Купроптоз — особая форма регулируемой медьзависимой гибели клеток. Перспективы фармакологической коррекции при болезнях человека
- Авторы: Ващенко В.И.1, Чухловин А.Б.2, Шабанов П.Д.1
-
Учреждения:
- Военно-медицинская академия имени С.М. Кирова
- НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой
- Выпуск: Том 15, № 4 (2024)
- Страницы: 287-324
- Раздел: Научные обзоры
- URL: https://journals.eco-vector.com/1606-8181/article/view/641854
- DOI: https://doi.org/10.17816/phbn641854
- ID: 641854
Цитировать
Полный текст



Аннотация
В 2022 году группа исследователей из Китая выявила новую, медьзависимую форму клеточной гибели, названную купроптозом, которая отличается от всех других известных типов клеточной гибели. Купроптоз инициируется связыванием ионов меди с липоилированными ферментами в цикле Кребса, что приводит к последующей агрегации белка, протеотоксическому стрессу и, в конечном счете, к гибели клеток. Медь, как важнейший эссенциальный микроэлемент, требуется для широкого спектра физиологических процессов практически во всех типах клеток. Поскольку чрезмерное накопление внутриклеточной меди может вызывать окислительный стресс и нарушать клеточную функцию, гомеостаз меди жестко регулируется. Здесь обобщены текущие знания о метаболизме меди, заболеваниях, связанных с медью, характеристиках купроптоза и механизмах, которые регулируют купроптоз. Кроме того, обсуждается значение купроптоза в патогенезе различных заболеваний, включая болезнь Вильсона, Менкеса, нейродегенеративные, раковые и сердечно-сосудистые заболевания, а также обсуждается терапевтический потенциал купроптоза.
Ключевые слова
Полный текст

Об авторах
Владимир Иванович Ващенко
Военно-медицинская академия имени С.М. Кирова
Автор, ответственный за переписку.
Email: vladimir-vaschenko@yandex.ru
д-р биол. наук
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6Алексей Борисович Чухловин
НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой
Email: alexei.chukh@mail.ru
SPIN-код: 3050-7030
д-p мед. наук
Россия, Санкт-ПетербургПетр Дмитриевич Шабанов
Военно-медицинская академия имени С.М. Кирова
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
д-р мед. наук, профессор
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6Список литературы
- Ващенко В.И., Ващенко Т.Н. Биология и фармакология церулоплазмина: от эксперимента до лекарственной терапии // Обзоры по клинической фармакологии и лекарственной терапии. 2009. Т. 8, № 1. С. 31–44.
- Карнаухова ИВ, Ширяева О.Ю. Исследование содержания меди и активности медь-зависимой супероксиддисмутазы в организме человека // Научное обозрение. Биологические науки. 2018. № 2. С. 10–14. EDN: XQZFTF
- Ляпин А.А., Тарасов Р.С. Современные данные о методах коррекции тетрады Фалло // Кардиология и сердечно-сосудистая хирургия. 2021. Т. 14, № 5. C. 349–353.
- Парахонский А.П. Роль меди в организме и значение ее дисбаланса // Естественно-гуманитарные исследования. 2015. № 10 (4). С. 73–84. EDN: VBKAYX
- Поленкова У.И., Зубарев И.В., Томилин А.Н., Цимоха А.С. Убиквитин-протеасомная система в регуляции клеточной плюрипотентности и дифференцировки // Цитология. 2023. Т. 65, № 3. С. 232–245. EDN: VDOROR doi: 10.31857/S0041377123030069
- Тутельян В.А., Махова А.А., Погожева А.В., и др. Липоевая кислота: физиологическая роль и перспективы клинического применения // Вопросы питания. 2019. Т. 88, № 4. С. 6–11. EDN: OUGJJM doi: 10.24411/0042-8833-2019-10035
- Чухловин А.Б. Клиническая значимость молекулярнобиологической диагностики // Ученые записки СПбГМУ им. акад. И.П. Павлова. 2010. Т. 17, № 1. С. 62–68. EDN: SMHWGT
- Abbas R., Larisch S. Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system // Cells. 2021. Vol. 10, N 12. P. 3465. doi: 10.3390/cells10123465
- Adlard P.A., Cherny R.A., Finkelstein D.I., et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta // Neuron. 2008. Vol. 59, N. 1. P. 43–55. doi: 10.1016/j.neuron.2008.06.018
- Aggarwal A., Bhatt M. Wilson disease // Curr Opin Neurol. 2020. Vol. 33, N 4. P. 534–542. doi: 10.1097/WCO.0000000000000837
- Aggett P.J. An overview of the metabolism of copper // Eur J Med Res. 1999. Vol. 4, N 6. P. 214–216.
- Al-Bayati M.A., Jamil D.A., Al-Aubaidy H.A. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy // N Am J Med Sci. 2015. Vol. 7, N 2. P. 41–46. doi: 10.4103/1947-2714.152077
- Ala A., Walker A.P., Ashkan K., et al. Wilson’s disease // Lancet. 2007. Vol. 369, N 9559. P. 397–408. doi: 10.1016/S0140-6736(07)60196-2
- Aliabadi F., Sohrabi B., Mostafavi E., et al. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy // Open Biol. 2021. Vol. 11, N 4. P. 200390. doi: 10.1098/rsob.200390
- Alvarez H.M., Xue Y., Robinson C.D., et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation // Science. 2010. Vol. 327, N 5963. P. 331–334. doi: 10.1126/science.1179907
- Al-Bayati M.A., Jamil D.A., Al-Aubaidy H.A. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy // N Am J Med Sci. 2015. Vol. 7, N 2. P. 41–46. doi: 10.4103/1947-2714.152077
- Arciello M., Rotilio G., Rossi L. Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage // Biochem Biophys Res Commun. 2005. Vol. 327, N 2. P. 454–459. doi: 10.1016/j.bbrc.2004.12.022
- Arrasate M., Finkbeiner S. Protein aggregates in Huntington’s disease // Exp Neurol. 2012. Vol. 238, N 1. P. 1–11. doi: 10.1016/j.expneurol.2011.12.013
- Ashino T., Sudhahar V., Urao N., et al. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration // Circ Res. 2010. Vol. 107, N 6. P. 787–799. doi: 10.1161/CIRCRESAHA.110.225334
- Atwood C.S., Perry G., Zeng H., et al. Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta // Biochemistry. 2004. Vol. 43, N 2. P. 560–568. doi: 10.1021/bi0358824
- Badet J., Soncin F., Guitton J.D., et al. Specific binding of angiogenin to calf pulmonary artery endothelial cells // Proc Natl Acad Sci U S A. 1989. Vol. 86, N 21. P. 8427–8431. doi: 10.1073/pnas.86.21.8427
- Baharvand M., Manifar S., Akkafan R., et al. Serum levels of ferritin, copper, and zinc in patients with oral cancer // Biomed J. 2014. Vol. 37, N 5. P. 331–336. doi: 10.4103/2319-4170.132888
- Banci L., Bertini I., Ciofi-Baffoni S., et al. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer // Proc Natl Acad Sci U S A. 2008. Vol. 105, N 19. P. 6803–6808. doi: 10.1073/pnas.0800019105
- Bandmann O., Weiss K.H., Kaler S.G. Wilson’s disease and other neurological copper disorders // Lancet Neurol. 2015. Vol. 14, N 1. P. 103–113. doi: 10.1016/S1474-4422(14)70190-5
- Basu S., Singh M.K., Singh T.B., et al. Heavy and trace metals in carcinoma of the gallbladder // World J Surg. 2013. Vol. 37, N 11. P. 2641–2646. doi: 10.1007/s00268-013-2164-9
- Behbehani G.R., Barzegar L., Mohebbian M., Saboury A.A. A comparative interaction between copper ions with Alzheimer’s β amyloid peptide and human serum albumin // Bioinorg Chem Appl. 2012. Vol. 2012. P. 208641. doi: 10.1155/2012/208641
- Berkenblit A., Eder J.P. Jr., Ryan D.P., et al. Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors // Clin Cancer Res. 2007. Vol. 13, N 2 Pt 1. P. 584–590. doi: 10.1158/1078-0432.CCR-06-0964
- Bersuker K., Hendricks J.M., Li Z., et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis // Nature. 2019. Vol. 575, N 7784. P. 688–692. doi: 10.1038/s41586-019-1705-2
- Bertinato J., L’Abbé M.R. Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome // J Biol Chem. 2003. Vol. 278, N 37. P. 35071–35078. doi: 10.1074/jbc.M302242200
- Bertrand E., Lewandowska E., Szpak G.M., et al. Neuropathological analysis of pathological forms of astroglia in Wilson’s disease // Folia Neuropathol. 2001. Vol. 39, N 2. P. 73–79.
