Молекулярные механизмы взаимодействия ферроптоза и купроптоза при ишемическом инсульте. Фармакологические перспективы предотвращения мозговых нарушений
- Авторы: Ващенко В.И.1, Сороколетова Е.Ф.1, Шабанов П.Д.1
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 16, № 1 (2025)
- Страницы: 43-60
- Раздел: Научные обзоры
- URL: https://journals.eco-vector.com/1606-8181/article/view/653994
- DOI: https://doi.org/10.17816/phbn653994
- ID: 653994
Цитировать
Полный текст



Аннотация
Ишемический инсульт является одним из наиболее тяжелых и распространенных неврологических расстройств, представляет значительную угрозу здоровью и продолжительности жизни пострадавших лиц. Ишемический инсульт, возникающий в результате нарушения кровотока, приводит к гипоксии и ишемии мозговой ткани, провоцируя каскад патофизиологических изменений, которые заметно усугубляют повреждение нейронов и могут даже привести к гибели этих клеток. В последние годы новые исследования все больше сосредотачиваются на новых механизмах гибели клеток, таких как ферроптоз и купроптоз. Все больше доказательств подтверждают независимую роль ферроптоза и купроптоза при ишемическом инсульте. Цель обзора — выяснение потенциальных механизмов перекрестной регуляции между ферроптозом и купроптозом, изучение их регуляторной роли при ишемическом инсульте. Подробно исследуеются внутриклеточные взаимодействия ферроптоза и купроптоза при ишемическом инсульте, акцентируя внимание на ключевых аспектах, в частности на фундаментальных функциях железа и меди, метаболические нарушения при ишемическом инсульте, перекрестные влияния и сигнальные пути. Результаты обобщения последних публикаций не только углубляют наше понимание патогенеза ишемического инсульта, но и позволяют предложить новые идеи и направления для будущих фармакологических вмешательств в лечении ишемического инсульта.
Ключевые слова
Полный текст

Об авторах
Владимир Иванович Ващенко
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: vladimir-vaschenko@yandex.ru
д-р биол. наук
Россия, Санкт-ПетербургЕлена Федоровна Сороколетова
Военно-медицинская академия им. С.М. Кирова
Email: helensoroc@yandex.ru
ORCID iD: 0000-0002-9645-3391
канд. биол. наук
Россия, Санкт-ПетербургПетр Дмитриевич Шабанов
Военно-медицинская академия им. С.М. Кирова
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
д-р мед. наук, профессор
Россия, Санкт-ПетербургСписок литературы
- Murphy SJ, Werring DJ. Stroke: causes and clinical features. Medicine (Abingdon). 2020;48(9):561–566. doi: 10.1016/j.mpmed.2020.06.002
- Piradov MA, Tanashyan MM, Maksimova My, editors. Stroke: modern technologies of diagnostics and treatment: a guide for doctors. 3rd ed. Moscow: MEDpress-inform, 2018. 360 p. (In Russ.)
- Morotti A, Poli L, Costa P. Acute stroke. Semin Neurol. 2019;39(1):61–72. EDN: WYTLTR doi: 10.1055/s-0038-1676992
- Lanas F, Seron P. Facing the stroke burden worldwide. Lancet Glob Health. 2021;9(3):e235–e236. EDN: ILUEGM doi: 10.1016/S2214-109X(20)30520-9
- Montaño A, Hanley DF, Hemphill III JC. Hemorrhagic stroke. Handb Clin Neurol. 2021;176:229–248. EDN: FNOUWS doi: 10.1016/B978-0-444-64034-5.00019-5
- Qin C, Yang S, Chu YH. et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):215. doi: 10.1038/s41392-022-01129-1
- Patil S, Rossi R, Jabrah D, et al. Detection, diagnosis and treatment of acute ischemic stroke: current and future perspectives. Front Med Tech. 2022;4:748949. EDN: UTZVUE doi: 10.3389/fmedt.2022.748949
- Zhang Q, Jia M, Wang Y, et al. Cell death mechanisms in cerebral ischemia–reperfusion injury. Neurochem Res. 2022;47(12):3525–3542. EDN: PCSSIB doi: 10.1007/s11064-022-03697-8
- Khoshnam SE, Winlow W, Farzaneh M, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–1186. EDN: AUZPFB doi: 10.1007/s10072-017-2938-1
- Krysko DV, Berghe TV, D’Herde K, et al. Apoptosis and necrosis: detection, discrimination and phagocytosis. Меthods. 2008;44(3):205–221. doi: 10.1016/j.ymeth.2007.12.001
- Li S, Huang Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol. 2022;24(1):1–12. EDN: TTXNGG doi: 10.1007/s12094-021-02669-8
- Vashchenko VI, Sorocoletova EF, Shabanov PD. Modern representations about signaling pathways and protective mechanisms of ferroptosis. A biological role of diffusion of death signals of ferroptotic cells. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(3):195–214. EDN: UGQWNU doi: 10.17816/RCF567780
- Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 2020;472(10):1415–1429. EDN: XJHZCG doi: 10.1007/s00424-020-02412-2
- Zhang G, Wang X, Rothermel BA. et al. The integrated stress response in ischemic diseases. Cell Death Different. 2022;29(4):750–757. EDN: WEYETP doi: 10.1038/s41418-021-00889-7
- Ghosh MK, Chakraborty D, Sarkar S. et al. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther. 2019;4:42. EDN: OYYTKR doi: 10.1038/s41392-019-0075-4
- Gao G, Li J, Zhang Y, Chang YZ. Cellular Iron metabolism and regulation. Adv Exp Med Biol. 2019;1173:21–32. doi: 10.1007/978-981-13-9589-5_2
- Nikolaev AA, Provatar NP, Kashirskaja EI. Ferroptosis in the pathogenesis of cerebral circulation disorders. Modern problems of science and education. 2022;(5):138. EDN: PWDCUJ doi: 10.17513/spno.32005
- Jin Y, Zhuang Y, Liu M, et al. Inhibiting ferroptosis: a novel approach for stroke therapeutics. Drug Discovery Today. 2021;26(4):916–930. EDN: AFCOOO doi: 10.1016/j.drudis.2020.12.020
- Vashchenko VI, Chuklovin AB, Shabanov PD. Copper-dependent cell death (cuproptosis): perspectives for pharmacological correction in human diseases. Psychopharmacology and biological narcology. 2024;15(4):287–324. (In Russ.) doi: 10.17816/phbn641854
- Chen X, Cai Q, Liang R, et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis. 2023;14(2):105. EDN: MYGGVJ doi: 10.1038/s41419-023-05639-w
- Mu Q, Chen L, Gao X, et al. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull. 2021;66(17):1806–1816. EDN: XUAFSF doi: 10.1016/j.scib.2021.02.010
- Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Sig Transduct Target Ther. 2022;7:378. EDN: ARLRHM doi: 10.1038/s41392-022-01229-y
- Chang CP, Wu KC, Lin CY, et al. Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci. 2021;28(1):70. EDN: YECATM doi: 10.1186/s12929-021-00766-y
- Tang H, Wen J, Qin T, et al. New insights into sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front Cell Neurosci. 2023;17:1228761. EDN: GKVGZT doi: 10.3389/fncel.2023.1228761
- Chen X, Kang R, Kroemer G, et al. Organelle-specific regulation of ferroptosis. Cell Death Differ. 2021;28(10):2843–2856. EDN: LVUICE doi: 10.1038/s41418-021-00859-z
- Zhang X, Gou YJ, Zhang Y. et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6(1):113. EDN: AOQFTI doi: 10.1038/s41420-020-00346-3
- Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the brain with iron. Antioxidants. 2021;10(1):61. EDN: AVNSRZ doi: 10.3390/antiox10010061.
- Hussain B, Fang C, Chang J. Blood–brain barrier breakdown: an emerging biomarker of cognitive impairment in normal aging and dementia. Front Neurosci. 2021;15:688090. EDN: MDZGKM doi: 10.3389/fnins.2021.688090
- Wu D, Chen Q, Chen X. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023;8(1):217. EDN: SDWRPN doi: 10.1038/s41392-023-01481-w
- Zhang Y, Lu Y, Jin L. Iron metabolism and ferroptosis in physiological and pathological pregnancy. Int J Mol Sci. 2022;23(16):9395. EDN: OTUZTP doi: 10.3390/ijms23169395
- Rolston RK, Perry G, Zhu X, et al. Iron: a pathological mediator of alzheimer disease? Agro Food Ind Hi-Tech. 2009;19(6):33–36.
- Chen X, Yu C, Kang R, et al. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226. EDN: BMGSHC doi: 10.3389/fcell.2020.590226
- Guo J, Tuo QZ, Lei P. Iron, ferroptosis, and ischemic stroke. J Neurochem. 2023;165(4):487–520. EDN: VTQPIR doi: 10.1111/jnc.15807
- Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2022;42(1):259–305. EDN: VZKYOB doi: 10.1002/med.21817
- Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukocyte Biol. 2010;87(5):779–789. EDN: MZOEHH doi: 10.1189/jlb.1109766
- Chung J, Wessling-Resnick M. Molecular mechanisms and regulation of iron transport. Crit Rev Clin Labor Sci. 2003;40(2):151–182. doi: 10.1080/713609332
- Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133–155. EDN: UZMQKR doi: 10.1038/s41580-023-00648-1
- Ri MH, Xing Y, Zuo HX, et al. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. Phytomedicine. 2023;116:154889. EDN: KITUYB doi: 10.1016/j.phymed.2023.154889
- Zhang L, Bai XY, Sun KY, et al. A new perspective in the treatment of ischemic stroke: ferroptosis. Neurochem Res. 2024;49(4):815–823. EDN: PTEHJX doi: 10.1007/s1064-023-04096-3
- Pei J, You X, Fu Q. Inflammation in the pathogenesis of ischemic stroke. Front Biosci (Landmark Ed). 2015;20(4):772–783. doi: 10.1155/2013/512978
- Fang S, Yu X, Ding H, et al. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochem Biophys Res Commun. 2018;503(1):297–303. doi: 10.1016/j.bbrc.2018.06.019
- Datta A, Sarmah D, Mounica L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Translat Stroke Res. 2020;11(6):1185–1202. EDN: HPVOBG doi: 10.1007/s12975-020-00806-z
- Yu Y, Yan Y, Niu F. et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Dis. 2021;7(1):193. EDN: HKYIZL doi: 10.1038/s41420-021-00579-w
- Chen Y, Guo X, Zeng Y, et al. Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci Rep. 2023;13(1):15515. EDN: IDHFAE doi: 10.1038/s41598-023-42760-4
- Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Long. 2019;2019:6175804. EDN: XGATVO doi: 10.1155/2019/6175804
- Wang J, Lv C, Wei X, Li F. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke. Brain Behav Immun Health. 2024;40:100837. EDN: UXWMZP doi: 10.1016/j.bbih.2024.100837
- Li R, Wilson KF, Cerione RA. Elucidation of an mTORC2-PKC-NRF2 pathway that sustains the ATF4 stress response and identification of Sirt5 as a key ATF4 effector. Cell Death Dis. 2022;8(1):357. EDN: PYSMGU doi: 10.1038/s41420-022-01156-5
- Cardona CJ, Montgomery MR. Iron regulatory proteins: players or pawns in ferroptosis and cancer? Front Mol Biosci. 2023;10:1229710. EDN: TECPZF doi: 10.3389/fmolb.2023.1229710
- Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023;14(3):205. EDN: PWSEPR doi: 10.1038/s41419-023-05716-0
- Chen G, Li L, Tao H. Bioinformatics identification of ferroptosis-related biomarkers and therapeutic compounds in ischemic stroke. Front Neurol. 2021;12:745240. EDN: LGGMXN doi: 10.3389/fneur.2021.745240
- Li J, Cao F, Yin HL. et al. Ferroptosis: past, present and futurе. Cell Death Discov. 2020;11(2):88. EDN: SWOOO doi: 10.1038/s41419-020-2298-2
- Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 2022;8(1):501. EDN: KZQHUZ doi: 10.1038/s41420-022-01297-7
- Wang H, Wang C, Li B, et al. Discovery of ML210-based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur J Med Chim. 2023;254:115343. EDN: UTTNOO doi: 10.1016/j.ejmech.2023.115343
- Tsoi B, Chen X, Gao C, et al. Neuroprotective effects and hepatorenal toxicity of Angong Niuhuang wan against ischemia–reperfusion brain injury in rats. Front Pharmacol. 2019;10:593. EDN: HFBGUC doi: 10.3389/fphar.2019.00593
- Wang GH, Lan R, Zhen XD, et al. An-Gong-Niu-Huang Wan protects against cerebral ischemia induced apoptosis in rats: up-regulation of Bcl-2 and down-regulation of Bax and caspase-3. J Ethnopharmacol. 2014;154(1):156–162. doi: 10.1016/j.jep.2014.03.057
- Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019(1):5080843. EDN: JJTBFV doi: 10.1155/2019/5080843
- Bai X, Zheng E, Tong L, et al. Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. J Ethnopharmacol. 2024;321:117438. EDN: CNPKAQ doi: 10.1016/j.jep.2023.117438
- Thomas SN, French D, Jannetto PJ, et al. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat Rev Methods Primers. 2022;2(1):96. doi: 10.1038/s43586-022-00175-x
- Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. EDN: GHZATL doi: 10.1016/j.jep.2023.116306
- Li Y, Du Y, Zhou Y, et al. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 2023;21(1):327. EDN: HHYNBN doi: 10.1186/s12964-023-012267-1
- Gu X, Jin B, Qi Z, et al. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep. 2021;11(1):13560. EDN: ANAHLP doi: 10.1038/s41598-021-92489-1
- Chen L, Chu C, Lu J, et al. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system. PLoS One. 2015;10(5):e0126492. EDN: UUJXXJ doi: 10.1371/journal.pone.0126492
- Saha S, Buttari B, Panieri E, et al. An overview of Nrf2 signaling pathway and its role in inflammation. Моlecules. 2020;25(22):5474. EDN: ZFPIYQ doi: 10.3390/molecules25225474
- Ма Т, Du J, Zhang Y. et al. GPX4-independent ferroptosis-a new strategy in disease’s therapy. Cell Death Dis. 2022;8(1):434. EDN: ROHCGR doi: 10.1038/s41420-022-01212-0
- Sun Y, Deng R, Zhang C. Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC–27. Mol Med Rep. 2020;22(4): 2826–2832. EDN: OKVKKD doi: 10.3892/mmr.2020.11376
- Yan R, Xie E, Li Y, et al. The structure of erastin-bound xCT–4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res. 2022;32(7):687–690. EDN: LYPSMV doi: 10.1038/s41422-022-00642-w
- Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr Res. 1996;39(6):1072–1077. doi: 10.1203/00006450-199606000-00023
- Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med. 2022;188:146–161. EDN: GETNDY doi: 10.1016/j.freeradbiomed.2022.06.00
- Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis. 2017;8(6):850-867. EDN: YEAPET doi: 10.14336/AD.2017.0829
- Chen H, Luo Y, Tsoi B, et al. Angong Niuhuang Wan reduces hemorrhagic transformation and mortality in ischemic stroke rats with delayed thrombolysis: involvement of peroxynitrite-mediated MMP-9 activation. Chin Med. 2022;17(1):51. EDN: CYVMUN doi: 10.1186/s13020-022-00595-7
- Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Rad Biol Med. 2020;152:175–185. EDN: EWMDQM doi: 10.1016/j.freeradbiomed.2020.02.02
- Yu Y, Yan Y, Niu F, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Dis. 2021;7(1):193. EDN: HKYIZL doi: 10.1038/s41420-021-00579-w
- Grubman A, White AR. Copper as a key regulator of cell signalling pathways. Expet Rev Mol Med. 2014;16:e11. EDN: FAIOIO doi: 10.1017/erm.2014.11
- Tannous C, Booz GW, Altara R, et al. Nicotinamide adenine dinucleotide: biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol. 2021;231(3):e13551. EDN: GLCZFI doi: 10.1111/apha.13551
- Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57. EDN: SPLBGN doi: 10.1016/j.pneurobio.2014.01.002
- Mandal T, Kar S, Maji S, et al. Structural and functional diversity among the members of CTR, the membrane copper transporter family. J Membr Biol. 2020;253(5):459–468. EDN: DLKAOB doi: 10.1007/s00232-020-00139-w
- An Y, Li S, Huang X, et al. The role of copper homeostasis in brain disease. Int J Mol Sci. 2022;23(22):13850. EDN: WLRSSJ doi: 10.3390/ijms232213850
- Borodinsky LN, Belgacem YH, Swapna I, et al. Dynamic regulation of neurotransmitter specification: relevance to nervous system homeostasis. Neuropharmacology. 2014;78:75–80. doi: 10.1016/j.neuropharm.2012.12.005
- Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81(18):3691–3707. EDN: SEEOCG doi: 10.1016/j.molcel.2021.08.018
- Rodrigo R, Fernandez-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698–714. EDN: RNXDHL doi: 10.2174/1871527311312050015
- Gudekar N, Shanbhag V, Wang Y. et al. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci Rep. 2020;10(1):7856. EDN: PEXQDC doi: 10.1038/s41598-020-64521-3
- Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy. Autophagy. 2023;19(8):2175–2195. EDN: EMHDES doi: 10.1080/15548627.2023.2200554
