Oxford University Press: New York, 2005. doi: 10.1093/0199271941.001.0001
  193. Gallagher, S. Interpretations of Embodied Cognition.The Implications of Embodiment: Cognition and Communication; Tschacher, W; Bergomi, C., Ed.; Imprint Academic: Exeter, UK, 2011, pp. 59-70.
  194. Gallagher, S. Enactivist Interventions: Rethinking the Mind; Oxford University Press: Oxford, 2017. doi: 10.1093/oso/9780198794325.001.0001
  195. Brevers, D.; Baeken, C.; Maurage, P.; Sescousse, G.; Vögele, C.; Billieux, J. Brain mechanisms underlying prospective thinking of sustainable behaviours. Nat. Sustain., 2021, 4(5), 433-439. doi: 10.1038/s41893-020-00658-3
  196. Cisek, P.; Kalaska, J.F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci., 2010, 33(1), 269-298. doi: 10.1146/annurev.neuro.051508.135409 PMID: 20345247
  197. Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, 1979.
  198. Kimmel, M.; Rogler, C.R. Affordances in interaction: The case of Aikido. Ecol. Psychol., 2018, 30(3), 195-223. doi: 10.1080/10407413.2017.1409589
  199. Smits, B.L.M.; Pepping, G.J.; Hettinga, F.J. Pacing and decision making in sport and exercise: The roles of perception and action in the regulation of exercise intensity. Sports Med., 2014, 44(6), 763-775. doi: 10.1007/s40279-014-0163-0 PMID: 24706362
  200. Araújo, D.; Davids, K.; Hristovski, R. The ecological dynamics of decision making in sport. Psychol. Sport Exerc., 2006, 7(6), 653-676. doi: 10.1016/j.psychsport.2006.07.002
  201. Araújo, D.; Travassos, B.; Vilar, L. Tactical skills are not verbal skills: A comment on Kannekens and colleagues. Percept. Mot. Skills, 2010, 110(3_s)(Suppl.), 1086-1088. doi: 10.2466/pms.110.C.1086-1088 PMID: 20865996
  202. Araújo, D.; Davids, M.; McGivern, P. The irreducible embeddedness of action choice in sport. Handbook of embodied cognition and sport psychology; Cappuccio, M.L., Ed.; The MIT Press: Cambridge, MA, 2019, pp. 537-556. doi: 10.7551/mitpress/10764.003.0030
  203. Carvalho, H.; Correia, C.; Araujo, D. A constraints led approach to skill enhancement in tennis. ITF Coaching Sport Sci. Rev., 2013, 60, 10-11.
  204. Correia, V.; Araújo, D.; Cummins, A.; Craig, C.M. Perceiving and acting upon spaces in a VR rugby task: Expertise effects in affordance detection and task achievement. J. Sport Exerc. Psychol., 2012, 34(3), 305-321. doi: 10.1123/jsep.34.3.305 PMID: 22691396
  205. Withagen, R.; Michaels, C.F. The role of feedback information for calibration and attunement in perceiving length by dynamic touch. J. Exp. Psychol. Hum. Percept. Perform., 2005, 31(6), 1379-1390. doi: 10.1037/0096-1523.31.6.1379 PMID: 16366796
  206. Venhorst, A.; Micklewright, D.P.; Noakes, T.D. Modelling perception-action coupling in the phenomenological experience of "hitting the wall" during long-distance running with exercise-induced muscle damage in highly trained runners. Sports Med. Open, 2018, 4(1), 30. doi: 10.1186/s40798-018-0144-1 PMID: 29987475
  207. Buman, M.P.; Omli, J.W.; Giacobbi, P.R., Jr; Brewer, B.W. Experiences and coping responses of "Hitting the Wall" for recreational marathon runners. J. Appl. Sport Psychol., 2008, 20(3), 282-300. doi: 10.1080/10413200802078267
  208. Brandstätter, V.; Herrmann, M.; Schüler, J. The struggle of giving up personal goals: Affective, physiological, and cognitive consequences of an action crisis. Pers. Soc. Psychol. Bull., 2013, 39(12), 1668-1682. doi: 10.1177/0146167213500151 PMID: 23976776
  209. Brandstätter, V.; Schüler, J. Action crisis and cost–benefit thinking: A cognitive analysis of a goal-disengagement phase. J. Exp. Soc. Psychol., 2013, 49(3), 543-553. doi: 10.1016/j.jesp.2012.10.004
  210. Brick, N.E.; MacIntyre, T.E.; Campbell, M.J. Thinking and action: A cognitive perspective on self-regulation during endurance performance. Front. Physiol., 2016, 7, 159. doi: 10.3389/fphys.2016.00159 PMID: 27199774
  211. Gollwitzer, P.M. Mindset theory of action phases.Handbook of theories of social psychology; Sage Publications Ltd, 2012, Vol. 1, pp. 526-545. doi: 10.4135/9781446249215.n26
  212. Rhoden, C.L.; West, J.; Renfree, A.; Corbett, M.; St Clair Gibson, A. Adaptive self-regulation in cycle time trials: Goal pursuit, goal disengagement and the affective experience. J. Sci. Cycl., 2015, 4(3), 44-52.
  213. Gillman, A.S.; Bryan, A.D. Mindfulness versus distraction to improve affective response and promote cardiovascular exercise behavior. Ann. Behav. Med., 2020, 54(6), 423-435. doi: 10.1093/abm/kaz059 PMID: 31859347
  214. Moran, A.P. The Psychology of Concentration in Sport Performers: A Cognitive Analysis, 1st ed; Psychology Press, 1996. doi: 10.4324/9781315784946
  215. Moran, A.P. Cognitive style constructs in sport: Explanatory and attentional processes in athletes. Int. J. Educ. Res., 1998, 29(3), 277-286. doi: 10.1016/S0883-0355(98)00031-7
  216. Okwumabua, T.M.; Meyers, A.W.; Schleser, R.; Cooke, C.J. Cognitive strategies and running performance: An exploratory study. Cognit. Ther. Res., 1983, 7(4), 363-369. doi: 10.1007/BF01177558
  217. Schomer, H.H. The relationship between cognitive strategies and perceived effort of marathon runners. S. Afr. J. Res. Sport Ph., 1987, 10(1), 37-64.