- Blackman R.K., Cheung-Ong K., Gebbia M., et al. Mitochondrial electron transport is the cellular target of the oncology drug elesclomol // PLoS One. 2012. Vol. 7, N 1. P. e29798. doi: 10.1371/journal.pone.0029798
- Blockhuys S., Zhang X., Wittung-Stafshede P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration // Proc Natl Acad Sci U S A. 2020. Vol. 117, N 4. P. 2014–2019. doi: 10.1073/pnas.1910722117
- Bomer N., Pavez-Giani M.G., Grote Beverborg N., et al. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? // J Intern Med. 2022. Vol. 291, N 6. P. 713–731. doi: 10.1111/joim.13456
- Boyd S.D., Ullrich M.S., Skopp A., Winkler D.D. Сopper sources for sod1 activation // Antioxidants (Basel). 2020. Vol. 9, N 6. P. 500. doi: 10.3390/antiox9060500
- Bourassa M.W., Brown H.H., Borchelt D.R., et al. Metal-deficient aggregates and diminished copper found in cells expressing SOD1 mutations that cause ALS // Front Aging Neurosci. 2014. Vol. 6:110. doi: 10.3389/fnagi.2014.00110
- Brady D.C., Crowe M.S., Turski M.L., et al. Copper is required for oncogenic BRAF signalling and tumorigenesis // Nature. 2014. Vol. 509, N 7501. P. 492–496. doi: 10.1038/nature13180
- Brady D.C., Crowe M.S., Greenberg D.N., Counter C.M. Copper chelation inhibits BRAFV600E-driven melanomagenesis and counters resistance to BRAFV600E and MEK1/2 inhibitors // Cancer Res. 2017. Vol. 77, N 22. P. 6240–6252. doi: 10.1158/0008-5472.CAN-16-1190
- Brancaccio D., Gallo A., Piccioli M., et al. [4Fe-4S] Cluster assembly in mitochondria and its impairment by copper // J Am Chem Soc. 2017. Vol. 139, N 2. P. 719–730. doi: 10.1021/jacs.6b09567
- Brem S., Tsanaclis A.M., Zagzag D. Anticopper treatment inhibits pseudopodial protrusion and the invasive spread of 9L gliosarcoma cells in the rat brain // Neurosurgery. 1990. Vol. 26, N 3. P. 391–396. doi: 10.1097/00006123-199003000-00003
- Brem S.S., Zagzag D., Tsanaclis A.M., et al. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor // Am J Pathol. 1990. Vol. 137, N 5. P. 1121–1142.
- Brewer G.J., Askari F., Lorincz M.T., et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a doubleblind study of treatment of the neurologic presentation of Wilson disease // Arch Neurol. 2006. Vol. 63, N 4. P. 521–527. doi: 10.1001/archneur.63.4.521
- Brewer G.J., Askari F., Dick R.B., et al. Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine // Transl Res. 2009. Vol. 154, N 2. P. 70–77. doi: 10.1016/j.trsl.2009.05.002
- Byers P.H., Siegel R.C., Holbrook K.A., et al. X-linked cutis laxa: defective cross-link formation in collagen due to decreased lysyl oxidase activity // N Engl J Med. 1980. Vol. 303, N 2. P. 61–65. doi: 10.1056/NEJM198007103030201
- Bucossi S., Ventriglia M., Panetta V., et al. Copper in Alzheimer’s disease: a meta-analysis of serum,plasma, and cerebrospinal fluid studies // J Alzheimers Dis. 2011. Vol. 24, N 1. P. 175–185. doi: 10.3233/JAD-2010-101473
- Bush A.I. Drug development based on the metals hypothesis of Alzheimer’s disease // J Alzheimers Dis. 2008. Vol. 15, N 2. P. 223–240. doi: 10.3233/jad-2008-15208
- Cao S., Wang Q, Sun Z., et al. Role of cuproptosis in understanding diseases // Hum Cell. 2023. Vol. 36, N 4. P. 1244–1252. doi: 10.1007/s13577-023-00914-6
- Cheignon C., Tomas M., Bonnefont-Rousselot D., et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease // Redox Biol. 2018. Vol. 14. P. 450–464. doi: 10.1016/j.redox.2017.10.014
- Chen D., Cui Q.C., Yang H., et al. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity // Cancer Res. 2006. Vol. 66, N 21. P. 10425–10433. doi: 10.1158/0008-5472.CAN-06-2126
- Chen J., Li X., Ge C., et al. The multifaceted role of ferroptosis in liver disease // Cell Death Differ. 2022. Vol. 29, N 3. P. 467–480. doi: 10.1038/s41418-022-00941-0
- Chen Q.Y., Wu P., Wen T., et al. Association of cerebral spinal fluid copper imbalance in amyotrophic lateral sclerosis // Front Aging Neurosci. 2022. Vol. 14. P. 970711. doi: 10.3389/fnagi.2022.970711
- Chen X., Cai Q., Liang R., et al. Сopper homeostasis and copper induced cell phatogenesis of cardiovascular disease and therapeutic strategies // Cell Death Dis. 2023. Vol. 14, N 2. P. 105. doi: 10.1038 / s41419-023-05639-w
- Cherny R.A., Atwood C.S., Xilinas M.E., et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice // Neuron. 2001. Vol. 30, N 3. P. 665–676. doi: 10.1016/s0896-6273(01)00317-8
- Cherny R.A., Ayton S., Finkelstein D.I., et al. PBT2 reduces toxicity in a C. elegans model of polyQ aggregation and extends lifespan, reduces striatal atrophy and improves motor performance in the R6/2 mouse model of huntington’s disease // J Huntingtons Dis. 2012. Vol. 1, N 2. P. 211–219. doi: 10.3233/JHD-120029
- Christgen S., Tweedell R.E., Kanneganti T.D. Programming inflammatory cell death for therapy // Pharmacol Ther. 2022. Vol. 232. P. 108010. doi: 10.1016/j.pharmthera.2021.108010
- Ciavarella S., Milano A., Dammacco F., Silvestris F. Targeted therapies in cancer // BioDrugs. 2010. Vol. 24, N 2. P. 77–88. doi: 10.2165/11530830-000000000-00000 2010
- Cobine P.A., Pierrel F., Winge D.R. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes // Biochim Biophys Acta. 2006. Vol. 1763, N 7. P. 759–772. doi: 10.1016/j.bbamcr.2006.03.002
- Cox C., Teknos T.N., Barrios M., et al. The role of copper suppression as an antiangiogenic strategy in head and neck squamous cell carcinoma // Laryngoscope. 2001. Vol. 111, N 4 Part 1. P. 696–701. doi: 10.1097/00005537-200104000-00024
- Cox T.R., Rumney R.M.H., Schoof E.M., et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase // Nature. 2015. Vol. 522, N 7554. P. 106–110. doi: 10.1038/nature14492
- Crouch P.J., Savva MS, Hung L.W., et al. The Alzheimer’s therapeutic PBT2 promotes amyloid-beta degradation and GSK3 phosphorylation via a metal chaperone activity // J Neurochem. 2011. Vol. 119, N 1. P. 220–230. doi: 10.1111/j.1471-4159.2011.07402.x
- Crowe A., Jackaman C., Beddoes K.M., et al. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration // PLoS ONE. 2013. Vol. 8, N 8. P. e73684. doi: 10.1371/journal.pone.0073684
- Czlonkowska A., Litwin T., Dusek P., et al. Wilson disease // Nat Rev Dis Prim. 2018. Vol. 4, N 1. P. 21. doi: 10.1038/s41572-018-0018-3
- Dancis А., Roman D.G., Аnderson G.J., et al. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron // Proc Natl Acad SciUSA. 1992. Vol. 89, N 9. P. 3869–3873. doi: 10.1073 /pnas.89.9.3869
- Deng L., Meng T., Chen L., et al. The role of ubiquitination in tumorigenesis and targeted drug discovery // Signal Transduct Target Ther. 2020. Vol. 5, N 1. P. 11. doi: 10.1038/s41392-020-0107-0
- Denoyer D., Masaldan S., La Fontaine S., Cater M.A. Targeting copper in cancer therapy: ’Copper That Cancer’ // Metallomics. 2015. Vol. 7, N 11. P. 1459–1476. doi: 10.1039 /c5mt00149h
- Denoyer D., Pearson H.B., Clatworthy S.A.S., et al. Copper as a target for prostate cancer therapeutics: copperionophore pharmacology and altering systemic copper distribution // Oncotarget. 2016. Vol. 7, N 24. P. 37064–37080. doi: 10.18632/oncotarget.9245
- Dexter D.T., Carayon A., Jaroy-Agid F., et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia // Brain. 1991. Vol. 114, N Part 4. P. 1953–1975. doi: 10.1093/brain/114.4.1953
- Diez M., Arroyo M., Cerdan F.J., et al. Serum and tissue trace metal levels in lung cancer // Oncology. 1989. Vol. 46, N 4. P. 230–234. doi: 10.1159/000226722
- DiFiglia M., Sapp E., Chase K.O., et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain // Science. 1997. Vol. 277, N 5334. P. 1990–1993. doi: 10.1126/science.277.5334.1990
- DiNicolantonio J.J., Mangan D., O’Keefe J.H. Copper deficiency may be a leading cause of ischaemic heart disease // Open Heart. 2018. Vol. 5, N 2. P. e000784. doi: 10.1136/openhrt-2018-000784
- Doll S., Freitas S., Shah R., et al. FSP1 is a glutathione-independent ferroptosis suppressor // Nature. 2019. Vol. 575. P. 693–698. doi: 10.1038/s41586-019-1707-0
- Donate F., Juarez J.C., Burnett M.E., et al. Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224) // Br J Cancer. 2008. Vol. 98, N 4. P. 776–783. doi: 10.1038/sj.bjc.6604226
- Du X., Zhang Y., Wang Z., et al. Inhibitory act of selenoprotein P on Cu(+)/Cu(2+)-induced tau aggregation and neurotoxicity // Inorg Chem. 2014. Vol. 53, N 20. P. 11221–11230. doi: 10.1021/ic501788v
- Dusek P., Litwin T., Czlonkowska A. Wilson disease and other neurodegenerations with metal accumulations // Neurol Clin. 2015. Vol. 33, N 1. P. 175–204. doi: 10.1016/j.ncl.2014.09.006
- Elchuri S., Oberley T.D., Qi W., et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life // Oncogene. 2005. Vol. 24, N 3. P. 367–380. doi: 10.1038/sj.onc.1208207
- Elsherif L., Wang L., Saari J.T., Kang Y.J. Regression of dietary copper restriction-induced cardiomyopathy by copper repletion in mice // J Nutr. 2004. Vol. 134, N 4. P. 855–860. doi: 10.1093/jn/134.4.855
- Elsasser S., Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines // Nat Cell Biol. 2005. Vol. 7, N 8. P. 742–749. doi: 10.1038/ncb0805-742
- Enge T.G., Ecroyd H., Jolley D.F., et al. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis // Metallomics. 2017. Vol. 9, N 2. P. 161–174. doi: 10.1039/c6mt00270f
- Erler J.T., Bennewith K.L., Cox T.R., et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche // Cancer Cell. 2009. Vol. 15, N 1. P. 35–44. doi: 10.1016/j.ccr.2008.11.012
- Eskici G., Axelsen P.H. Copper and oxidative stress in the pathogenesis of Alzheimer’s disease // Biochemistry. 2012. Vol. 51, N 32. P. 6289–6311. doi: 10.1021/bi3006169
- Factor S.M., Cho S., Sternlieb I., et al. The cardiomyopathy of Wilson’s disease. Myocardial alterations in nine cases // Virchows Arch A Pathol Anat Histol. 1982. Vol. 397, N 3. P. 301–311. doi: 10.1007/BF00496571
- Fang X., Cai Z., Wang H., et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis // Circ Res. 2020. Vol. 127, N 4. P. 486–501. doi: 10.1161/CIRCRESAHA.120.316509
- Fang X., Ardehali H., Min J., Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease // Nat Rev Cardiol. 2022. Vol. 1. P. 7–23. doi: 10.1038/s41569-022-00735-4
- Fang X., Wang H., Han D., et al. Ferroptosis as a target for protection against cardiomyopathy // Proc Natl Acad Sci. USA. 2019. Vol. 116, N 7. P. 2672–2680. doi: 10.1073/pnas.1821022116
- Faux N.G., Ritchie C.W., Gunn A., et al. PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses // J Alzheimers Dis. 2010. Vol. 20, N 2. P. 509–516. doi: 10.3233/JAD-2010-1390
- Feng W., Ye F., Xue W., et al. Copper regulation of hypoxiainducible factor-1 activity // Mol Pharmacol. 2009. Vol. 75, N 1. P. 174–182. doi: 10.1124/mol.108.051516
- Feng J.F., Lu L., Zeng P., et al. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients // Int J Clin Oncol. 2012. Vol. 17, N 6. P. 575–583. doi: 10.1007/s10147-011-0327-y
- Festa R.A., Thiele D.J. Copper: an essential metal in biology // Curr Biol. 2011. Vol. 21, N 21. P. R877–R883. doi: 10.1016/j.cub.2011.09.040
- Ford E.S. Serum copper concentration and coronary heart disease among US adults // Am J Epidemiol. 2000. Vol. 151, N 12. P. 1182–1188. doi: 10.1093/oxfordjournals.aje.a010168
- Fox J.H., Kama J.A., Lieberman G., et al. Mechanisms of copper ion mediated Huntington’s disease progression // PLoS ONE. 2007. Vol. 2, N 3. P. e334. doi: 10.1371/journal.pone.0000334
- Freisinger P., Horvath R., Macmillan C., et al. Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein Sco2: is there a potential effect of copper? // J Inherit Metab Dis. 2004. Vol. 27, N 1. P. 67–79. doi: 10.1023/B:BOLI.0000016614.47380.2f
- Galluzzi L., Vitale I., Aaronson S.A., et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 // Cell Death Different. 2018. Vol. 25, N 3. P. 486–541. doi: 10.1016/j.jtho.2016.05.021
- 92.Gao F., Yuan Y., Ding Y., et al. DLAT as a cuproptosis promoter and a molecular target of elesclomol in hepatocellular carcinoma // Curr Med Sci. 2023. Vol. 43, N 3. P. 526–538. doi: 10.1007/s11596-023-2755-0
- Garcia-Santamarina S., Uzarska M.A., Festa R.A., et al. Cryptococcus neoformans iron–sulfur proteinbiogenesis machinery is a novel layer of protection against Cu stress // mBio. 2017. Vol. 8, N 5. P. e01742–17. doi: 10.1128/mBio.01742-17
- Georgatsou E., Mavrogiannis L.A., Fragiadakis G.S., Alexandraki D. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator // J Biol Chem. 1997. Vol. 272, N 21. P. 13786–13792. doi: 10.1074/jbc.272.21.13786
- George D.H., Casey R.E. Menkes disease after copper histidine replacement therapy: case report // Pediatr Dev Pathol. 2001. Vol. 4, N 3. P. 281–288. doi: 10.1007/s100240010142
- Gralla E.B., Valentine J.S. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous mutation rates // J Bacteriol. 1991. Vol. 173, N 18. P. 5918–5920. doi: 10.1128/jb.173.18.5918-5920.1991
- Gromadzka G., Tarnacka B., Flaga A., Adamczyk A. Copper dyshomeostasis in neurodegenerative diseases Therapeutic Implications // Int J Mol Sci. 2020. Vol. 21, N 23. P. 9259. doi: 10.3390/ijms21239259
- Gu M., Cooper J.M., Butler P., et al. Oxidative-phosphorylation defects in liver of patients with Wilson’s disease // Lancet. 2000. Vol. 356, N 9228. P. 469–474. doi: 10.1016/s0140-6736(00)02556-3
- Gupta S.K., Shukla V.K., Vaidya M.P., et al. Serum and tissue trace elements in colorectal cancer // J Surg Oncol. 1993. Vol. 52, N 3. P. 172–175. doi: 10.1002/jso.2930520311
- Gupte A., Mumper R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment // Cancer Treat Rev. 2009. Vol. 35, N 1. P. 32–46. doi: 10.1016/j.ctrv.2008.07.004
- Guzior N., Wieckowska A., Panek D., Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease // Curr Med Chem. 2015. Vol. 22, N 3. P. 373–404. doi: 10.2174/0929867321666141106122628
- Halliwell B. Oxidative stress and neurodegeneration: where are we now? // J Neurochem. 2006. Vol. 97, N 6. P. 1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x
- Hamza I., Prohaska J., Gitlin J.D. Essential role for Atox1 in the coppermediated intracellular trafficking of the Menkes ATPase // Proc Natl Acad Sci USA. 2003. Vol. 100, N 3. P. 1215–1220. doi: 10.1073/pnas.0336230100
- Hands S.L., Mason R., Sajjad M.U., et al. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease // Biochem Soc Trans. 2010. Vol. 38, N 2. P. 552–558. doi: 10.1042/BST0380552
- Harms L., Meierkord H., Timm G., et al. Decreased nacetyl-aspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington’s disease: a proton magnetic resonance spectroscopy study // J Neurol Neurosurg Psychiatry. 1997. Vol. 62, N 1. P. 27–30. doi: 10.1136/jnnp.62.1.27
- Heaton D.N., George G.N., Garrison G., Winge D.R. The mitochondrial copper metallochaperone Cox17 exists as an oligomeric, polycopper complex // Biochemistry. 2001. Vol. 40, N 3. P. 743–751. doi: 10.1021/bi002315x
- Hicks J.D., Domsante A., Pierson T.M., et al. Increased frequency of congenital heart defects in Menkes disease // Clin Dysmorphol. 2012. Vol. 21, N 2. P. 59–63. doi: 10.1097/MCD.0b013e32834ea52b
- Hilton J.B., Merser S.U., Lim N.K.H., et al. Cu(II)(atsm) improves the neurological phenotype and survival of SOD1(G93A) mice and selectively increases enzymatically active SOD1 in the spinal cord // Sci Rep. 2017. Vol. 7. P. 42292. doi: 10.1038/srep42292
- Hottinger A.F., Fine E.G., Gurney M.E., et al. The copper chelator D-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis // Eur J Neurosci. 1997. Vol. 9, N 7. P. 1548–1551. doi: 10.1111/j.1460-9568.1997.tb01511.x
- Horng Y.C., Cobine P.A., Maxfield A.B., et al. Specificcopper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase // J Biol Chem. 2004. Vol. 279, N 34. P. 35334–35340. doi: 10.1074/jbc.M404747200
- Huang J., Campian J.L., Gujar A.D., et al. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy // J Neurooncol. 2016. Vol. 128, N 2. P. 259–266. doi: 10.1007/s11060-016-2104-2
- Huster D. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson’s disease // Ann NY Acad Sci. 2014. Vol. 1315. P. 37–44. doi: 10.1111/nyas.12337
- Jakola A.S., Werlenius K., Mudaisi M., et al. Disulfiram repurposing combined with nutritional copper supplement as add-on to chemotherapy in recurrent glioblastoma (DIRECT. P. Study protocol for a randomized controlled trial // F1000Res. 2018. Vol. 7. P. 1797. doi: 10.12688/f1000research.16786.1
- Jaksch M., Ogilvie I., Yao J., et al. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency // Hum Mol Genet. 2000. Vol. 9, N 5. P. 795–801. doi: 10.1093/hmg/9.5.795
- James S.A., Churces Q.I., de Jonge M.D., et al. Iron, copper, and zinc concentration in A beta plaques in the APP/PS1 mouse model of Alzheimer’s disease correlates with metal levels in the surrounding neuropil // ACS Chem Neurosci. 2017. Vol. 8, N 3. P. 629–637. doi: 10.1021/acschemneuro.6b00362
- Jenagaratnam L., McShane R. Clioquinol for the treatment of Alzheimer’s disease // Cochrane Database Syst Rev. 2006. Vol. 25, N 1. P. CD005380. doi: 10.1002/14651858.CD005380.pub2
- Ji M.B., Arbel M., Zhang L., et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy // Sci Adv. 2018. Vol. 4, N 11. P. eaat7715. doi: 10.1126/sciadv.aat7715
- Jiang Y., Huo Z., Qi X., et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes // Nanomedicine (Lond). 2022. Vol. 17, N 5. P. 303–324. doi: 10.2217/nnm-2021-0374
- Ishida S., Andreux P., Poitry-Yamate C., et al. Bioavailable copper modulates oxidative phosphorylation and growth of tumors // Proc Natl Acad Sci USA. 2013. Vol. 110, N 48. P. 19507–19512. doi: 10.1073/pnas.1318431110
- Itoh S., Kim H.W., Nakagawa O., et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation // J Biol Chem. 2008. Vol. 283, N 14. P. 9157–9167. doi: 10.1074/jbc.M709463200
- Kaler S.G., Gahl W.A., Berry S.A., et al. Predictive value of plasma catecholamine levels in neonatal detection of Menkes disease // J Inherit Metab Dis. 1993. Vol. 16, N 5. P. 907–908. doi: 10.1007/BF00714295
- Kaler S.G., Holmes C.S., Goldstein D.S., et al. Neonatal diagnosis and treatment of Menkes disease // N Engl J Med. 2008. Vol. 358, N 6. P. 605–614. doi: 10.1056/NEJMoa070613
- Kaler S.G. Neurodevelopment and brain growth in classic Menkes disease is influenced by age and symptomatology at initiation of copper treatment // J Trace Elem Med Biol. 2014. Vol. 28, N 4. P. 427–430. doi: 10.1016/j.jtemb.2014.08.008
- Kang Y.J., Wu H., Saari J.T. Alterations in hypertrophic gene expression by dietary copper restriction in mouse heart // Proc Soc Exp Biol Med. 2000. Vol. 223. P. 282–287. doi: 10.1046/j.1525-1373.2000.22340.x
- Kang X, Jadhav S, Annaji M, et al. Advancing cancer therapy with copper/disulfiram nanomedicines and drug delivery systems // Pharmaceutics. 2023. Vol. 15, N 6. P. 1567. doi: 10.3390/pharmaceutics15061567
- Kasischke K.A., Vishwasrao H.D., Fisher P.J., et al. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis // Science. 2004. Vol. 305, N 5680. P. 99–103. doi: 10.1126/ science.1096485
- Ke D., Zhang Z., Liu J., et al. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy // Front Cardiovasc Med. 2023. Vol. 10:1135723. doi: 10.3389/fcvm.2023.1135723
- Kim B.E., Turski M.L., Nose Y., et al. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs // Cell Metab. 2010. Vol. 11, N 5. P. 353–363. doi: 10.1016/j.cmet.2010.04.003
- Kim J.H., Lee B.H., Kim Y.M., et al. Novel mutations and clinical outcomes of copper-histidine therapy in Menkes disease patients // Metab Brain Dis. 2015. Vol. 30, N 1. P. 75–81. doi: 10.1007/s11011-014-9569-5
- Kim K.K., Abelman S., Yano N., et al. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1alpha in cancer cells // Sci Rep. 2015. Vol. 5. P. 14296. doi: 10.1038/srep14296
- Kirshner J.R., He S., Balasubramanyam V., et al. Elesclomol induces cancer cell apoptosis through oxidative stress // Mol Cancer Ther. 2008. Vol. 7, N 8. P. 2319–2327. doi: 10.1158/1535-7163.MCT-08-0298
- Kitazawa M., Hsu H.W., Medeiros R. Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta // Toxicol Sci. 2016. Vol. 152, N 1. P. 194–204. doi: 10.1093/toxsci/kfw081
- Kohno T., Urao N., Ashino T., et al. Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury // Arterioscler Thromb Vasc Biol. 2013. Vol. 33, N 4. P. 805–813. doi: 10.1161/ATVBAHA.112.300862
- Kok F.J., Van Duijn C.M., Hofman A., et al. Serum copper and zinc and the risk of death from cancer and cardiovascular disease // Am J Epidem. 1988. Vol. 128, N 2. P. 352–359. doi: 10.1093/oxfordjournals.aje.a114975
- Kong R., Sun G. Targeting copper metabolism: a promising strategy for cancer treatment // Front Pharmacol. 2023. Vol. 14. P. 1203447. doi: 10.3389/fphar.2023.1203447
- Kopeina G.S., Zhivotovsky B. Programmed cell death: Past, present and future // Biochem Biophys Res Commun. 2022. Vol. 633. P. 55–58. doi: 10.1016/j.bbrc.2022.09.022
- Kumari N., Choi S.H. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 2022;41(1):68. doi: 10.1186/s13046-022-02272-x
- Kuo Y.M., Gybina A.A., Pyatskowit J.W., et al. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status // J Nutr. 2006. Vol. 136, N 1. P. 21–26. doi: 10.1093/jn/136.1.21
- La Fontaine S., Ackland M.L., Mercer J.F. Mammalian copper-transporting Ptype ATPases, ATP7A and ATP7B: emerging roles // Int J Biochem Cell Biol. 2010. Vol. 42, N 2. P. 206–209. doi: 10.1016/j.biocel.2009.11.007
- La Fontaine S., Mercer J.F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis // Arch Biochem Biophys. 2007. Vol. 463, N 2. P. 149–167. doi: 10.1016/j.abb.2007.04.021
- Lang M., Fan Q., Wang L., et al. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Abeta42-induced Alzheimer’s disease-like symptoms // Neurobiol Aging. 2013. Vol. 34, N 11. P. 2604–2612. doi: 10.1016/j.neurobiolaging.2013.05.029
- Lannfelt L., Blennow K., Zetterberg H., et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial // Lancet Neurol. 2008. Vol. 7, N 9. P. 779–786. doi: 10.1016/S1474-4422(08)70167-4
- Leary S.C., Kaufman B.A., Pellecchia G., et al. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase // Hum Mol Genet. 2004. Vol. 13, N 17. P. 1839–1848. doi: 10.1093/hmg/ddh197
- Lee J., Petris M.J., Thiele D.J. Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system // J Biol Chem. 2002. Vol. 277, N 43. P. 40253–40259. doi: 10.1074/jbc.M208002200
- Lei P., Ayton S., Bush A.I. The essential elements of Alzheimer’s disease // J Biol Chem. 2021. Vol. 296:100105. doi: 10.1074/jbc.REV120.008207
- Lelie H.L., Liba A., Bourassa M.W., et al. Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice // J Biol Chem. 2011. Vol. 286, N 4. P. 2795–2806. doi: 10.1074/jbc.M110.186999
- Lener M.R., Scott R.J., Wiechowska-Kozlowska A., et al. Serum concentrations of selenium and copper in patients diagnosed with pancreatic cancer // Cancer Res Treat. 2016. Vol. 48, N 3. P. 1056–1064. doi: 10.4143/crt.2015.282
- Li D.D., Zhang W., Wang Z.Y., Zhao P. Serum copper, zinc, and iron levels in patients with Alzheimeras disease: a meta-analysis of case-control studies // Front Aging Neurosci. 2017. Vol. 9. P. 300. doi: 10.3389/fnagi.2017.00300
- Liang Z.D., Tsai W.D., Lee M.Y., et al. Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression // Mol Pharmacol. 2020. Vol. 8, N 1. P. 155–464. doi: 10.1124/mol.111.076422
- Linz R., Lutsenko S. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins // J Bioenerg Biomembr. 2007. Vol. 39, N 5–6. P. 403–407. doi: 10.1007/s10863-007-9101-2
- Liu N., Lo L.S., Askary S.H., et al. Transcuprein is a macroglobulin regulated by copper and iron availability // J Nutr Biochem. 2007. Vol. 18, N 9. P. 597–608. doi: 10.1016/j.jnutbio.2006.11.005
- Liu P., Brown S., Goktug T., et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells // Br J Cancer. 2012. Vol. 107, N 9. P. 1488–1497. doi: 10.1038/bjc.2012.442
- Liu P., Kumar J.S., Brown S., et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells // Br J Cancer. 2013. Vol. 109, N 7. P. 1876–1885. doi: 10.1038/bjc.2013.534
- Lonial S., Mitsiades C.S., Richardson P.G. Treatment options for relapsed and refractory multiple myeloma // Clin Cancer Res. 2011. Vol. 17, N 6. P. 1264–1277. doi: 10.1158/1078-0432.CCR-10-1805
- Lun X., Wells C., Grinshteiin N., et al. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma // Clin Cancer Res. 2016. Vol. 22, N 15. P. 3860–3875. doi: 10.1158/1078-0432.CCR-15-1798
- Luoqian J., Yang W., Ding X., et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis // Cell Mol Immunol. 2022. Vol. 19, N 8. P. 913–924. doi: 10.1038 / s41423-022-00883-0
- Lutsenko S., Barnes N.L., Bartee M.Y., Dmitriev O.Y. Function and regulation of human copper-transporting ATPases // Physiol Rev. 2007. Vol. 87, N 3. P. 1011–1046. doi: 10.1152/physrev.00004.2006
- Lutsenko S., Bhattacharjee A., Hubbard A.L. Copper handling machinery of the brain // Metallomics. 2010. Vol. 2, N 9. P. 596–608. doi: 10.1039/c0mt00006j
- Lutsenko S. Copper trafficking to the secretory pathway // Metallomics. 2016. Vol. 8, N 9. P. 840–852. doi: 10.1039/c6mt00176a
- Lucena-Valera A., Ruz-Zafra P., Ampuero J. Wilson disease: overview // Med Clin (Barc). 2023. Vol. 160, N 6. P. 261–267. doi: 10.1016/j.medcli.2022.12.016
- Lynch S.M., Colon W. Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase // Biochem Biophys Res Commun. 2006. Vol. 340, N 2. P. 457–461. doi: 10.1016/j.bbrc.2005.12.024
- Mammoto T., Jiang A., Jiang E., et al. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression // Am J Pathol. 2013. Vol. 183, N 4. P. 1293–1305. doi: 10.1016/j.ajpath.2013.06.026
- Michniewicz F., Saletta F., Rouaen J.R.C., et al. Copper: An intracellular achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics // Chem Med Chem. 2021. Vol. 16, N 15. P. 2315–29. doi: 10.1002/cmdc.202100172
- Maffia M., Greco M., Rizzo F., et al. Copper dyshomeostasis in neurodegenerative diseases // Acta Physiologica. 2019. Vol. 227:58–58.
- Mayr J.A., Feichtinger R.G., Tort F., et al. Lipoic acid biosynthesis defects // J Inherit Metab Dis. 2014. Vol. 37, N 4. P. 553–563. doi: 10.1007/s10545-014-9705-8
- Margalioth E.J., Schenker J.G., Chevion M. Copper and zinc levels in normal and malignant tissues // Cancer. 1983. Vol. 52, N 5. P. 868–872. doi: 10.1002/1097-0142(19830901)52:5<868::aid-cncr2820520521>3.0.co. Vol. 2-k
- Maung M.T., Carlson A., Olea-Flores M., et al. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies // FASEB J. 2021. Vol. 35, N 9. P. e21810. doi: 10.1096/fj.202100273RR
- McAuslan B.R., Reilly W. Endothelial cell phagokinesis in response to specific metal ions // Exp Cell Res. 1980. Vol. 130, N 1. P. 147–157. doi: 10.1016/0014-4827(80)90051-8
- Medeiros D.M., Wildman R.E. Newer findings on a unified perspective of copper restriction and cardiomyopathy // Proc Soc Exp Biol Med. 1997. Vol. 215, N 4. P. 299–313. doi: 10.3181/00379727-215-44141
- Misra A.K., Biswas A., Ganguly G., et al. Arthropathic presentation of Wilson’s disease // J Assoc Physicians India. 2004. Vol. 52. P. 246–248.
- Moller L.B., Mogensen M., Horn N. Molecular diagnosis of Menkes disease: genotype–phenotype correlation // Biochimie. 2009. Vol. 91, N 10. P. 1273–1277. doi: 10.1016/j.biochi.2009.05.011
- Moriguchi M., Nakajima T., Kimura H., et al. The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production // Int J Cancer. 2002. Vol. 102, N 5. P. 445–452. doi: 10.1002/ijc.10740
- Moriya M., Ho Yi-H., Grana A., et al. Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism // Am J Physiol Cell Physiol. 2008. Vol. 295, N 3. P. C708–C721. doi: 10.1152/ajpcell.00029.2008
- Nagai M., Vo N.H., Ogawa L.S., et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells // Free Radic Biol Med. 2012. Vol. 52, N 10. P. 2142–2150. doi: 10.1016/j.freeradbiomed.2012.03.017
- Nandi D., Tahiliani P., Kumar A., Chandu D. The ubiquitin-proteasome system // J Biosci. 2006. Vol. 31, N 1. P. 137–155. doi: 10.1007/BF02705243
- Nayak S.B., Bhat V.R., Upadhyay D., Udupa S.L. Copper and ceruloplasmin status in serum of prostate and colon cancer patients // Indian J Physiol Pharmacol. 2003. Vol. 47, N 1. P. 108–110.
- Nikseresht S., Hilton J.B.W., Kysenius K., et al. Copper-atsm as a treatment for ALS: support from mutant sod1 models and beyond // Life (Basel). 2020. Vol. 10, N 11. P. 271. doi: 10.3390/life10110271
- Noda Y., Asada M., Kubota M., et al. Copper enhances APP dimerization and promotes Abeta production // Neurosci Lett. 2013. Vol. 547. P. 10–15. doi: 10.1016/j.neulet.2013.04.057
- Nose Y., Kim B.E., Thiele D.J. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function // Cell Metab. 2006. Vol. 4, N 3. P. 235–244. doi: 10.1016/j.cmet.2006.08.009
- Nyvltova E., Dietz J.V., Seravalli J., et al. Coordination of metal center biogenesis in human cytochrome c oxidase // Nat Commun. 2022. Vol. 13, N 1. P. 3615. doi: 10.1038/s41467-022-31413-1
- O’Day S.J., Eggermont A.M.M., Chiarion-Sileni V., et al. Final results of phase III symmetry study: randomized, doubleblind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma // J Clin Oncol. 2013. Vol. 31, N 9. P. 1211–1218. doi: 10.1200/JCO.2012.44.5585
- Ojha R., Prasad A.N. Menkes disease: what a multidisciplinary approach can do // J Multidiscip Healthc. 2016. Vol. 9. P. 371–385. doi: 10.2147/JMDH.S93454
- Ohgami R.S., Campagna D.R., McDonald A., Fleming M.D. The Steap proteins are metalloreductases // Blood. 2006. Vol. 108, N 4. P. 1388–1394. doi: 10.1182/blood-2006-02-003681
- Okado-Matsumoto A., Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria // J Biol Chem. 2001. Vol. 276, N 42. P. 38388–38393. doi: 10.1074/jbc.M105395200
- Osawa T., Ohga N., Akiyama K., et al. Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis // Br J Cancer. 2013. Vol. 109, N 8. P. 2237–2247. doi: 10.1038/bjc.2013.535
- Palmgren M.G., Nissen P. P-type ATPases // Annu Rev Biophys. 2011. Vol. 40. p. 243–266. doi: 10.1146/annurev.biophys.093008.131331
- Pan Q., Bao L.W., Merajver S.D. Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade // Mol Cancer Res. 2003. Vol. 1, N 10. P. 701–706.
- Pan Q., Rosenthal D.T., Bao L., et al. Antiangiogenic tetrathiomolybdate protects against Her2/neu-induced breast carcinoma by hypoplastic remodeling of the mammary gland // Clin Cancer Res. 2009. Vol. 15, N 23. P. 7441–7446. doi: 10.1158/1078-0432.CCR-09-1361
- Pan Q., Kleer C.G., van Golen K.L., et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis // Cancer Res. 2002. Vol. 62, N 17. P. 4854–4859.
- Pamp K., Bramey T., Kirsch M., et al. NAD(H) enhances the Cu(II)-mediated inactivation of lactate dehydrogenase by increasing the accessibility of sulfhydryl groups // Free Radic Res. 2005. Vol. 39, N 1. P. 31–40. doi: 10.1080/10715760400023671
- Park W., Wei S., Kim B.S., et al. Diversity and complexity of cell death: a historical review // Exper Mol Med. 2023. Vol. 55, N 8. P. 1573–1594. doi: 10.1038/s12276-023-01078-x
- Patterson B.D., Foley P.F., Ueno H., et al. Class II malocclusion correction with Invisalign: Is it possible? // Am J Orthod Dentofacial Orthop. 2021. Vol. 159, N 1. P. e41–e48. doi: 10.1016/j.ajodo.2020.08.016
- Pavithra V., Sathisha T.G., Kasturi K., et al. Serum levels of metal ions in female patients with breast cancer // J Clin Diagn Res. 2015. Vol. 9, N 1. P. BC25–c27. doi: 10.7860/JCDR/2015/11627.5476
- Peng J., Wang P., Chen H., et al. Potential of copper and copper compounds for anticancer applications // Pharmaceutical (Basel). 2023. Vol. 16, N 2. P. 234. doi: 10.3390/ph16020234
- Poujois A., Woimant F. Wilson’s disease: a 2017 update // Clin Res Hepatol Gastroenterol. 2018. Vol. 42, N 6. P. 512–520. doi: 10.1016/j.clinre.2018.03.007
- Pratt A.J., Sin D., Merts G.E., et al. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes // Proc Natl Acad Sci. USA. 2014. Vol. 111, N 43. P. E4568–E4576. doi: 10.1073/pnas.1308531111
- Prohaska J.R., Geissler J., Brokate B., Broderius M. Copper, zinc-superoxide dismutase protein but not mRNA is lower in copper-deficient mice and mice lacking the copper chaperone for superoxide dismutase // Exp Biol Med. (Maywood). 2003. Vol. 228, N 8. P. 959–966. doi: 10.1177/153537020322800812
- Prohaska J.R. Role of copper transporters in copper homeostasis // Am J Clin Nutr. 2008. Vol. 88, N 3. P. 826S–829S. doi: 10.1093/ajcn/88.3.826S
- Prudovsky I., Bagala C., Tarantini F., et al. The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export // J Cell Biol. 2002. Vol. 158, N 2. P. 201–208. doi: 10.1083/jcb.200203084
- Przybylkowski A., Cromadzka G., Chabik G., et al. Liver cirrhosis in patients newly diagnosed with neurological phenotype of Wilson’s disease // Funct Neurol. 2014. Vol. 29, N 1. P. 23–29.
- Pufahl R.A., Singer C.P., Peariso K.L., et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1 // Science. 1997. Vol. 278, N 5339. P. 853–856. doi: 10.1126/science.278.5339.853
- Puig S., Thiele D.J. Molecular mechanisms of copper uptake and distribution // Curr Opin Chem Biol. 2002. Vol. 6, N 2. P. 171–180. doi: 10.1016/s1367-5931(02)00298-3
- Qiu L., Ding X., Zhang Z., Kang Y.J. Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1 // J Pharmacol Exp Ther. 2012. Vol. 342, N 2. P. 561–567. doi: 10.1124/jpet.112.194662
- Qin Z., Itoh S., Jeney V., et al. Essential role for the Menkes ATPase in activation of extracellular superoxide dismutase: implication for vascular oxidative stress // FASEB J. 2006. Vol. 20, N 2. P. 334–336. doi: 10.1096/fj.05-4564fje
- Ramos D., Mar D., Ishida M., et al. Mechanism of copper uptake from blood plasma ceruloplasmin by Mammalian cells // PLoS ONE. 2016. Vol. 11, N 3. P. e0149516. doi: 10.1371/journal.pone.0149516
- Raju K.S., Alessandri G., Ziche M., Gullino P.M. Ceruloplasmin, copper ions, and angiogenesis // J Natl Cancer Inst. 1982. Vol. 69, N 5. P. 1183–1188.
- Redman B.G., Esper P., Pan Q., et al. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer // Clin Cancer Res. 2003. Vol. 9, N 5. P. 1666–1672.
- Rezaei A., Khanamani Falahati-Pour S., Mohammadizadeh F., et al. Effect of a copper (II) complex on the induction of apoptosis in human hepatocellular carcinoma cells // Asian Pac J Cancer Prev. 2018. Vol. 19, N 10. P. 2877–2884. doi: 10.22034/APJCP.2018.19.10.2877
- Roberts B.R., Lim N.K.H., McAllum E.J., et al. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis // J Neurosci. 2014. Vol. 34, N 23. P. 8021–8031. doi: 10.1523/JNEUROSCI.4196-13.2014
- Rosen D.R., Siddique T., Patterson D., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis // Nature. 1993. Vol. 362, N 6415. P. 59–62. doi: 10.1038/362059a0
- Roos P.M., Vesterberg O., Syversen T., et al. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis // Biol Trace Elem Res. 2013. Vol. 151, N 2. P. 159–170. doi: 10.1007/s12011-012-9547-x
- Royce P.M., Camakaris J., Danks D.M. Reduced lysyl oxidase activity in skin fibroblasts from patients with Menkes’ syndrome // Biochem J. 1980. Vol. 192, N 2. P. 579–586. doi: 10.1042/bj1920579
- clinicaltrials.gov [Internet]. Treatment continuation study for patients with ALS/MND Who completed study CMD-2019-001. 2020. Режим доступа: https://ClinicalTrials.gov/show/NCT04313166 Дата обращения: 21.11.2024.
- Rowland E.A., Snowden C.K., Cristea I.M. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease // Curr Opin Chem Biol. 2018. Vol. 42:76–85. doi: 10.1016/j.cbpa.2017.11.003
- Russell K., Gillanders L.K., Orr D.W., Plank L.D. Dietary copper restriction in Wilson’s disease // Eur J Clin Nutr. 2018. Vol. 72, N 3. P. 326–331. doi: 10.1038/s41430-017-0002-0
- Saleh S.A.K., Adly H.M., Abdelkhaliq A.A., Nassir A.M. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients // Curr Urol. 2020. Vol. 14, N 1. P. 44–49. doi: 10.1159/000499261
- Sarkar B., Lingertat-Walsh K., Clarke J.T. Copper-histidine therapy for Menkes disease // J Pediatr. 1993. Vol. 123, N 5. P. 828–830. doi: 10.1016/s0022-3476(05)80870-4
- Scheinberg I.H., Sternlieb I. Wilson disease and idiopathic copper toxicosis // Am J Clin Nutr. 1996. Vol. 63, N 5. P. 842s–845s. doi: 10.1093/ajcn/63.5.842
- Schilsky M.L., Czlonkowska A., Zuin M., et al. Trientine tetrahydrochloride versus penicillamine for maintenance therapy in Wilson disease (CHELATE. P. a randomised, open-label, non-inferiority, phase 3 trial // Lancet Gastroenterol Hepatol. 2022. Vol. 7, N 12. P. 1092–1102. doi: 10.1016/S2468-1253(22)00270-9
- Schilsky M.L. Wilson disease: diagnosis, treatment, and follow-up // Clin Liver Dis. 2017. Vol. 21, N 4. P. 755–767. doi: 10.1016/j.cld.2017.06.011
- Schimmer A.D. Clioquinol - a novel copper-dependent and independent proteasome inhibitor // Curr Cancer Drug Targets. 2011. Vol. 11, N 3. P. 325–331. doi: 10.2174/156800911794519770
- Schuschke D.A., Saari J.T., Miller F.N. Leukocyte-endothelial adhesion is impaired in the cremaster muscle microcirculation of the copper-deficient rat // Immunol Lett. 2001. Vol. 76, N 2. P. 139–144. doi: 10.1016/S0165-2478 (01)00171-7
- Shanbhag V., Jasmer-McDonald K., Zhu S., et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis // Proc Natl Acad Sci USA. 2019. Vol. 116, N 14. P. 6836–6841. doi: 10.1073/pnas.1817473116
- Sharma K., Mittal D.K., Kesarwani R.C., et al. Diagnostic prognostic significance of serum and tissue trace elements in breast malignancy // Indian J Med Sci. 1994. Vol. 48, N 10. P. 227–232.
