Hyper IgE Syndromes


Дәйексөз келтіру

Толық мәтін

Аннотация

The Hyper IgE Syndromes are rare primary immunodeficiencies characterized by eczema, recurrent skin and respiratory infections and elevated serum IgE levels. Nowadays a genetic-molecular characterization is possible and allows the distinction in various monogenic pathologies, which share some clinical characteristics but also important differences. In addition to long-known STAT3 and DOCK8 gene mutations, in fact, also ZNF341, CARD11, ERBB2IP, IL6R and IL6ST genes mutations can cause the disease. The main clinical manifestations are represented by newborn rash, eczema similar to atopic dermatitis, bacterial and viral skin infections, cold abscesses, respiratory infections with possible pulmonary complications, allergies, gastrointestinal manifestations, malignancies and connective tissue abnormalities. Diagnosis is still a challenge because, especially in the early stages of life, it is difficult to distinguish from other pathologies characterized by eczema and high IgE, such as atopic dermatitis. Several scores and diagnostic pathways have been developed, but it is essential to seek a genetic diagnosis. Treatment is based on prevention and early treatment of infections, meticulous skincare, intravenous immunoglobulins and HSCT, which, in some HIES subtypes, can modify the prognosis. Prognosis is related to the affected gene, but also to early diagnosis, timely treatment of infections and early HSCT.

Авторлар туралы

Serena Gracci

Paediatric Unit,, "San Giuseppe" Hospita

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Tommaso Novelli

Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa

Email: info@benthamscience.net

Sofia D'Elios

Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa

Email: info@benthamscience.net

Roberto Bernardini

Paediatric Unit,, "San Giuseppe" Hospital

Email: info@benthamscience.net

Diego Peroni

Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa

Email: info@benthamscience.net

Әдебиет тізімі

  1. Mohebbi M, Hashemi H, Mehravaran S, Mazloumi M, Jahanbani-Ardakani H, Abtahi SH. Hyperimmunoglobulin E syndrome: Genetics, immunopathogenesis, clinical findings, and treatment modalities. J Res Med Sci 2017; 22(1): 53. doi: 10.4103/jrms.JRMS_1050_16 PMID: 28567072
  2. Joshi AY, Iyer VN, Hagan JB, St Sauver JL, Boyce TG. Incidence and temporal trends of primary immunodeficiency: A population-based cohort study. Mayo Clin Proc 2009; 84(1): 16-22. doi: 10.4065/84.1.16 PMID: 19121249
  3. Davis S, Schaller J, Wedgwood R, Harvard MD. Job’s syndrome. recurrent, "cold", staphylococcal abscesses. Lancet 1966; 287(7445): 1013-5. doi: 10.1016/S0140-6736(66)90119-X PMID: 4161105
  4. Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 1972; 49(1): 59-70. doi: 10.1542/peds.49.1.59 PMID: 5059313
  5. Grimbacher B, Holland SM, Gallin JI, et al. Hyper-IgE syndrome with recurrent infections : An autosomal dominant multisystem disorder. N Engl J Med 1999; 340(9): 692-702. doi: 10.1056/NEJM199903043400904 PMID: 10053178
  6. Holland SM, DeLeo FR, Elloumi HZ, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007; 357(16): 1608-19. doi: 10.1056/NEJMoa073687 PMID: 17881745
  7. Minegishi Y, Saito M, Tsuchiya S, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007; 448(7157): 1058-62. doi: 10.1038/nature06096 PMID: 17676033
  8. Freeman AF, Milner JD. The child with elevated IgE and infection susceptibility. Curr Allergy Asthma Rep 2020; 20(11): 65. doi: 10.1007/s11882-020-00964-y PMID: 32830295
  9. Bergerson JRE, Freeman AF. An update on syndromes with a Hyper-IgE phenotype. Immunol Allergy Clin North Am 2019; 39(1): 49-61. doi: 10.1016/j.iac.2018.08.007 PMID: 30466772
  10. Chandesris MO, Melki I, Natividad A, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: Molecular, cellular, and clinical features from a French national survey. Medicine 2012; 91(4): e1-e19. doi: 10.1097/MD.0b013e31825f95b9 PMID: 22751495
  11. Heimall J, Freeman A, Holland SM. Pathogenesis of hyper IgE syndrome. Clin Rev Allergy Immunol 2010; 38(1): 32-8. doi: 10.1007/s12016-009-8134-1 PMID: 19452285
  12. Renner ED, Rylaarsdam S, Aňover-Sombke S, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol 2008; 122(1): 181-7. doi: 10.1016/j.jaci.2008.04.037 PMID: 18602572
  13. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203(10): 2271-9. doi: 10.1084/jem.20061308 PMID: 16982811
  14. Aujla SJ, Chan YR, Zheng M, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 2008; 14(3): 275-81. doi: 10.1038/nm1710 PMID: 18264110
  15. Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190(3): 624-31. doi: 10.1086/422329 PMID: 15243941
  16. Kao CY, Chen Y, Thai P, et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 2004; 173(5): 3482-91. doi: 10.4049/jimmunol.173.5.3482 PMID: 15322213
  17. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014; 4i1(4): 529-42. doi: 10.1016/j.immuni.2014.10.004
  18. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology 2006; 117(4): 433-42. doi: 10.1111/j.1365-2567.2006.02321.x PMID: 16556256
  19. Kuchen S, Robbins R, Sims GP, et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 2007; 179(9): 5886-96. doi: 10.4049/jimmunol.179.9.5886 PMID: 17947662
  20. Sekhsaria V, Dodd LE, Hsu AP, et al. Plasma metalloproteinase levels are dysregulated in signal transducer and activator of transcription 3 mutated hyper-IgE syndrome. J Allergy Clin Immunol 2011; 128(5): 1124-7. doi: 10.1016/j.jaci.2011.07.046 PMID: 21872914
  21. Nieminen P, Morgan NV, Fenwick AL, et al. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89(1): 67-81. doi: 10.1016/j.ajhg.2011.05.024 PMID: 21741611
  22. Gernez Y, Freeman AF, Holland SM, et al. Autosomal dominant hyper-IgE syndrome in the USIDNET registry. J Allergy Clin Immunol Pract 2018; 6(3): 996-1001. doi: 10.1016/j.jaip.2017.06.041 PMID: 28939137
  23. Khourieh J, Rao G, Habib T, et al. A deep intronic splice mutation of STAT3 underlies hyper IgE syndrome by negative dominance. Proc Natl Acad Sci 2019; 116(33): 16463-72. doi: 10.1073/pnas.1901409116 PMID: 31346092
  24. Heimall J, Davis J, Shaw PA, et al. Paucity of genotype–phenotype correlations in STAT3 mutation positive Hyper IgE Syndrome (HIES). Clin Immunol 2011; 139(1): 75-84. doi: 10.1016/j.clim.2011.01.001 PMID: 21288777
  25. Lyons JJ, Liu Y, Ma CA, et al. ERBIN deficiency links STAT3 and TGF-β pathway defects with atopy in humans. J Exp Med 2017; 214(3): 669-80. doi: 10.1084/jem.20161435 PMID: 28126831
  26. Liu D, Shi M, Duan H, Han C, Guo N. Erbin, a negative regulator in diverse signal pathways. Curr Protein Pept Sci 2010; 11(8): 759-64. doi: 10.2174/138920310794557673 PMID: 21235511
  27. Ma CA, Stinson JR, Zhang Y, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet 2017; 49(8): 1192-201. doi: 10.1038/ng.3898 PMID: 28628108
  28. Dadi H, Jones TA, Merico D, et al. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J Allergy Clin Immunol 2018; 141(5): 1818-1830.e2. doi: 10.1016/j.jaci.2017.06.047 PMID: 28826773
  29. Altin JA, Tian L, Liston A, Bertram EM, Goodnow CC, Cook MC. Decreased T-cell receptor signaling through CARD11 differentially compromises forkhead box protein 3–positive regulatory versus TH2 effector cells to cause allergy. J Allergy Clin Immunol 2011; 127(5): 1277-1285.e5. doi: 10.1016/j.jaci.2010.12.1081 PMID: 21320717
  30. Engelhardt KR, McGhee S, Winkler S, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 2009; 124(6): 1289-1302.e4. doi: 10.1016/j.jaci.2009.10.038 PMID: 20004785
  31. Renner ED, Puck JM, Holland SM, et al. Autosomal recessive hyperimmunoglobulin E syndrome: A distinct disease entity. J Pediatr 2004; 144(1): 93-9. doi: 10.1016/S0022-3476(03)00449-9 PMID: 14722525
  32. Meller N, Merlot S, Guda C. CZH proteins: A new family of Rho-GEFs. J Cell Sci 2005; 118(21): 4937-46. doi: 10.1242/jcs.02671 PMID: 16254241
  33. Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol 2017; 14(5): 406-11. doi: 10.1038/cmi.2017.9 PMID: 28366940
  34. Harada Y, Tanaka Y, Terasawa M, et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 2012; 119(19): 4451-61. doi: 10.1182/blood-2012-01-407098 PMID: 22461490
  35. Tangye SG, Pillay B, Randall KL, et al. Dedicator of cytokinesis 8–deficient CD4 + T cells are biased to a T H 2 effector fate at the expense of T H 1 and T H 17 cells. J Allergy Clin Immunol 2017; 139(3): 933-49. doi: 10.1016/j.jaci.2016.07.016 PMID: 27554822
  36. Singh AK, Eken A, Hagin D, et al. DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling. JCI Insight 2017; 2(19): e94275. doi: 10.1172/jci.insight.94275 PMID: 28978795
  37. Randall KL, Chan SSY, Ma CS, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med 2011; 208(11): 2305-20. doi: 10.1084/jem.20110345 PMID: 22006977
  38. Zhang Q, Dove CG, Hor JL, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med 2014; 211(13): 2549-66. doi: 10.1084/jem.20141307 PMID: 25422492
  39. Ham H, Guerrier S, Kim J, et al. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J Immunol 2013; 190(7): 3661-9. doi: 10.4049/jimmunol.1202792 PMID: 23455509
  40. Randall KL, Lambe T, Johnson AL, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol 2009; 10(12): 1283-91. doi: 10.1038/ni.1820 PMID: 19898472
  41. Sassi A, Lazaroski S, Wu G, et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 2014; 133(5): 1410-9.e1-13.
  42. Zhang Y, Yu X, Ichikawa M, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol 2014; 133(5): 1400-9.
  43. Pascoal C, Francisco R, Ferro T, dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43(1): 90-124. doi: 10.1002/jimd.12126 PMID: 31095764
  44. Al-Shaikhly T, Ochs HD. Hyper IgE syndromes: Clinical and molecular characteristics. Immunol Cell Biol 2019; 97(4): 368-79. doi: 10.1111/imcb.12209 PMID: 30264496
  45. Yang L, Fliegauf M, Grimbacher B. Hyper-IgE syndromes. Curr Opin Pediatr 2014; 26(6): 697-703. doi: 10.1097/MOP.0000000000000158 PMID: 25365149
  46. Frey-Jakobs S, Hartberger JM, Fliegauf M, et al. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol 2018; 3(24): eaat4941. doi: 10.1126/sciimmunol.aat4941 PMID: 29907690
  47. Béziat V, Li J, Lin JX, et al. A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol 2018; 3(24): eaat4956. doi: 10.1126/sciimmunol.aat4956 PMID: 29907691
  48. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol 2018; 10(2): a028415. doi: 10.1101/cshperspect.a028415 PMID: 28620096
  49. Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: Insights from the interleukin 6 family of cytokines. Immunity 2019; 50(4): 812-31. doi: 10.1016/j.immuni.2019.03.027 PMID: 30995501
  50. Chen YH, Zastrow DB, Metcalfe RD, et al. Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. J Allergy Clin Immunol 2021; 148(2): 585-98. doi: 10.1016/j.jaci.2021.02.044 PMID: 33771552
  51. Béziat V, Tavernier SJ, Chen YH, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med 2020; 217(6): e20191804. doi: 10.1084/jem.20191804 PMID: 32207811
  52. Spencer S, Köstel Bal S, Egner W, et al. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J Exp Med 2019; 216(9): 1986-98. doi: 10.1084/jem.20190344 PMID: 31235509
  53. Taga T, Kishimoto T. GP 130 and the interleukin-6 family of cytokines. Annu Rev Immunol 1997; 15(1): 797-819. doi: 10.1146/annurev.immunol.15.1.797 PMID: 9143707
  54. Grimbacher B, Schäffer AA, Holland SM, et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 1999; 65(3): 735-44. doi: 10.1086/302547 PMID: 10441580
  55. Eberting CLD, Davis J, Puck JM, Holland SM, Turner ML. Dermatitis and the newborn rash of hyper-IgE syndrome. Arch Dermatol 2004; 140(9): 1119-25. doi: 10.1001/archderm.140.9.1119 PMID: 15381553
  56. Minegishi Y, Saito M. Cutaneous manifestations of Hyper IgE syndrome. Allergol Int 2012; 61(2): 191-6. doi: 10.2332/allergolint.12-RAI-0423 PMID: 22441639
  57. Taïeb A, Bassan-Andrieu L, Maleville J. Eosinophilic pustulosis of the scalp in childhood. J Am Acad Dermatol 1992; 27(1): 55-60. doi: 10.1016/0190-9622(92)70156-A PMID: 1619077
  58. Lucky AW, Esterly N, Heskel N, Krafchik BR, Solomon LM. Eosinophilic pustular folliculitis in infancy. Pediatr Dermatol 1984; 1(3): 202-6. doi: 10.1111/j.1525-1470.1984.tb01116.x PMID: 6494063
  59. Chamlin SL, McCalmont TH, Cunningham BB, et al. Cutaneous manifestations of hyper-IgE syndrome in infants and children. J Pediatr 2002; 141(4): 572-5. doi: 10.1067/mpd.2002.127503 PMID: 12378200
  60. Hochreutener H, Wüthrich B, Huwyler T, Schopfer K, Seger R, Baerlocher K. Variant of hyper-IgE syndrome: The differentiation from atopic dermatitis is important because of treatment and prognosis. Dermatology 1991; 182(1): 7-11. doi: 10.1159/000247728 PMID: 2013364
  61. Wu J, Hong L, Chen TX. Clinical manifestation of hyper IgE syndrome including otitis media. Curr Allergy Asthma Rep 2018; 18(10): 51. doi: 10.1007/s11882-018-0806-6 PMID: 30112673
  62. Sastalla I, Williams K, Anderson E, et al. Molecular typing of staphylococcus aureus isolated from patients with autosomal dominant hyper IgE syndrome. Pathogens 2017; 6(2): 23. doi: 10.3390/pathogens6020023 PMID: 28587312
  63. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol 2018; 26(6): 484-97. doi: 10.1016/j.tim.2017.11.008 PMID: 29233606
  64. Park B, Liu GY. Staphylococcus aureus and hyper-IgE syndrome. Int J Mol Sci 2020; 21(23): 9152. doi: 10.3390/ijms21239152 PMID: 33271763
  65. Minegishi Y, Saito M, Nagasawa M, et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med 2009; 206(6): 1291-301. doi: 10.1084/jem.20082767 PMID: 19487419
  66. Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011; 332(6025): 65-8. doi: 10.1126/science.1200439 PMID: 21350122
  67. Conti HR, Baker O, Freeman AF, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol 2011; 4(4): 448-55. doi: 10.1038/mi.2011.5 PMID: 21346738
  68. Odio CD, Milligan KL, McGowan K, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol 2015; 136(5): 1411-3.
  69. Chu EY, Freeman AF, Jing H, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol 2012; 148(1): 79-84. doi: 10.1001/archdermatol.2011.262 PMID: 21931011
  70. Freeman AF, Olivier KN. Hyper-IgE syndromes and the lung. Clin Chest Med 2016; 37(3): 557-67. doi: 10.1016/j.ccm.2016.04.016 PMID: 27514600
  71. Freeman AF, Kleiner DE, Nadiminti H, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol 2007; 119(5): 1234-40. doi: 10.1016/j.jaci.2006.12.666 PMID: 17335882
  72. Vinh DC, Sugui JA, Hsu AP, Freeman AF, Holland SM. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol 2010; 125(6): 1389-90. doi: 10.1016/j.jaci.2010.01.047 PMID: 20392475
  73. Melia E, Freeman AF, Shea YR, Hsu AP, Holland SM, Olivier KN. Pulmonary nontuberculous mycobacterial infections in hyper-IgE syndrome. J Allergy Clin Immunol 2009; 124(3): 617-8. doi: 10.1016/j.jaci.2009.07.007 PMID: 19733303
  74. Kim UR, Arora V, Khazei H, Kusagur S. Ophthalmic complications including retinal detachment in hyperimmunoglobulinemia E (Job′s) syndrome: Case report and review of literature. Indian J Ophthalmol 2009; 57(5): 385-6. doi: 10.4103/0301-4738.55076 PMID: 19700878
  75. Boos AC, Hagl B, Schlesinger A, et al. Atopic dermatitis, STAT3- and DOCK8-hyper-IgE syndromes differ in IgE-based sensitization pattern. Allergy 2014; 69(7): 943-53. doi: 10.1111/all.12416 PMID: 24898675
  76. Rajala HLM, Porkka K, Maciejewski JP, Loughran TP Jr, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia—novel STAT3 and STAT5b mutations. Ann Med 2014; 46(3): 114-22. doi: 10.3109/07853890.2014.882105 PMID: 24512550
  77. Aydin SE, Kilic SS, Aytekin C, et al. DOCK8 deficiency: Clinical and immunological phenotype and treatment options : A review of 136 patients. J Clin Immunol 2015; 35(2): 189-98. doi: 10.1007/s10875-014-0126-0 PMID: 25627830
  78. Sowerwine KJ, Shaw PA, Gu W, et al. Bone density and fractures in autosomal dominant hyper IgE syndrome. J Clin Immunol 2014; 34(2): 260-4. doi: 10.1007/s10875-013-9982-2 PMID: 24402620
  79. Mitchell AL, Urban AK, Freeman AF, Hammoud DA. An unusual pattern of premature cervical spine degeneration in STAT3-LOF. J Clin Immunol 2021; 41(3): 576-84. doi: 10.1007/s10875-020-00926-z PMID: 33404973
  80. Meixner I, Hagl B, Kröner CI, et al. Retained primary teeth in STAT3 hyper-IgE syndrome: early intervention in childhood is essential. Orphanet J Rare Dis 2020; 15(1): 244. doi: 10.1186/s13023-020-01516-3 PMID: 32912316
  81. Freeman AF, Avila EM, Shaw PA, et al. Coronary artery abnormalities in Hyper-IgE syndrome. J Clin Immunol 2011; 31(3): 338-45. doi: 10.1007/s10875-011-9515-9 PMID: 21494893
  82. Sharma A, Kumar S, Jagia P. Pulmonary artery pseudoaneurysm in hyper-IgE syndrome: Rare complication with successful endovascular management. Vasc Endovascular Surg 2018; 52(5): 375-7. doi: 10.1177/1538574418762656 PMID: 29552943
  83. Fang Y, Feng X, Xue N, Cao Y, Zhou P, Wei Z. STAT3 signaling pathway is involved in the pathogenesis of miscarriage. Placenta 2020; 101: 30-8. doi: 10.1016/j.placenta.2020.08.021 PMID: 32916476
  84. Hagl B, Heinz V, Schlesinger A, et al. Key findings to expedite the diagnosis of hyper-IgE syndromes in infants and young children. Pediatr Allergy Immunol 2016; 27(2): 177-84. doi: 10.1111/pai.12512 PMID: 26592211
  85. Schimke LF, Sawalle-Belohradsky J, Roesler J, et al. Diagnostic approach to the hyper-IgE syndromes: Immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol 2010; 126(3): 611-617.e1. doi: 10.1016/j.jaci.2010.06.029 PMID: 20816194
  86. Woellner C, Gertz EM, Schäffer AA, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol 2010; 125(2): 424-432.e8. doi: 10.1016/j.jaci.2009.10.059 PMID: 20159255
  87. Engelhardt KR, Gertz ME, Keles S, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol 2015; 136(2): 402-12. doi: 10.1016/j.jaci.2014.12.1945 PMID: 25724123
  88. ESID Registry-Working definitions for clinical diagnosis of PID. In: European Society of Immunodefeciencies. 2019. Available from: https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria (accessed December 20, 2022).
  89. Freeman AF, Renner ED, Henderson C, et al. Lung parenchyma surgery in autosomal dominant hyper-IgE syndrome. J Clin Immunol 2013; 33(5): 896-902. doi: 10.1007/s10875-013-9890-5 PMID: 23584561
  90. Karakoc-Aydiner E, Baris S, Keles S, Ozdemir C, Chatila T, Barlan I. Inhaled alpha1-antitrypsin administered to treat pneumatocele in autosomal dominant hyperimmunoglobulin E syndrome. J Investig Allergol Clin Immunol 2013; 23(5): 359-61. PMID: 24260982
  91. Al-Zahrani D, Raddadi A, Massaad M, et al. Successful interferon-alpha 2b therapy for unremitting warts in a patient with DOCK8 deficiency. Clin Immunol 2014; 153(1): 104-8. doi: 10.1016/j.clim.2014.04.005 PMID: 24743019
  92. Kimata H. High-dose intravenous γ-globulin treatment for hyperimmunoglobulinemia E syndrome. J Allergy Clin Immunol 1995; 95(3): 771-4. doi: 10.1016/S0091-6749(95)70185-0 PMID: 7897163
  93. Wakim M, Alazard M, Yajima A, Speights D, Saxon A, Stiehm ER. High dose intravenous immunoglobulin in atopic dermatitis and hyper-IgE syndrome. Ann Allergy Asthma Immunol 1998; 81(2): 153-8. doi: 10.1016/S1081-1206(10)62802-5 PMID: 9723561
  94. Piñones M, Vizcaya C, Pérez-Mateluna G, Hoyos-Bachiloglu R, Borzutzky A. Severe necrotic reaction to 23-valent polysaccharide pneumococcal vaccine in a patient with STAT3 deficiency. J Allergy Clin Immunol Pract 2019; 7(5): 1631-2. doi: 10.1016/j.jaip.2019.01.033 PMID: 30777669
  95. Freeman AF, Yazigi N, Shah NN, et al. Tandem orthotopic living donor liver transplantation followed by same donor haploidentical hematopoietic stem cell transplantation for DOCK8 deficiency. Transplantation 2019; 103(10): 2144-9. doi: 10.1097/TP.0000000000002649 PMID: 30720689
  96. Dimitrova D, Freeman AF. Current status of dedicator of cytokinesis-associated immunodeficiency. Dermatol Clin 2017; 35(1): 11-9. doi: 10.1016/j.det.2016.07.002 PMID: 27890234
  97. Aydin SE, Freeman AF, Al-Herz W, et al. Hematopoietic stem cell transplantation as treatment for patients with DOCK8 deficiency. J Allergy Clin Immunol Pract 2019; 7(3): 848-55. doi: 10.1016/j.jaip.2018.10.035 PMID: 30391550
  98. Nester TA, Wagnon AH, Reilly WF, Spitzer G, Kjeldsberg CR, Hill HR. Effects of allogeneic peripheral stem cell transplantation in a patient with Job syndrome of hyperimmunoglobulinemia E and recurrent infections. Am J Med 1998; 105(2): 162-4. doi: 10.1016/S0002-9343(98)00200-9 PMID: 9727824
  99. Goussetis E, Peristeri I, Kitra V, et al. Successful long-term immunologic reconstitution by allogeneic hematopoietic stem cell transplantation cures patients with autosomal dominant hyper-IgE syndrome. J Allergy Clin Immunol 2010; 126(2): 392-4. doi: 10.1016/j.jaci.2010.05.005 PMID: 20584545
  100. Yanagimachi M, Ohya T, Yokosuka T, et al. The potential and limits of hematopoietic stem cell transplantation for the treatment of autosomal dominant hyper-IgE syndrome. J Clin Immunol 2016; 36(5): 511-6. doi: 10.1007/s10875-016-0278-1 PMID: 27091139
  101. Tsilifis C, Freeman AF, Gennery AR. STAT3 Hyper-IgE syndrome : An update and unanswered questions. J Clin Immunol 2021; 41(5): 864-80. doi: 10.1007/s10875-021-01051-1 PMID: 33932191
  102. Stray-Pedersen A, Backe PH, Sorte HS, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 2014; 95(1): 96-107. doi: 10.1016/j.ajhg.2014.05.007 PMID: 24931394
  103. Winslow A, Jalazo ER, Evans A, Winstead M, Moran T. A De Novo cause of PGM3 deficiency treated with hematopoietic stem cell transplantation. J Clin Immunol 2022; 42(3): 691-4. doi: 10.1007/s10875-021-01196-z PMID: 35040011
  104. Lan J, Zhang Y, Song M, et al. Omalizumab for STAT3 Hyper-IgE syndromes in adulthood: A case report and literature review. Front Med 2022; 9: 835257. doi: 10.3389/fmed.2022.835257 PMID: 35602476
  105. Alonso-Bello CD, Jiménez-Martínez MC, Vargas-Camaño ME, et al. Partial and transient clinical response to omalizumab in IL-21-induced low STAT3-phosphorylation on hyper-IgE syndrome. Case Reports Immunol 2019; 2019: 1-5. doi: 10.1155/2019/6357256 PMID: 31355024
  106. Bard S, Paravisini A, Avilés-Izquierdo JA, Fernandez-Cruz E, Sánchez-Ramón S. Eczematous dermatitis in the setting of hyper-IgE syndrome successfully treated with omalizumab. Arch Dermatol 2008; 144(12): 1662-3. doi: 10.1001/archdermatol.2008.510 PMID: 19075161
  107. Gomes N, Miranda J, Lopes S, et al. Omalizumab in the treatment of hyper-IgE syndrome: 2 case reports. J Investig Allergol Clin Immunol 2020; 30(3): 191-2. doi: 10.18176/jiaci.0469 PMID: 31820738
  108. Matucci-Cerinic C, Viglizzo G, Pastorino C, et al. Remission of eczema and recovery of Th1 polarization following treatment with Dupilumab in STAT3 hyper IgE syndrome. Pediatr Allergy Immunol 2022; 33(4): e13770. doi: 10.1111/pai.13770 PMID: 35470938
  109. Lévy R, Béziat V, Barbieux C, et al. Efficacy of dupilumab for controlling severe atopic dermatitis in a patient with hyper-IgE syndrome. J Clin Immunol 2020; 40(2): 418-20.
  110. Buckley RH. The hyper-IgE syndrome. Clin Rev Allergy Immunol 2001; 20(1): 139-54. doi: 10.1385/CRIAI:20:1:139 PMID: 11269224
  111. Xiang Q, Zhang L, Liu X, et al. Autosomal dominant hyper IgE syndrome from a single centre in Chongqing, China (2009-2018). Scand J Immunol 2020; 91(6): e12885. doi: 10.1111/sji.12885 PMID: 32248557

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024