Innovative approaches to genome editing in the treatment of neurodegenerative diseases

Cover Page
  • Authors: Tereshchenko S.Y.1, Potupchik T.V.2, Evert L.S.1,3, Kovalchuk V.A.4, Filippova M.A.4, Magalova A.R.5
  • Affiliations:
    1. Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”
    2. Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation
    3. Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation, Medical Institute
    4. Federal State Budgetary Educational Institution of Higher Education “Yaroslavl State Medical University” of the Ministry of Health of the Russian Federation
    5. Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
  • Issue: Vol 22, No 6 (2024)
  • Pages: 29-39
  • Section: Reviews
  • URL: https://journals.eco-vector.com/1728-2918/article/view/677287
  • DOI: https://doi.org/10.29296/24999490-2024-06-04
  • ID: 677287

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of this review is to analyze current advances in the field of genome editing, their application for the modeling and treatment of neurodegenerative diseases, as well as to discuss current limitations and prospects for overcoming barriers in clinical practice.

Materials and methods. To achieve this goal, a systematic analysis of literature over the past nine years (2016–2024) was conducted in the databases CyberLeninka, eLibrary, PubMed, Cochrane Library, SAGE Premier, Springer and Wiley Journals.

The main provisions. Neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases remain a serious challenge for modern medicine, characterized by progressive loss of neurons and the lack of effective therapeutic methods capable of stopping or reversing the pathological process. In recent years, genome editing technologies, including CRISPR-Cas9, TALEN and ZFN, have opened up new horizons in the treatment of these diseases. However, their clinical application is associated with a number of limitations, including problems of delivering editing tools to cells of the central nervous system, the risk of non-target mutations, and ethical issues. In this regard, the improvement of genome editing methods is one of the key areas. Modern methods such as CRISPR-Cas9, basic and prime editing, as well as epigenomic and RNA editing, have demonstrated high potential for accurate correction of genetic defects and modification of pathogenetic processes. Improvements in delivery systems, including viral and non-viral methods, have made it possible to overcome barriers such as low permeability of the blood-brain barrier and increase the effectiveness of therapy.

Conclusion. In recent years, significant progress has been made in the development of methods aimed at improving the safety of genomic editing in the nervous system. Despite significant advances, genome editing technologies face a number of challenges, including the need to increase specificity, minimize non-targeted effects, improve editing in postmitotic neurons and develop long-term safety monitoring methods, as well as address ethical issues related to the clinical application of these technologies.

Full Text

Restricted Access

About the authors

Sergey Yuryevich Tereshchenko

Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”

Author for correspondence.
Email: legise@mail.ru
ORCID iD: 0000-0002-1605-7859

Head of the Clinical Department of Somatic and Mental Health of Children, Research Institute of Medical Problems of the North, Doctor of Medical Sciences, Professor

Russian Federation, Partizan Zheleznyak str., 3G, Krasnoyarsk, 660022

Tatyana Vitalievna Potupchik

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru
ORCID iD: 0000-0003-1133-4447

Associate Professor, Department of Pharmacology and Clinical Pharmacology with a postgraduate course,  Candidate of Medical Sciences

Russian Federation, Partizan Zheleznyak str., 1, Krasnoyarsk, 660022

Lydia Semenovna Evert

Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation, Medical Institute

Email: lidiya_evert@mail.ru
ORCID iD: 0000-0003-0665-7428

Chief Researcher of the Clinical Department of Somatic and Mental Health of Children, a separate unit – Research Institute of Medical Problems of the North, Professor of the Department of General Professional Disciplines, Medical Institute. Doctor of Medical Sciences.

Russian Federation, Partizan Zheleznyak str., 3G, Krasnoyarsk, 660022; Lenin Avenue, 90, Abakan, 655017

Vladimir Alekseevich Kovalchuk

Federal State Budgetary Educational Institution of Higher Education “Yaroslavl State Medical University” of the Ministry of Health of the Russian Federation

Email: ropegi47@gmail.com
ORCID iD: 0009-0005-5183-4499

6th year student

Russian Federation, Revolutsionnaya str., 5, Yaroslavl, Yaroslavl region, 150000

Maria Andreevna Filippova

Federal State Budgetary Educational Institution of Higher Education “Yaroslavl State Medical University” of the Ministry of Health of the Russian Federation

Email: mari.filippova.99@inbox.ru
ORCID iD: 0009-0008-3687-9404

6th year student

Russian Federation, Revolutsionnaya str., 5, Yaroslavl, Yaroslavl region, 150000

Aysun Renatovna Magalova

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: amagalova2001@mail.ru
ORCID iD: 0009-0007-0652-2212