- Sheline C.T., Choi D.W. Cu2+ toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo // Ann Neurol. 2004. Vol. 55, N 5. P. 645–653. doi: 10.1002/ana.20047
- Shen F., Cori W.S., Li J.L., et al. The association between serum levels of selenium, copper, and magnesium with thyroid cancer: a meta-analysis // Biol Trace Elem Res. 2015. Vol. 167, N 2. P. 225–235. doi: 10.1007/s12011-015-0304-9
- Shim H., Harris Z.L. Genetic defects in copper metabolism // J Nutr. 2003. Vol. 133, N 5 Suppl 1. P. 1527S–1531S. doi: 10.1093/jn/133.5.1527S
- Shimada K., Reznik E., Stokes M.E., et al. Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells // Cell Chem Biol. 2018. Vol. 25, N 5. P. 585–594e587. doi: 10.1016/j.chembiol.2018.02.010
- Singh I., Sogare A.P., Coma M., et al. Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance // Proc Natl Acad Sci USA. 2013. Vol. 110, N 36. P. 14771–14776. doi: 10.1073/pnas.1302212110
- Sinha S., Taly A.B., Ravishankar S., et al. Wilson’s disease: cranial MRI observations and clinical correlation // Neuroradiology. 2006. Vol. 48, N 9. P. 613–621. doi: 10.1007/s00234-006-0101-4
- Skrott Z., Mistrik M., Andersen K.K., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4 // Nature. 2017. Vol. 552, N 7684. P. 194–199. doi: 10.1038/nature25016
- Smirnova J., Kabin E., Järving I., et al. Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. alpha-Lipoic acid as a potential anti-copper agent // Sci Rep. 2018. Vol. 8, N 1. P. 1463. doi: 10.1038/s41598-018-19873-2
- Solmonson A., DeBerardinis R.J. Lipoic acid metabolism and mitochondrial redox regulation // J Biol Chem. 2018. Vol. 293, N 20. P. 7522–7530. doi: 10.1074/jbc.TM117.000259
- Son M., Pattaparthi K., Kawamata H., et al. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology // Proc Natl Acad Sci USA. 2007. Vol. 104, N 14. P. 6072–6077. doi: 10.1073/pnas.0610923104
- Soon C.P.W., Donnelly P.S., Turner B.J., et al. Diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model // J Biol Chem. 2011. Vol. 286, N 51. P. 44035–44044. doi: 10.1074/jbc.M111.274407
- Sozeri E., Feist D., Ruder H., Scharer K. Proteinuria and other renal functions in Wilson’s disease // Pediatr Nephrol. 1997. Vol. 11, N 3. P. 307–311. doi: 10.1007/s004670050282
- Starkebaum G., Harlan J.M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine // J Clin Investig. 1986. Vol. 77, N 4. P. 1370–1376. doi: 10.1172/JCI112442
- Steinberg D. Low density lipoprotein oxidation and its pathobiological significance // J Biol Chem. 1997. Vol. 272, N 34. P. 20963–20966. doi: 10.1074/jbc.272.34.20963
- Stockwell B.R., Angeli J.P.F., Bayir H., et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease // Cell. 2017. Vol. 171, N 2. P. 273–285. doi: 10.1016/j.cell.2017.09.021
- Squitti R., Simonelli I., Ventriglia M., et al. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease // J Alzheimers Dis. 2014. Vol. 38, N 4. P. 809–822. doi: 10.3233/JAD-131247
- Squitti R., Lupoi D., Pasqualetti P., et al. Elevation of serum copper levels in Alzheimer’s disease // Neurology. 2002. Vol. 59, N 8. P. 1153–1161. doi: 10.1212/wnl.59.8.1153
- Sternlieb I., Quintana N., Volenberg I., Schilsky M.L. An array of mitochondrial alterations in the hepatocytes of Long–Evans Cinnamon rats // Hepatology. 1995. Vol. 22, N 6. P. 1782–1787.
- Streltsov V.A., Titmus S.J., Epa V.C., et al. The structure of the amyloid-beta peptide high-affinity copper II binding site in Alzheimer disease // Biophys J. 2008. Vol. 95, N 7. P. 3447–3456. doi: 10.1529/biophysj.108.134429
- Sturtz L.A., Diekert K., Jensen L.T., et al. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage // J Biol Chem. 2001. Vol. 276, N 41. P. 38084–38089. doi: 10.1074/jbc.M105296200
- Sturrock A., Leavitt B.R. The clinical and genetic features of Huntington disease // J Geriatr Psychiatry Neurol. 2010. Vol. 23, N 4. P. 243–259. doi: 10.1177/0891988710383573
- Swinnen B., Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis // Nat Rev Neurol. 2014. Vol. 10, N 11. P. 661–670. doi: 10.1038/nrneurol.2014.184
- Szauter K.M., Cao T., Boyd C.D., Csiszar K. Lysyl oxidase in development, aging and pathologies of the skin // Pathol Biol. (Paris). 2005. Vol. 53, N 7. P. 448–456. doi: 10.1016/j.patbio.2004.12.033
- Tafuri F., Ronchi D., Magri F., et al. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis // Front Cell Neurosci. 2015. Vol. 9. P. 336. doi: 10.3389/fncel.2015.00336
- Takahashi Y., Kako K., Kashiwabara S.I., et al. Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome C oxidase and embryonic development // Mol Cell Biol. 2002. Vol. 22, N 21. P. 7614–7621. doi: 10.1128/MCB.22.21.7614-7621.2002
- Tallaksen-Greene S.J., Janiszewska A., Benton K., et al. Evaluation of tetrathiomolybdate in the R6/2 model of Huntington disease // Neurosci Lett. 2009. Vol. 452, N 1. P. 60–62. doi: 10.1016/j.neulet.2009.01.040
- Tang X., Yan Z., Miao Y., et al. Copper in cancer: from limiting nutrient to therapeutic target // Front Oncology. 2023. Vol. 13. P. 1209156. doi: 10.3389/fonc2023.1209456
- Thiele D.J. Integrating trace element metabolism from the cell to the whole organism // J Nutr. 2003. Vol. 133, N 5 Suppl 1. P. 1579S–1580S. doi: 10.1093/jn/133.5.1579S
- Theophanides T., Anastassopoulou J. Copper and carcinogenesis // Crit Rev Oncol Hematol. 2002. Vol. 42, N 1. P. 57–64. doi: 10.1016/S1040-8428(02)00007-0
- Tiwari A., Liba A., Sohn S.H., et al. Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis // J Biol Chem. 2009. Vol. 284, N 40. P. 27746–27758. doi: 10.1074/jbc.M109.043729
- Tokuda E., Ono S.I., Ishige K., et al. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis // Exp Neurol. 2008. Vol. 213, N 1. P. 122–128. doi: 10.1016/j.expneurol.2008.05.011
- Tokuda E., Okawa E., Ono S. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis // J Neurochem. 2009. Vol. 111, N 1. P. 181–191. doi: 10.1111/j.1471-4159.2009.06310.x
- Tokuda E., Okawa E., Watanabe S., et al. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1s regardless of their copper-binding abilities // Neurobiol Dis. 2013. Vol. 54. P. 308–319. doi: 10.1016/j.nbd.2013.01.001
- Thrower J.S., Hoffman L., Rechsteiner M., Pickart C.M. Recognition of the polyubiquitin proteolytic signal // EMBO J. 2000. Vol. 19, N 1. P. 94–102. doi: 10.1093/emboj/19.1.94
- Tsang T., Posimo J.M., Gudiel A.A., et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma // Nat Cell Biol. 2020. Vol. 22, N 4. P. 412–424. doi: 10.1038/s41556-020-0481-4
- Tsvetkov P., Detappe A., Cai K., et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress // Nat Chem Biol. 2019. Vol. 15, N 7. P. 681–689. doi: 10.1038/s41589-019-0291-9
- Tsvetkov P.A., Coy S., Petrova B., et al. Copper induces cell death by targeting lipoylated TCA cycle proteins // Science. 2022. Vol. 375, N 6586. P. 1254–1261. doi: 10.1126/science.abf0529