  218. Schomer, H.H. A cognitive strategy training programme for marathon runners: Ten case studies. S. Afr. J. Res. Sport Ph., 1990, 13(2), 47-78.
  219. Verdejo-Garcia, A. Executive Dysfunction in Addiction.Executive Functions in Health and Disease; Goldberg, E., Ed.; Academic Press, 2017, pp. 395-403. doi: 10.1016/B978-0-12-803676-1.00016-7
  220. Spink, K.S. Cognitive strategies and swimming performances: An exploratory study. Aust. J. Sci. Med. Sport, 1982, 18(2), 9-13.
  221. Hardy, L.; Nelson, D. Self-regulation training in sport and work. Ergonomics, 1988, 31(11), 1573-1583. doi: 10.1080/00140138808966807 PMID: 3068052
  222. Arch, J.J.; Craske, M.G. Mechanisms of mindfulness: Emotion regulation following a focused breathing induction. Behav. Res. Ther., 2006, 44(12), 1849-1858. doi: 10.1016/j.brat.2005.12.007 PMID: 16460668
  223. Kabat-Zinn, J.; Hanh, T.N. Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain, and Illness; Random House Publishing Group: New York, NY, 2009.
  224. Farb, N.; Daubenmier, J.; Price, C.J.; Gard, T.; Kerr, C.; Dunn, B.D.; Klein, A.C.; Paulus, M.P.; Mehling, W.E. Interoception, contemplative practice, and health. Front. Psychol., 2015, 6, 763. doi: 10.3389/fpsyg.2015.00763 PMID: 26106345
  225. Haase, L.; May, A.C.; Falahpour, M.; Isakovic, S.; Simmons, A.N.; Hickman, S.D.; Liu, T.T.; Paulus, M.P. A pilot study investigating changes in neural processing after mindfulness training in elite athletes. Front. Behav. Neurosci., 2015, 9, 229. doi: 10.3389/fnbeh.2015.00229 PMID: 26379521
  226. Haase, L.; Stewart, J.L.; Youssef, B.; May, A.C.; Isakovic, S.; Simmons, A.N.; Johnson, D.C.; Potterat, E.G.; Paulus, M.P. When the brain does not adequately feel the body: Links between low resilience and interoception. Biol. Psychol., 2016, 113, 37-45. doi: 10.1016/j.biopsycho.2015.11.004 PMID: 26607442
  227. Haase, L.; Thom, N.J.; Shukla, A.; Davenport, P.W.; Simmons, A.N.; Stanley, E.A.; Paulus, M.P.; Johnson, D.C. Mindfulness-based training attenuates insula response to an aversive interoceptive challenge. Soc. Cogn. Affect. Neurosci., 2016, 11(1), 182-190. doi: 10.1093/scan/nsu042 PMID: 24714209
  228. Araújo, D.; Davids, K. Ecological approaches to cognition and action in sport and exercise: Ask not only what you do, but where you do it. Int. J. Sport Psychol., 2009, 40(1), 5-37.
  229. Araújo, D.; Davids, K.; Passos, P. Ecological Validity, Representative Design, and Correspondence Between Experimental Task Constraints and Behavioral Setting: Comment on Rogers, Kadar, and Costall (2005). Ecol. Psychol., 2007, 19(1), 69-78. doi: 10.1080/10407410709336951
  230. da Silva, W.Q.A.; Cabral, D.A.R.; Bigliassi, M.; Bortolotti, H.; Hussey, E.; Ward, N.; Fontes, E.B. The mediating role of inhibitory control in the relationship between prefrontal cortex hemodynamics and exercise performance in adults with overweight or obesity. Physiol. Behav., 2022, 257, 113966. doi: 10.1016/j.physbeh.2022.113966 PMID: 36150475
  231. Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N. Applications of Functional Near-Infrared Spectroscopy (fNIRS) neuroimaging in exercise-cognition science: A systematic, methodology-focused review. J. Clin. Med., 2018, 7(12), 466. doi: 10.3390/jcm7120466 PMID: 30469482
  232. Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 2010, 50(4), 1702-1710. doi: 10.1016/j.neuroimage.2009.12.023 PMID: 20006719
  233. Kovacsova, Z.; Bale, G.; Mitra, S.; de Roever, I.; Meek, J.; Robertson, N.; Tachtsidis, I. Investigation of confounding factors in measuring tissue saturation with NIRS spatially resolved spectroscopy. Adv. Exp. Med. Biol., 2018, 1072, 307-312. doi: 10.1007/978-3-319-91287-5_49 PMID: 30178363
  234. Noël, X.; Jaafari, N.; Bechara, A. Addictive behaviors: Why and how impaired mental time matters? Prog. Brain Res; , 2017, 235, pp. 219-223. doi: 10.1016/bs.pbr.2017.07.011 PMID: 29054290
  235. Ploner, M.; Lee, M.C.; Wiech, K.; Bingel, U.; Tracey, I. Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cereb. Cortex, 2011, 21(3), 719-726. doi: 10.1093/cercor/bhq146 PMID: 20713505
  236. Shipp, S. The importance of being agranular: A comparative account of visual and motor cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360(1456), 797-814. doi: 10.1098/rstb.2005.1630 PMID: 15937013

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers