A Multidisciplinary and a Comprehensive Approach to Reducing Fragility Fractures in Preterm Infants

  • 作者: Babiker A.1, Abanmi M.2, Nichol F.3, Al Enazi M.4, Guevarra E.5, Sehlie F.6, Al Shaalan H.7, Mughal Z.8, Saif S.4, Maghoula M.4
  • 隶属关系:
    1. Department of Pediatrics, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs
    2. Department of Physiotherapy, King Abdulaziz Medical City, Ministry of National Guard Health Affairs
    3. Department of Occupational Therapy, King Abdulaz-iz Medical City, Riyadh, Ministry of National Guard Health Affairs
    4. Neonatal Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs
    5. Department of Dieticians, King Abdulaziz Medical City, Ministry of National Guard Health Affairs
    6. Pharmacy Department, King Abdulaziz Medical City, Riyadh, Ministry of National Guard Health Affairs
    7. Department of Pediatric Radiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs
    8. Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital
  • 期: 卷 20, 编号 4 (2024)
  • 页面: 434-443
  • 栏目: Medicine
  • URL: https://journals.eco-vector.com/1573-3963/article/view/645703
  • DOI: https://doi.org/10.2174/1573396319666221221122013
  • ID: 645703

如何引用文章

全文:

详细

With advances in neonatal care, bone fractures prior to discharge from the hospital in preterm infants receiving contemporary neonatal care, are rare. Nevertheless, such fractures do oc-cur in very low birth weight and extremely low birth weight infants who go on to develop metabolic bone disease of prematurity (MBDP), with or without secondary hyperparathyroidism. MBDP is a multifactorial disorder arising from the disruption of bone mass accrual due to premature birth, postnatal immobilisation, and loss of placental oestrogen resulting in bone loss, inadequate provi-sion of bone minerals from enteral and parenteral nutrition, and medications that leach out bone minerals from the skeleton. All of these factors lead to skeletal demineralisation and a decrease in bone strength and an increased risk of fractures of the long bones and ribs. Secondary hyperparathy-roidism resulting from phosphate supplements, or enteral/parenteral feeds with a calcium-to-phosphate ratio op < 0.3:1.0 leads to subperiosteal bone resorption, cortical thinning, and further skeletal weakening. Such fractures may occur from routine handling and procedures such as cannu-lation. Most fractures are asymptomatic and often come to light incidentally on radiographs per-formed for other indications. In 2015, we instituted a comprehensive and multidisciplinary Neonatal Bone Health Programme (NBHP), the purpose of which was to reduce fragility fractures in high-risk neonates, by optimising enteral and parenteral nutrition, including maintaining calcium-to-phosphate ratio ≥1.3:1, milligram to milligram, biochemical monitoring of MBDP, safe-handling of at-risk neonates, without compromising passive physiotherapy and skin-to-skin contact with par-ents. The at-risk infants in the programme had radiographs of the torso and limbs at 4 weeks and af-ter 8 weeks from enrolment into the program or before discharge. Following the introduction of the NBHP, the bone fracture incidence reduced from 12.5% to zero over an 18-month period.

作者简介

Amir Babiker

Department of Pediatrics, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Mashael Abanmi

Department of Physiotherapy, King Abdulaziz Medical City, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Fiona Nichol

Department of Occupational Therapy, King Abdulaz-iz Medical City, Riyadh, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Modhi Al Enazi

Neonatal Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Elenor Guevarra

Department of Dieticians, King Abdulaziz Medical City, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Faisal Sehlie

Pharmacy Department, King Abdulaziz Medical City, Riyadh, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Hesham Al Shaalan

Department of Pediatric Radiology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Zulf Mughal

Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital

编辑信件的主要联系方式.
Email: info@benthamscience.net

Saif Saif

Neonatal Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

Mohammad Maghoula

Neonatal Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs

Email: info@benthamscience.net

参考

  1. Jones S, Bell MJ. Distal radius fracture in a premature infant with osteopenia caused by handling during intravenous cannulation. Injury 2002; 33(3): 265-6. doi: 10.1016/S0020-1383(00)00234-5 PMID: 12084646
  2. Amir J, Katz K, Grunebaum M, Yosipovich Z, Wielunsky E, Reisner SH. Fractures in premature infants. J Pediatr Orthop 1988; 8(1): 41-4. doi: 10.1097/01241398-198801000-00010 PMID: 3121670
  3. Koo WWK, Sherman R, Succop P, et al. Fractures and rickets in very low birth weight infants: Conservative management and outcome. J Pediatr Orthop B 1989; 9(3): 326-30. doi: 10.1097/01202412-198909030-00012 PMID: 2723052
  4. Viswanathan S, Khasawneh W, McNelis K, et al. Metabolic bone disease: A continued challenge in extremely low birth weight infants. JPEN J Parenter Enteral Nutr 2014; 38(8): 982-90. doi: 10.1177/0148607113499590 PMID: 23963689
  5. Smurthwaite D, Wright NB, Russell S, Emmerson AJ, Mughal MZ. How common are rib fractures in extremely low birth weight preterm infants? Arch Dis Child Fetal Neonatal Ed 2009; 94(2): F138-9. doi: 10.1136/adc.2007.136853 PMID: 18684749
  6. Lucas-Herald A, Butler S, Mactier H, McDevitt H, Young D, Ahmed SF. Prevalence and characteristics of rib fractures in ex-preterm in-fants. Pediatrics 2012; 130(6): 1116-9. doi: 10.1542/peds.2012-0462 PMID: 23166339
  7. Mercy J, Dillon B, Morris J, Emmerson AJ, Mughal MZ. Relationship of tibial speed of sound and lower limb length to nutrient intake in preterm infants. Arch Dis Child Fetal Neonatal Ed 2007; 92(5): F381-5. doi: 10.1136/adc.2006.105742 PMID: 17369280
  8. Zenoni D, Loiacono S. Experience of compounding total parenteral nutrition admixtures for preterm infants in a hospital pharmacy: Evi-dence of calcium and phosphate compatibility problem. Eur J Hosp Pharm Sci Pract 2018; 25(1): 38-42. doi: 10.1136/ejhpharm-2016-001143 PMID: 31156983
  9. Chacham S, Pasi R, Chegondi M, Ahmad N, Mohanty SB. Metabolic bone disease in premature neonates: an unmet challenge. J Clin Res Pediatr Endocrinol 2020; 12(4): 332-9. doi: 10.4274/jcrpe.galenos.2019.2019.0091 PMID: 31674171
  10. Wagner K, Wagner S, Susi A, Gorman G, Hisle-Gorman E. Prematurity does not increase early childhood fracture risk. J Pediatr 2019; 207: 148-53. doi: 10.1016/j.jpeds.2018.11.017 PMID: 30528571
  11. Frost HM. Perspectives: A proposed general model of the "mechanostat" (suggestions from a new skeletal‐biologic paradigm). Anat Rec 1996; 244: 139-47.
  12. Rauch F, Schöenau E. The developing bone: Slave or master of its cells and molecules? Pediatr Res 2001; 50: 309-14. doi: 10.1203/00006450-200109000-00003
  13. Kaijser M, Granath F, Jacobsen G, et al. Maternal pregnancy estriol levels in relation to anamnestic and fetal anthropometric data. Epidemiology 2000; 11(3): 315-9.
  14. Beyers N, Alheit B, Taljaard JF, Hall JM, Hough SF. High turnover osteopenia in preterm babies. Bone 1994; 15(1): 5-13. doi: 10.1016/8756-3282(94)90884-2 PMID: 8024851
  15. Beyers N, Esser M, Alheit B, Roodt M, Wiggs B, Hough SF. Static bone histomorphometry in preterm and term babies. Bone 1994; 15(1): 1-4. doi: 10.1016/8756-3282(94)90883-4 PMID: 8024842
  16. Moyer-Mileur L, Luetkemeier M, Boomer L, Chan GM. Effect of physical activity on bone mineralization in premature infants. J Pediatr 1995; 127(4): 620-5. doi: 10.1016/S0022-3476(95)70127-3 PMID: 7562289
  17. Torró-Ferrero G, Fernández-Rego FJ, Gómez-Conesa A. Physical therapy to prevent osteopenia in preterm infants: a systematic review. Children (Basel) 2021; 8(8): 664. doi: 10.3390/children8080664 PMID: 34438555
  18. Bandara S, Kariyawasam A. AO-45. Incidence of osteopenia of prematurity in preterm infants who were exclusively fed breast milk. Early Hum Dev 2010; 86: S18. doi: 10.1016/j.earlhumdev.2010.09.053
  19. Chin LK, Doan J, Teoh YSL, Stewart A, Forrest P, Simm PJ. Outcomes of standardised approach to metabolic bone disease of prematuri-ty. J Paediatr Child Health 2018; 54(6): 665-70. doi: 10.1111/jpc.13813 PMID: 29292538
  20. Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity—National survey of current neonatal and paediatric endocrine approaches. Acta Paediatr 2021; 110(6): 1855-62. doi: 10.1111/apa.15654 PMID: 33145793
  21. Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term con-sequences. Arch Dis Child Fetal Neonatal Ed 2019; 104(5): F560-6. doi: 10.1136/archdischild-2018-316330 PMID: 31079069
  22. Lachmann E, Whelan M. The roentgen diagnosis of osteoporosis and its limitations. Radiology 1936; 26(2): 165-77. doi: 10.1148/26.2.165
  23. Rosendahl K, Lundestad A, Bjørlykke JA, et al. Revisiting the radiographic assessment of osteoporosis—Osteopenia in children 0-2 years of age. A systematic review. PLoS One 2020; 15(11): e0241635. doi: 10.1371/journal.pone.0241635 PMID: 33137162
  24. Koo WW, Gupta JM, Nayanar VV, Wilkinson M, Posen S. Skeletal changes in preterm infants. Arch Dis Child 1982; 57(6): 447-52. doi: 10.1136/adc.57.6.447 PMID: 6979978
  25. Tong L, Gopal-Kothandapani JS, Offiah AC. Feasibility of quantitative ultrasonography for the detection of metabolic bone disease in preterm infants — systematic review. Pediatr Radiol 2018; 48(11): 1537-49. doi: 10.1007/s00247-018-4161-5 PMID: 29907939
  26. Abrams SA, Bhatia JJS, Abrams SA, et al. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 2013; 131(5): e1676-83. doi: 10.1542/peds.2013-0420 PMID: 23629620
  27. Rayannavar A, Calabria AC. Screening for Metabolic Bone Disease of prematurity. Semin Fetal Neonatal Med 2020; 25(1): 101086. doi: 10.1016/j.siny.2020.101086 PMID: 32081592
  28. Moreira A, February M, Geary C. Parathyroid hormone levels in neonates with suspected osteopenia. J Paediatr Child Health 2013; 49(1): E12-6. doi: 10.1111/jpc.12052 PMID: 23293851
  29. Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the european society of pae-diatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 2010; 50(1): 85-91. doi: 10.1097/MPG.0b013e3181adaee0 PMID: 19881390
  30. Arslanoglu S, Moro GE, Ziegler EE. Optimization of human milk fortification for preterm infants: New concepts and recommendations. J Perinat Med 2010; 38(3): 233-8. doi: 10.1515/jpm.2010.073 PMID: 20184400
  31. American Academy of the Pediatric (AAP) Committee on Nutrition. Nutritional needs of the preterm infant. Pediatric Nutrition 7. Kleinman RE, Ed. IL, USA: AAP 2014; pp. 83-121.
  32. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Sup-ported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005; 41 (Suppl. 2): S1-S87. doi: 10.1097/01.mpg.0000181841.07090.f4 PMID: 16254497

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024