- Turnlund J.R., Keyes W.R., Anderson H.L., Acord L.L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu // Am J Clin Nutr. 1989. Vol. 49, N 5. P. 870–878. doi: 10.1093/ajcn/49.5.870
- Tumer Z., Moller L.B. Menkes disease // Eur J Hum Genet. 2010. Vol. 18, N 5. P. 511–518. doi: 10.1038/ejhg.2009.187
- Turski M.L., Bredy D.S., Kim H.J., et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling // Mol Cell Biol. 2012. Vol. 32, N 7. P. 1284–1295. doi: 10.1128/MCB.05722-11
- Vallieres C., Holland S.L., Avery S.V. Mitochondrial ferredoxin determines vulnerability of cells to copper excess // Cell Chem Biol. 2017. Vol. 24, N 10. P. 1228–1237.e3. doi: 10.1016/j.chembiol.2017.08.005
- Viola-Rhenals M., Patel K.R., James-Santamaria L., et al. Recent advances in Antabuse (Disulfiram. P. the importance of its metal-binding ability to its anticancer activity // Curr Med Chem. 2018. Vol. 25, N 4. P. 506–524. doi: 10.2174/0929867324666171023161121
- Voli F., Vali E., Lerra L., et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion // Cancer Res. 2020. Vol. 80, N 19. P. 4129–4144. doi: 10.1158/0008-5472.CAN-20-0471
- Volker W., Unruh V., Dorszewski A., et al. Copper-induced inflammatory reactions of rat carotid arteries mimic restenosis/arteriosclerosis like neointima formation // Atherosclerosis. 1997. Vol. 130, N 1-2. P. 29–36. doi: 10.1016/s0021-9150(96)06039-x
- Voss K., Harris C., Ralle H., et al. Modulation of tau phosphorylation by environmental copper // Transl Neurodegener. 2014. Vol. 3, N 1. P. 24. doi: 10.1186/2047-9158-3-24
- Walshe J.M. Penicillamine, a new oral therapy for Wilson v;s disease // Am J Med. 1956. Vol. 21, N 4. P. 487–495. doi: 10.1016/0002-9343(56)90066-3
- Wang D., Tian Z., Zhang P., et al. The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease // Biomed Pharmacotherapy. 2023. Vol. 163. P. 4830. doi: 10.1016/j.biopha.2023.114830
- Wang Y., Li W., Patel S.S., et al. Blocking the formation of radiation-induced breast cancer stem cells // Oncotarget. 2014. Vol. 5, N 11. P. 3743–3755. doi: 10.18632/oncotarget.1992
- Wang Q., Sun J., Chen T., et al. Ferroptosis, pyroptosis, and cuproptosis in alzheimer’s disease // ACS Chem Neurosci. 2023. Vol. 14, N 19. P. 3564–3587. doi: 10.1021/acschemneuro.3c00343
- Wang Y., Zhang L., Zhou F. Cuproptosis: a new form of programmed cell death // Cell Mol Immunology. 2022. Vol. 19, N 8. P. 867–868. doi: 10.1038/s41423-022-00866-1
- Wang Z., Jin D., Zhou S., et al. Regulatory roles of copper metabolism and cuproptosis in human cancers // Front Oncol. 2023. Vol. 13. P. 1123420. doi: 10.3389/fonc.2023.1123420
- Wei H., Frei B., Beckman J.S., Zhang W.J. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo // Am J Physiol Heart Circ Physiol. 2011. Vol. 301, N 3. P. H712–H720. doi: 10.1152/ajpheart.01299.2010
- Wei H., Zhang W.J., McMillen T.S., et al. Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice // Atherosclerosis. 2012. Vol. 223, N 2. P. 306–313. doi: 10.1016/j.atherosclerosis.2012.06.013
- Wei H., Zhang W.J., Leboeuf R., Frei B. Copper induces and copper chelation by tetrathiomolybdate inhibits endothelial activation in vitro // Redox Rep. 2014. Vol. 19, N 1. P. 40–48. doi: 10.1179/1351000213Y.0000000070
- Weiss K.H., Thurik F., Gotthardt D.N., et al. Efficacy and safety of oral chelators in treatment of patients with Wilson disease // Clin Gastroenterol Hepatol. 2013. Vol. 11, N 8. P. 1028–1035. doi: 10.1016/j.cgh.2013.03.012
- Weiss K.H., Askari F.K., Czlonkowska A., et al. Bis-choline tetrathiomolybdate in patients with Wilson’s disease: an open-label, multicentre, phase 2 study // Lancet Gastroenterol Hepatol. 2017. Vol. 2, N 12. P. 869–876. doi: 10.1016/S2468-1253(17)30293-5
- Williams J.R., Trias E., Beiby P.R., et al. Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the CopperChaperone-for-SOD // Neurobiol Dis. 2016. Vol. 89. P. 1–9. doi: 10.1016/j.nbd.2016.01.020
- Wong W. Managed care considerations to improve health care utilization for patients with ALS // Am J Manag Care. 2023. Vol. 29, N 7S. P. S120–S126. doi: 10.37765/ajmc.2023.89388
- Wu L., Meng F., Dong L., et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC // Sci Rep. 2019. Vol. 9, N 1. P. 236. doi: 10.1038/s41598-018-35619-6
- Xie J., Yang Y., Gao Y., He J. Cuproptosis: mechanisms and links with cancer // Mol Cancer. 2023. Vol. 22, N 1. P. 46. doi: 10.1186/s12943-023-01732-y
- Xie Y., Hou W., Song X., et al. Ferroptosis: process and function // Cell Death Differ. 2016. Vol. 23, N 3. P. 369–379. doi: 10.1038/cdd.2015.158
- Xiao Y., Chen D.I., Zhang X., et al. Molecular study on copper-mediated tumor proteasome inhibition and cell death // Int J Oncol. 2010. Vol. 37, N 1. P. 81–87. doi: 10.3892/ijo_00000655
- Xu Y., Liu S.Y., Zeng L., et al. Enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy // Adv Mater. 2022. Vol. 34, N 43. P. e2204733, doi: 10.1002/adma.202204733
- Yadav D., Lee J.Y., Puranik N., et al. Modulating the ubiquitin–proteasome system: a therapeutic strategy for autoimmune diseases // Cell. 2022. Vol. 11, N 7. P. 1093. doi: 10.3390/cells11071093
- Yaman M., Kaya G., Simsek M. Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues // Int J Gynecol Cancer. 2007. Vol. 17, N 1. P. 220–228. doi: 10.1111/j.1525-1438.2006.00742.x
- Yan R., Xie E., Li Y., et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis // Cell Res. 2022. Vol. 32, N 7. P. 687–690. doi: 10.1038/s41422-022-00642-w
- Yan H.F., Zou T., Tuo QZ., et al. Ferroptosis: mechanisms and links with diseases // Signal Transduct Target Ther. 2021. Vol. 6, N 1. P. 49. doi: 10.1038/s41392-020-00428-9
- Yang H., Chen X., Li K., et al. Repurposing old drugs as new inhibitors of the ubiquitin–proteasome pathway for cancer treatment // Semin Cancer Biol. 2021. Vol. 68. P. 105–122. doi: 10.1016/j.semcancer.2019.12.013
- Yoshii J., Yoshiji H., Kuriyama S., et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells // Int J Cancer. 2001. Vol. 94, N 6. P. 768–773. doi: 10.1002/ijc.1537
- Yu Y., Jiang L., Wang H., et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis // Blood. 2020. Vol. 136, N 6. P. 726–739. doi: 10.1182/blood.2019002907
- Zhang H., Chen D., Ringler J., et al. Disulfiram treatment facilitates phosphoinositide 3-kinase inhibition in human breast cancer cells in vitro and in vivo // Cancer Res. 2010. Vol. 70, N 10. P. 3996–4004. doi: 10.1158/0008-5472.CAN-09-3752
- Zheng J., Conrad M. The metabolic underpinnings of ferroptosis // Cell Metab. 2020. Vol. 32, N 6. P. 920–937. doi: 10.1016/j.cmet.2020.10.011
- Zheng P., Zhou C., Lu L., et al. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy // J Exp Clin Cancer Res. 2022. Vol. 41. P. 271. doi: 10.1186/s13046-022-02485-0
- Zhuo X., Liu Z., Aishajiang R., et al. Recent progress of copper-based nanomaterials in tumor-targeted photothermal therapy/photodynamic therapy // Pharmaceutics. 2023. Vol. 15, N 9. P. 2293. doi: 10.3390/pharmaceutics15092293
Дополнительные файлы