- Chang CJ, Brady DC. Capturing copper to inhibit inflammation. Nat Chem Biol. 2023;19(8):937–939. EDN: IPKCSQ doi: 10.1038/s41589-023-01383-6
- Tapiero H, Townsend DÁ, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacolther. 2003;57(9):386–398. EDN: XRRJLP doi: 10.1016/S0753-3322(03)00012-X
- Tsvеtkоv P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. EDN: LRZPSA doi: 10.1126/science.abf0529
- Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58–68. EDN: MATNOB doi: 10.1038/s41569-020-0431-7
- Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother. 2023;169:115839. EDN: ANSIIY doi: 10.1016/j.biopha.2023.115839
- Itoh S, Ozumi K, Kim HW, et al. Novel mechanism for regulation of extracellular SOD transcription and activity by copper: role of antioxidant-1. Free Rad Biol Меd. 2009;46(1):95–104. doi: 10.1016/j.freeradbiomed.2008.09.03
- Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75(2):199–212. doi: 10.1007/s11746-998-0032-9
- Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 2021;8:8711227. EDN: UUWEOU doi: 10.3389/fmolb.2021.711227
- Okita Y, Rcom-H’cheo-Gauthier AN, Goulding M. et al. Metallothionein, copper and alpha-synuclein in alpha-synucleinopathies. Front Neurosci. 2017;11:114. doi: 10.3389/fnins.2017.00114
- Lombardo MF, Panebianco S, Azzaro A, et al. Assessing copper-alternative products for the control of pre-and postharvest citrus Anthracnose. Plants (Basel). 2023;12(4):904. EDN: ZEAOQJ doi: 10.3390/plants12040904
- Deng H, Zhu S, Yang H, et al. The dysregulation of inflammatory pathways triggered by copper exposure. Biol Trace Elem Res. 2023;201(2):539–548. doi: 10.1007/s12011-022-03171-0
- Tatsumi Y, Kato A, Kato K, et al. The interactions between iron and copper in genetic iron overload syndromes and primary copper toxicoses in Japan. Gеpathol Rеs. 2018;48(9):679–691. EDN: VICAZV doi: 10.1111/hepr.13200
- Zhang M, Li W, Wang Y, et al. Association between the change of serum copper and ischemic stroke: a systematic review and meta-analysis. J Mol Neurosci. 2020;70(3):475–480. EDN: EAICUV doi: 10.1007/s12031-019-01441-6
- Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30(21):R1292–R1297. EDN: XEISCF doi: 10.1038/s41422-020-00441-1
- Khan H, Grewal AK, Singh TG. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion. 2022;66:54–66. EDN: TFJQQA doi: 10.1016/j.mito.2022.08.001
- Barton JC, Edwards CQ, Acton RT. HFE gene: structure, function, mutations, and associated iron abnormalities. Gene. 2015;574(2):179–192. EDN: VFTYLT doi: 10.1016/j.gene.2015.10.009
- Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med. 2020;75:100867. EDN: GLPYMG doi: 10.1016/j.mam.2020.100867
- Linz R, Lutsenko S. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins. Journal of bioenergetics and biomembranes. 2007;39(5–6):403–407. EDN: MGNNTT doi: 10.1007/s10863-007-9101-2
- Li N, Duan YH, Chen L, et al. Iron metabolism: an emerging therapeutic target underlying the anti-Alzheimer’s disease effect of ginseng. J Trace Elem Med Biol. 2023;79:127252. EDN: HBHLYZ doi: 10.1016/j.jtemb.2023.127252
- Li Y, Li M, Feng S, et al. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res. 2024;19(3):611–618. EDN: JQEVQK doi: 10.4103/1673-5374.380870
- Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018;1701:112–125. EDN: YKLPVJ doi: 10.1016/j.brainres.2018.09.012
- Park JY, Han S, Ka HI, et al. Silent mating-type information regulation 2 homolog 1 overexpression is an important strategy for the survival of adapted suspension tumor cells. Cancer Sci. 2019;110(9):2773–2782. doi: 10.1111/cas.14147
- Cao W, Dou Y, Li A. Resveratrol boosts cognitive function by targeting SIRT1. Neurochem Res. 2018;43(9):1705–1713. EDN: SNCKAF doi: 10.1007/s11064-018-2586-8
- Su G, Yang W, Wang S, et al. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochem Biophys Res Commun. 2021;561:33–39. EDN: XWBQBX doi: 10.1016/j.bbrc.2021.05.011
- Chao M, Min W, Li Zh, Boyi G. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein & Cell. 2024;15(9):642–660. doi: 10.1093/procel/pwae003
Дополнительные файлы
