Молекулярные механизмы взаимодействия ферроптоза и купроптоза при ишемическом инсульте. Фармакологические перспективы предотвращения мозговых нарушений

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Ишемический инсульт является одним из наиболее тяжелых и распространенных неврологических расстройств, представляет значительную угрозу здоровью и продолжительности жизни пострадавших лиц. Ишемический инсульт, возникающий в результате нарушения кровотока, приводит к гипоксии и ишемии мозговой ткани, провоцируя каскад патофизиологических изменений, которые заметно усугубляют повреждение нейронов и могут даже привести к гибели этих клеток. В последние годы новые исследования все больше сосредотачиваются на новых механизмах гибели клеток, таких как ферроптоз и купроптоз. Все больше доказательств подтверждают независимую роль ферроптоза и купроптоза при ишемическом инсульте. Цель обзора — выяснение потенциальных механизмов перекрестной регуляции между ферроптозом и купроптозом, изучение их регуляторной роли при ишемическом инсульте. Подробно исследуеются внутриклеточные взаимодействия ферроптоза и купроптоза при ишемическом инсульте, акцентируя внимание на ключевых аспектах, в частности на фундаментальных функциях железа и меди, метаболические нарушения при ишемическом инсульте, перекрестные влияния и сигнальные пути. Результаты обобщения последних публикаций не только углубляют наше понимание патогенеза ишемического инсульта, но и позволяют предложить новые идеи и направления для будущих фармакологических вмешательств в лечении ишемического инсульта.

Полный текст

Доступ закрыт

Об авторах

Владимир Иванович Ващенко

Военно-медицинская академия им. С.М. Кирова

Автор, ответственный за переписку.
Email: vladimir-vaschenko@yandex.ru

д-р биол. наук

Россия, Санкт-Петербург

Елена Федоровна Сороколетова

Военно-медицинская академия им. С.М. Кирова

Email: helensoroc@yandex.ru
ORCID iD: 0000-0002-9645-3391

канд. биол. наук

Россия, Санкт-Петербург

Петр Дмитриевич Шабанов

Военно-медицинская академия им. С.М. Кирова

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477

д-р мед. наук, профессор

Россия, Санкт-Петербург

Список литературы

  1. Murphy SJ, Werring DJ. Stroke: causes and clinical features. Medicine (Abingdon). 2020;48(9):561–566. doi: 10.1016/j.mpmed.2020.06.002
  2. Piradov MA, Tanashyan MM, Maksimova My, editors. Stroke: modern technologies of diagnostics and treatment: a guide for doctors. 3rd ed. Moscow: MEDpress-inform, 2018. 360 p. (In Russ.)
  3. Morotti A, Poli L, Costa P. Acute stroke. Semin Neurol. 2019;39(1):61–72. EDN: WYTLTR doi: 10.1055/s-0038-1676992
  4. Lanas F, Seron P. Facing the stroke burden worldwide. Lancet Glob Health. 2021;9(3):e235–e236. EDN: ILUEGM doi: 10.1016/S2214-109X(20)30520-9
  5. Montaño A, Hanley DF, Hemphill III JC. Hemorrhagic stroke. Handb Clin Neurol. 2021;176:229–248. EDN: FNOUWS doi: 10.1016/B978-0-444-64034-5.00019-5
  6. Qin C, Yang S, Chu YH. et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):215. doi: 10.1038/s41392-022-01129-1
  7. Patil S, Rossi R, Jabrah D, et al. Detection, diagnosis and treatment of acute ischemic stroke: current and future perspectives. Front Med Tech. 2022;4:748949. EDN: UTZVUE doi: 10.3389/fmedt.2022.748949
  8. Zhang Q, Jia M, Wang Y, et al. Cell death mechanisms in cerebral ischemia–reperfusion injury. Neurochem Res. 2022;47(12):3525–3542. EDN: PCSSIB doi: 10.1007/s11064-022-03697-8
  9. Khoshnam SE, Winlow W, Farzaneh M, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–1186. EDN: AUZPFB doi: 10.1007/s10072-017-2938-1
  10. Krysko DV, Berghe TV, D’Herde K, et al. Apoptosis and necrosis: detection, discrimination and phagocytosis. Меthods. 2008;44(3):205–221. doi: 10.1016/j.ymeth.2007.12.001
  11. Li S, Huang Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol. 2022;24(1):1–12. EDN: TTXNGG doi: 10.1007/s12094-021-02669-8
  12. Vashchenko VI, Sorocoletova EF, Shabanov PD. Modern representations about signaling pathways and protective mechanisms of ferroptosis. A biological role of diffusion of death signals of ferroptotic cells. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(3):195–214. EDN: UGQWNU doi: 10.17816/RCF567780
  13. Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 2020;472(10):1415–1429. EDN: XJHZCG doi: 10.1007/s00424-020-02412-2
  14. Zhang G, Wang X, Rothermel BA. et al. The integrated stress response in ischemic diseases. Cell Death Different. 2022;29(4):750–757. EDN: WEYETP doi: 10.1038/s41418-021-00889-7
  15. Ghosh MK, Chakraborty D, Sarkar S. et al. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther. 2019;4:42. EDN: OYYTKR doi: 10.1038/s41392-019-0075-4
  16. Gao G, Li J, Zhang Y, Chang YZ. Cellular Iron metabolism and regulation. Adv Exp Med Biol. 2019;1173:21–32. doi: 10.1007/978-981-13-9589-5_2
  17. Nikolaev AA, Provatar NP, Kashirskaja EI. Ferroptosis in the pathogenesis of cerebral circulation disorders. Modern problems of science and education. 2022;(5):138. EDN: PWDCUJ doi: 10.17513/spno.32005
  18. Jin Y, Zhuang Y, Liu M, et al. Inhibiting ferroptosis: a novel approach for stroke therapeutics. Drug Discovery Today. 2021;26(4):916–930. EDN: AFCOOO doi: 10.1016/j.drudis.2020.12.020
  19. Vashchenko VI, Chuklovin AB, Shabanov PD. Copper-dependent cell death (cuproptosis): perspectives for pharmacological correction in human diseases. Psychopharmacology and biological narcology. 2024;15(4):287–324. (In Russ.) doi: 10.17816/phbn641854
  20. Chen X, Cai Q, Liang R, et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis. 2023;14(2):105. EDN: MYGGVJ doi: 10.1038/s41419-023-05639-w
  21. Mu Q, Chen L, Gao X, et al. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull. 2021;66(17):1806–1816. EDN: XUAFSF doi: 10.1016/j.scib.2021.02.010
  22. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Sig Transduct Target Ther. 2022;7:378. EDN: ARLRHM doi: 10.1038/s41392-022-01229-y
  23. Chang CP, Wu KC, Lin CY, et al. Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci. 2021;28(1):70. EDN: YECATM doi: 10.1186/s12929-021-00766-y
  24. Tang H, Wen J, Qin T, et al. New insights into sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front Cell Neurosci. 2023;17:1228761. EDN: GKVGZT doi: 10.3389/fncel.2023.1228761
  25. Chen X, Kang R, Kroemer G, et al. Organelle-specific regulation of ferroptosis. Cell Death Differ. 2021;28(10):2843–2856. EDN: LVUICE doi: 10.1038/s41418-021-00859-z
  26. Zhang X, Gou YJ, Zhang Y. et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6(1):113. EDN: AOQFTI doi: 10.1038/s41420-020-00346-3
  27. Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the brain with iron. Antioxidants. 2021;10(1):61. EDN: AVNSRZ doi: 10.3390/antiox10010061.
  28. Hussain B, Fang C, Chang J. Blood–brain barrier breakdown: an emerging biomarker of cognitive impairment in normal aging and dementia. Front Neurosci. 2021;15:688090. EDN: MDZGKM doi: 10.3389/fnins.2021.688090
  29. Wu D, Chen Q, Chen X. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023;8(1):217. EDN: SDWRPN doi: 10.1038/s41392-023-01481-w
  30. Zhang Y, Lu Y, Jin L. Iron metabolism and ferroptosis in physiological and pathological pregnancy. Int J Mol Sci. 2022;23(16):9395. EDN: OTUZTP doi: 10.3390/ijms23169395
  31. Rolston RK, Perry G, Zhu X, et al. Iron: a pathological mediator of alzheimer disease? Agro Food Ind Hi-Tech. 2009;19(6):33–36.
  32. Chen X, Yu C, Kang R, et al. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226. EDN: BMGSHC doi: 10.3389/fcell.2020.590226
  33. Guo J, Tuo QZ, Lei P. Iron, ferroptosis, and ischemic stroke. J Neurochem. 2023;165(4):487–520. EDN: VTQPIR doi: 10.1111/jnc.15807
  34. Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2022;42(1):259–305. EDN: VZKYOB doi: 10.1002/med.21817
  35. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukocyte Biol. 2010;87(5):779–789. EDN: MZOEHH doi: 10.1189/jlb.1109766
  36. Chung J, Wessling-Resnick M. Molecular mechanisms and regulation of iron transport. Crit Rev Clin Labor Sci. 2003;40(2):151–182. doi: 10.1080/713609332
  37. Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133–155. EDN: UZMQKR doi: 10.1038/s41580-023-00648-1
  38. Ri MH, Xing Y, Zuo HX, et al. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. Phytomedicine. 2023;116:154889. EDN: KITUYB doi: 10.1016/j.phymed.2023.154889
  39. Zhang L, Bai XY, Sun KY, et al. A new perspective in the treatment of ischemic stroke: ferroptosis. Neurochem Res. 2024;49(4):815–823. EDN: PTEHJX doi: 10.1007/s1064-023-04096-3
  40. Pei J, You X, Fu Q. Inflammation in the pathogenesis of ischemic stroke. Front Biosci (Landmark Ed). 2015;20(4):772–783. doi: 10.1155/2013/512978
  41. Fang S, Yu X, Ding H, et al. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochem Biophys Res Commun. 2018;503(1):297–303. doi: 10.1016/j.bbrc.2018.06.019
  42. Datta A, Sarmah D, Mounica L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Translat Stroke Res. 2020;11(6):1185–1202. EDN: HPVOBG doi: 10.1007/s12975-020-00806-z
  43. Yu Y, Yan Y, Niu F. et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Dis. 2021;7(1):193. EDN: HKYIZL doi: 10.1038/s41420-021-00579-w
  44. Chen Y, Guo X, Zeng Y, et al. Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci Rep. 2023;13(1):15515. EDN: IDHFAE doi: 10.1038/s41598-023-42760-4