6th year student

Russian Federation, Trubetskaya str., 8, build. 2, Moscow, 119048

References

  1. World Health Organization. Dementia. 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/dementia [Accessed 3 December 2024].
  2. Медведев С.П., Маланханова Т.Б., Валетдинова К.Р., Закиян С.М. Создание и исследование клеточных моделей наследственных нейродегенеративных заболеваний с помощью направленного редактирования геномов. Нейрохимия. 2021; 38 (4): 313–9. doi: 10.31857/S1027813321040075 [Medvedev S.P., Malanhanova T.B., Valetdinova K.R., Zakiyan S.M. Creation and research of cellular models of hereditary neurodegenerative diseases using directed genome editing. Neurochemistry. 2021; 38 (4): 313–9. doi: 10.31857/S1027813321040075 (In Russian)].
  3. Мельникова Е.В., Меркулов В.А., Меркулова О.В. Генная терапия нейродегенеративных заболеваний: достижения, разработки, проблемы внедрения в клиническую практику. БИОпрепараты. Профилактика, диагностика, лечение. 2023; 23 (2): 127–47. DOI: 1G.3G895/2221-996X-2023-433 [Melnikova E.V., Merkulov V.A., Merkulova O.V. Gene therapy of neurodegenerative diseases: achievements, developments, problems of implementation in clinical practice. Biologics. Prevention, diagnosis, treatment. 2023; 23 (2): 127–47. DOI: 1G.3G895/2221-996X-2023-433 (In Russian)].
  4. Ветчинова А.С., Федотова Е.Ю., Иллариошкин С.Н. Редактирование эпигенома при нейродегенеративных заболеваниях. Нейрохимия. 2021; 38 (4): 320–8. doi: 10.31857/S1027813321040086 [Vetchinova A.S., Fedotova E.Yu., Illarioshkin S.N. Epigenome editing in neurodegenerative diseases. Neurochemistry. 2021; 38 (4): 320–8. doi: 10.31857/S1027813321040086 (In Russian)].
  5. Колбин А.С., Гомон Ю.М. Перспективы применения системы CRISPR/Cas9 с позиции клинической фармакологии. Клиническая фармакология и терапия. 2024; 33 (2): 7–15. doi: 10.32756/0869-5490-2024-2-7-15. [Kolbin A.S., Gomon Yu.M. Prospects for the use of the CRISPR/Cas9 system from the perspective of clinical pharmacology. Clinical pharmacology and therapy. 2024; 33 (2): 7–15. doi: 10.32756/0869-5490-2024-2- 7-15. (In Russian)].
  6. Славянская Т.А., Сальникова С.В. Прецизионная медицина в онкологии: миф или реальность? Вестник российского государственного медицинского университета. 2019; 2: 5–15. doi: 10.24075/brsmu.2019.018 [Slavyanskaya T.A., Salnikova S.V. Precision medicine in oncology: myth or reality? Bulletin of the Russian State Medical University. 2019; 2: 5–15. doi: 10.24075/brsmu.2019.018 (In Russian)].
  7. Javed H., Tavi S.I.H., Ullah N., Ullah H., Murtaza G., Mushtaq G., Kamal M.A. CRISPR/Cas9 genome editing for neurodegenerative diseases. International Journal of Molecular Sciences. 2023; 24 (13): 10450. doi: 10.3390/ijms241310450
  8. Kaya E., Yilmaz S., Yilmaz E., Ozdemir O., Kaya B., Kocak N., Yanik, T. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Journal of Cellular Physiology. 2024; 239 (9): 5859–74. doi: 10.1002/jcp.31125
  9. Zhan T., Rindtorff N., Boutros M. Genome Editing Technology for the Study and Correction of Neurodegenerative Diseases. Trends in Molecular Medicine. 2021; 27 (10): 973–86. doi: 10.1016/j.molmed.2021.07.008
  10. Peng R., Lin G., Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. The FEBS J. 2016; 283 (7): 1218–31. doi: 10.1111/febs.13586
  11. Gao X., Tao Y., Lamas V., Huang M., Yeh W.H., Pan B., Hu Y.J. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018; 553 (7687): 217–21. doi: 10.1038/nature25164
  12. Guo R., Wan Y., Xu D., Cui L., Deng M., Zhang G., Jia R. et al. Generation and application of mouse-rat allodiploid embryonic stem cells. Cell. 2021; 184 (11): 2082–99.e15. doi: 10.1016/j.cell.2021.03.015
  13. Gao Z., Herrera-Carrillo E., Berkhout B. Improving the activity of high-fidelity Cas9 variants. Molecular Therapy - Nucleic Acids. 2022; 27: 27–36. doi: 10.1016/j.omtn.2021.11.003
  14. Dabrowska M., Juzwa W., Krzyzosiak W.J., Olejniczak M. Precise excision of the CAG tract from the huntingtin gene by Cas9 nickases. Frontiers in Neuroscience. 2018; 12: 75. doi: 10.3389/fnins.2018.00075
  15. Cappella M., Elouej S., Biferi M.G. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Journal of Clinical Medicine. 2022; 11 (2): 176. doi: 10.3390/jcm11020176
  16. Bhujbal S.P., Hah J.M. An Innovative Approach to Address Neurodegenerative Diseases through Kinase-Targeted Therapies: Potential for Designing Covalent Inhibitors. Pharmaceuticals (Basel). 2023; 16 (9): 1295. doi: 10.3390/ph16091295.
  17. Nojadeh J.N., Eryilmaz N.S.B., Ergüder B.I. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023; 22: 567–82. doi: 10.17179/excli2023-6155.
  18. Fischell J.M., Fishman P.S. A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Front Neurosci. 2021; 15: 747726. doi: 10.3389/fnins.2021.747726.
  19. Michelson N.J., Kadam S.D., Comi A.M., Thakor N.V. Microbubble drug conjugate and focused ultrasound blood brain barrier delivery of AAV-2 SIRT-3. J. of Controlled Release. 2022; 344: 11–22. doi: 10.1016/j.jconrel.2022.02.031
  20. Xu Y., Jiang Y., Zhang Y., Zhu X., Gao Y., Shi J. Shi, K. et al. Anchoring Microbubbles on Cerebrovascular Endothelium as a New Strategy Enabling Low-Energy Ultrasound-Assisted Delivery of Varisized Agents Across Blood-Brain Barrier. Advanced Science. 2023; 10 (31): 2303014. doi: 10.1002/advs.202303014
  21. Pant A., Sharma A., Gupta S., Mishra S., Sharma A., Sharma S., Sharma R.K. et al. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Pharmaceutics. 2023; 15 (4): 1087. doi: 10.3390/pharmaceutics15041087
  22. Suh S., Choi E.H., Raguram A., Liu D.R., Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci USA. 2022; 119 (39): e2210104119. doi: 10.1073/pnas.2210104119.
  23. Singh K., Bhushan B., Kumar S., Singh S., Macadangdang R.R., Pandey E., Varma A.K. et al. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther. 2024; 24 (5): 377–94. doi: 10.2174/0115665232279528240115075352.
  24. Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine. 2018; 24 (8): 1216–24. doi: 10.1038/s41591-018-0137-0
  25. Gao W., Xu J., Xu X., Jin S., Yu H., Wei Y. ComPE: A novel computational method to discover high-fidelity Cas9 variants with improved specificity. Briefings in Bioinformatics. 2022; 23 (5): bbac372. doi: 10.1093/bib/bbac372
  26. Anzalone A.V., Koblan L.W., Liu D.R. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. The CRISPR J. 2020; 3 (5): 315–29. doi: 10.1089/crispr.2020.0053
  27. Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. Journal of Biotechnology. 2020; 308: 1–9. doi: 10.1016/j.jbiotec.2019.11.010
  28. Zhu Y., Li C., Sun B., Gao T., Li X. Advances in utilizing the endogenous CRISPR-Cas system for genome editing of lactic acid bacteria. Sheng Wu Gong Cheng Xue Bao. 2022; 38 (7): 2322–34. doi: 10.13345/j.cjb.210458
  29. Kim M., Hwang Y., Lim S., Jang H.-K., Kim H.-O. Advances in Nanoparticles as Non-Viral Vectors for Efficient Delivery of CRISPR/Cas9. Pharmaceutics. 2024; 16 (9): 1197. doi: 10.3390/pharmaceutics16091197.
  30. Xie R., Wang Y., Burger J.C., Li D., Zhu M., Gong S. Non-viral approaches for gene therapy and therapeutic genome editing across the blood–brain barrier. Med X. 2023; 1 (1): 6. doi: 10.1007/s44258-023-00004-0.
  31. DeWeirdt P.C., Sanson K.R., Sangree A.K., Hegde M., Hanna R.E., Feeley M.N. , Griffith A.L. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol. 2021; 39 (1): 94–104. doi: 10.1038/s41587-020-0600-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russkiy Vrach Publishing House