  45. Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Long. 2019;2019:6175804. EDN: XGATVO doi: 10.1155/2019/6175804
  46. Wang J, Lv C, Wei X, Li F. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke. Brain Behav Immun Health. 2024;40:100837. EDN: UXWMZP doi: 10.1016/j.bbih.2024.100837
  47. Li R, Wilson KF, Cerione RA. Elucidation of an mTORC2-PKC-NRF2 pathway that sustains the ATF4 stress response and identification of Sirt5 as a key ATF4 effector. Cell Death Dis. 2022;8(1):357. EDN: PYSMGU doi: 10.1038/s41420-022-01156-5
  48. Cardona CJ, Montgomery MR. Iron regulatory proteins: players or pawns in ferroptosis and cancer? Front Mol Biosci. 2023;10:1229710. EDN: TECPZF doi: 10.3389/fmolb.2023.1229710
  49. Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023;14(3):205. EDN: PWSEPR doi: 10.1038/s41419-023-05716-0
  50. Chen G, Li L, Tao H. Bioinformatics identification of ferroptosis-related biomarkers and therapeutic compounds in ischemic stroke. Front Neurol. 2021;12:745240. EDN: LGGMXN doi: 10.3389/fneur.2021.745240
  51. Li J, Cao F, Yin HL. et al. Ferroptosis: past, present and futurе. Cell Death Discov. 2020;11(2):88. EDN: SWOOO doi: 10.1038/s41419-020-2298-2
  52. Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 2022;8(1):501. EDN: KZQHUZ doi: 10.1038/s41420-022-01297-7
  53. Wang H, Wang C, Li B, et al. Discovery of ML210-based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur J Med Chim. 2023;254:115343. EDN: UTTNOO doi: 10.1016/j.ejmech.2023.115343
  54. Tsoi B, Chen X, Gao C, et al. Neuroprotective effects and hepatorenal toxicity of Angong Niuhuang wan against ischemia–reperfusion brain injury in rats. Front Pharmacol. 2019;10:593. EDN: HFBGUC doi: 10.3389/fphar.2019.00593
  55. Wang GH, Lan R, Zhen XD, et al. An-Gong-Niu-Huang Wan protects against cerebral ischemia induced apoptosis in rats: up-regulation of Bcl-2 and down-regulation of Bax and caspase-3. J Ethnopharmacol. 2014;154(1):156–162. doi: 10.1016/j.jep.2014.03.057
  56. Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019(1):5080843. EDN: JJTBFV doi: 10.1155/2019/5080843
  57. Bai X, Zheng E, Tong L, et al. Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. J Ethnopharmacol. 2024;321:117438. EDN: CNPKAQ doi: 10.1016/j.jep.2023.117438
  58. Thomas SN, French D, Jannetto PJ, et al. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat Rev Methods Primers. 2022;2(1):96. doi: 10.1038/s43586-022-00175-x
  59. Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. EDN: GHZATL doi: 10.1016/j.jep.2023.116306
  60. Li Y, Du Y, Zhou Y, et al. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 2023;21(1):327. EDN: HHYNBN doi: 10.1186/s12964-023-012267-1
  61. Gu X, Jin B, Qi Z, et al. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep. 2021;11(1):13560. EDN: ANAHLP doi: 10.1038/s41598-021-92489-1
  62. Chen L, Chu C, Lu J, et al. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system. PLoS One. 2015;10(5):e0126492. EDN: UUJXXJ doi: 10.1371/journal.pone.0126492
  63. Saha S, Buttari B, Panieri E, et al. An overview of Nrf2 signaling pathway and its role in inflammation. Моlecules. 2020;25(22):5474. EDN: ZFPIYQ doi: 10.3390/molecules25225474
  64. Ма Т, Du J, Zhang Y. et al. GPX4-independent ferroptosis-a new strategy in disease’s therapy. Cell Death Dis. 2022;8(1):434. EDN: ROHCGR doi: 10.1038/s41420-022-01212-0
  65. Sun Y, Deng R, Zhang C. Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC–27. Mol Med Rep. 2020;22(4): 2826–2832. EDN: OKVKKD doi: 10.3892/mmr.2020.11376
  66. Yan R, Xie E, Li Y, et al. The structure of erastin-bound xCT–4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res. 2022;32(7):687–690. EDN: LYPSMV doi: 10.1038/s41422-022-00642-w
  67. Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr Res. 1996;39(6):1072–1077. doi: 10.1203/00006450-199606000-00023
  68. Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med. 2022;188:146–161. EDN: GETNDY doi: 10.1016/j.freeradbiomed.2022.06.00
  69. Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis. 2017;8(6):850-867. EDN: YEAPET doi: 10.14336/AD.2017.0829
  70. Chen H, Luo Y, Tsoi B, et al. Angong Niuhuang Wan reduces hemorrhagic transformation and mortality in ischemic stroke rats with delayed thrombolysis: involvement of peroxynitrite-mediated MMP-9 activation. Chin Med. 2022;17(1):51. EDN: CYVMUN doi: 10.1186/s13020-022-00595-7
  71. Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Rad Biol Med. 2020;152:175–185. EDN: EWMDQM doi: 10.1016/j.freeradbiomed.2020.02.02
  72. Yu Y, Yan Y, Niu F, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Dis. 2021;7(1):193. EDN: HKYIZL doi: 10.1038/s41420-021-00579-w
  73. Grubman A, White AR. Copper as a key regulator of cell signalling pathways. Expet Rev Mol Med. 2014;16:e11. EDN: FAIOIO doi: 10.1017/erm.2014.11
  74. Tannous C, Booz GW, Altara R, et al. Nicotinamide adenine dinucleotide: biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol. 2021;231(3):e13551. EDN: GLCZFI doi: 10.1111/apha.13551
  75. Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57. EDN: SPLBGN doi: 10.1016/j.pneurobio.2014.01.002
  76. Mandal T, Kar S, Maji S, et al. Structural and functional diversity among the members of CTR, the membrane copper transporter family. J Membr Biol. 2020;253(5):459–468. EDN: DLKAOB doi: 10.1007/s00232-020-00139-w
  77. An Y, Li S, Huang X, et al. The role of copper homeostasis in brain disease. Int J Mol Sci. 2022;23(22):13850. EDN: WLRSSJ doi: 10.3390/ijms232213850
  78. Borodinsky LN, Belgacem YH, Swapna I, et al. Dynamic regulation of neurotransmitter specification: relevance to nervous system homeostasis. Neuropharmacology. 2014;78:75–80. doi: 10.1016/j.neuropharm.2012.12.005
  79. Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81(18):3691–3707. EDN: SEEOCG doi: 10.1016/j.molcel.2021.08.018
  80. Rodrigo R, Fernandez-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698–714. EDN: RNXDHL doi: 10.2174/1871527311312050015
  81. Gudekar N, Shanbhag V, Wang Y. et al. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci Rep. 2020;10(1):7856. EDN: PEXQDC doi: 10.1038/s41598-020-64521-3
  82. Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy. Autophagy. 2023;19(8):2175–2195. EDN: EMHDES doi: 10.1080/15548627.2023.2200554
  83. Chang CJ, Brady DC. Capturing copper to inhibit inflammation. Nat Chem Biol. 2023;19(8):937–939. EDN: IPKCSQ doi: 10.1038/s41589-023-01383-6
  84. Tapiero H, Townsend DÁ, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacolther. 2003;57(9):386–398. EDN: XRRJLP doi: 10.1016/S0753-3322(03)00012-X
  85. Tsvеtkоv P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. EDN: LRZPSA doi: 10.1126/science.abf0529
  86. Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58–68. EDN: MATNOB doi: 10.1038/s41569-020-0431-7
  87. Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother. 2023;169:115839. EDN: ANSIIY doi: 10.1016/j.biopha.2023.115839
  88. Itoh S, Ozumi K, Kim HW, et al. Novel mechanism for regulation of extracellular SOD transcription and activity by copper: role of antioxidant-1. Free Rad Biol Меd. 2009;46(1):95–104. doi: 10.1016/j.freeradbiomed.2008.09.03
  89. Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75(2):199–212. doi: 10.1007/s11746-998-0032-9
  90. Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 2021;8:8711227. EDN: UUWEOU doi: 10.3389/fmolb.2021.711227
  91. Okita Y, Rcom-H’cheo-Gauthier AN, Goulding M. et al. Metallothionein, copper and alpha-synuclein in alpha-synucleinopathies. Front Neurosci. 2017;11:114. doi: 10.3389/fnins.2017.00114
  92. Lombardo MF, Panebianco S, Azzaro A, et al. Assessing copper-alternative products for the control of pre-and postharvest citrus Anthracnose. Plants (Basel). 2023;12(4):904. EDN: ZEAOQJ doi: 10.3390/plants12040904
  93. Deng H, Zhu S, Yang H, et al. The dysregulation of inflammatory pathways triggered by copper exposure. Biol Trace Elem Res. 2023;201(2):539–548. doi: 10.1007/s12011-022-03171-0
  94. Tatsumi Y, Kato A, Kato K, et al. The interactions between iron and copper in genetic iron overload syndromes and primary copper toxicoses in Japan. Gеpathol Rеs. 2018;48(9):679–691. EDN: VICAZV doi: 10.1111/hepr.13200
  95. Zhang M, Li W, Wang Y, et al. Association between the change of serum copper and ischemic stroke: a systematic review and meta-analysis. J Mol Neurosci. 2020;70(3):475–480. EDN: EAICUV doi: 10.1007/s12031-019-01441-6
  96. Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30(21):R1292–R1297. EDN: XEISCF doi: 10.1038/s41422-020-00441-1
  97. Khan H, Grewal AK, Singh TG. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion. 2022;66:54–66. EDN: TFJQQA doi: 10.1016/j.mito.2022.08.001
  98. Barton JC, Edwards CQ, Acton RT. HFE gene: structure, function, mutations, and associated iron abnormalities. Gene. 2015;574(2):179–192. EDN: VFTYLT doi: 10.1016/j.gene.2015.10.009
  99. Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med. 2020;75:100867. EDN: GLPYMG doi: 10.1016/j.mam.2020.100867
  100. Linz R, Lutsenko S. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins. Journal of bioenergetics and biomembranes. 2007;39(5–6):403–407. EDN: MGNNTT doi: 10.1007/s10863-007-9101-2
  101. Li N, Duan YH, Chen L, et al. Iron metabolism: an emerging therapeutic target underlying the anti-Alzheimer’s disease effect of ginseng. J Trace Elem Med Biol. 2023;79:127252. EDN: HBHLYZ doi: 10.1016/j.jtemb.2023.127252
  102. Li Y, Li M, Feng S, et al. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res. 2024;19(3):611–618. EDN: JQEVQK doi: 10.4103/1673-5374.380870
  103. Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018;1701:112–125. EDN: YKLPVJ doi: 10.1016/j.brainres.2018.09.012
  104. Park JY, Han S, Ka HI, et al. Silent mating-type information regulation 2 homolog 1 overexpression is an important strategy for the survival of adapted suspension tumor cells. Cancer Sci. 2019;110(9):2773–2782. doi: 10.1111/cas.14147
  105. Cao W, Dou Y, Li A. Resveratrol boosts cognitive function by targeting SIRT1. Neurochem Res. 2018;43(9):1705–1713. EDN: SNCKAF doi: 10.1007/s11064-018-2586-8
  106. Su G, Yang W, Wang S, et al. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochem Biophys Res Commun. 2021;561:33–39. EDN: XWBQBX doi: 10.1016/j.bbrc.2021.05.011
  107. Chao M, Min W, Li Zh, Boyi G. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein & Cell. 2024;15(9):642–660. doi: 10.1093/procel/pwae003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Метаболические пути ферроптоза и их связь с регуляторными путями при ишемическом инсульте. © L. Zhang и соавт., 2024. Адаптировано из [39]. Распространяется на условиях лицензии CC-BY 4.0.

Скачать (256KB)
3. Рис. 2. Упрощенная схема взаимодействия механизмов ферроптоза и купроптоза: ПНЖК — полиненасыщенные жирные кислоты (PUFA); DLAT —дигидроамидацетилтрансфераза; LA — липоевая кислота; GSH — глутатион; FDX1 — ферредоксин 1; LIAS — липоат синтаза; PL-PUFA — фосфатидил полиненасыщенные жирные кислоты; GPX4 — глутатионпеорсидаза 4; p53, p21 — ядерные белки; ATP7A/B — транспортные АТФазы; VDAC — потенциал-зависимые анионные каналы. © Chao M., и соавт. 2024. Адаптировано из [107] с изменениями. Распространяется на условиях лицензии CC-BY 4.0.

Скачать (217KB)
4. Рис. 3. Химические формулы некоторых потенциальных корректоров ферроптора и купроптоза.

Скачать (151KB)

© Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 84654 от 01.02.2023 г