Mechanisms of structural features in the cerebral cortex in models of premature aging of nervous tissue after bacterial lipopolysaccharide
- Authors: Venediktov A.A.1, Kuzmin E.A.1, Pokidova K.S.1, Oganesyan D.M.1, Stepanyan A.T.1, Boronikhina T.V.2, Piavchenko G.A.1, Kuznetsov S.L.1
-
Affiliations:
- Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- Moscow University for Industry and Finance “Synergy”
- Issue: Vol 22, No 5 (2024)
- Pages: 14-23
- Section: Reviews
- URL: https://journals.eco-vector.com/1728-2918/article/view/642374
- DOI: https://doi.org/10.29296/24999490-2024-05-02
- ID: 642374
Cite item
Abstract
Introduction. Many chemical compounds affect brain neurons differently than other cell populations. This is provided by the protective potential of the blood-brain barrier (BBB). One of the compounds capable of passing through the BBB is bacterial lipopolysaccharide (LPS). It can cause irreversible morphological changes in the neurons of the cerebral cortex.
The aim of the work is to study the mechanisms of neuronal damage and death.
Material and methods. More than 50 sources for 15 past years were analyzed at PubMed and Elibrary databases.
Results. Astrocytes recognize LPS due to toll-like receptors, and glial macrophages are also able to capture areas of the external bacterial membrane with LPS. However, variations in the dose of LPS, the method and frequency of its administration have different effects on the morphology of the cerebral cortex. In particular, it is relevant to study changes similar to those in aging and neurodegenerative processes.
Conclusion. The review examines the structural changes of neurons and glia in the use of LPS in adult animals. The authors conclude that repeated systemic administration of non-septic doses of LPS is most suitable for modeling aging-like changes, but it is necessary to develop a standardized model of such administration.
Keywords
Full Text

About the authors
Artem Andreevich Venediktov
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Author for correspondence.
Email: venediktov_a_a@staff.sechenov.ru
ORCID iD: 0000-0002-5604-0461
PhD student, Assistant Professor at Human Anatomy and Histology Department
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Egor Aleksandrovich Kuzmin
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: kuzmin.egor.msmu@yandex.ru
ORCID iD: 0000-0003-4098-1125
Research intern at Human Anatomy and Histology Department
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Ksenia Sergeevna Pokidova
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: pokidowa.ks@gmail.com
ORCID iD: 0009-0000-0323-7669
Student
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048David Mikhailovich Oganesyan
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: oganesyan_d_m@student.sechenov.ru
ORCID iD: 0009-0005-2537-8370
Student
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Arina Timofeevna Stepanyan
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: stepanyan_a_t@student.sechenov.ru
ORCID iD: 0009-0004-5771-4749
Student
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Tatiana Vladimirovna Boronikhina
Moscow University for Industry and Finance “Synergy”
Email: tvbor51@mail.ru
ORCID iD: 0000-0001-9532-7898
Professor at Biomedical Department, Doctor of medical sciences
Russian Federation, Meschanskaya str., 9/14, 2, Moscow, 129090Gennadii Aleksandrovich Piavchenko
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: gennadii.piavchenko@staff.sechenov.ru
ORCID iD: 0000-0001-7782-3468
Associate Professor at Human Anatomy and Histology Department
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Sergey Lvovich Kuznetsov
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: kuznetsov_s_l@staff.sechenov.ru
ORCID iD: 0000-0002-0704-1660
Professor at Human Anatomy and Histology Department, Corresponding member of RAS, Doctor of medical sciences, Professor
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048References
- Behfar Q., Ramirez Zuniga A., Martino-Adami P.V. Aging, Senescence, and Dementia. The J. of prevention of Alzheimer’s disease. 2022; 9 (3): 523–31. https://doi.org/10.14283/jpad.2022.42
- Gomez C.R. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience. 2021; 43 (5): 2515–32. https://doi.org/10.1007/s11357-021-00394-2
- Venediktov A.A., Bushueva O.Y., Kudryavtseva V.A., Kuzmin E.A., Moiseeva A.V., Baldycheva A., Meglinski I., Piavchenko G.A. Closest horizons of Hsp70 engagement to manage neurodegeneration. Frontiers in molecular neuroscience. 2023; 16: 1230436. https://doi.org/10.3389/fnmol.2023.1230436
- Kosyreva A.M, Sentyabreva A.V., Tsvetkov I.S., Makarova O.V. Alzheimer’s disease and inflammaging. Brain sciences. 2022; 12 (9): 1237. https://doi.org/10.3390/brainsci12091237
- Kamm G.B., Siemens J. Neuroscience: Detection of systemic inflammation by the brain. Current biology. 2022; 32 (13): 751–3. https://doi.org/10.1016/j.cub.2022.05.028
- Xin Y.Y., Wang J.X., Xu A.J. Electroacupuncture ameliorates neuroinflammation in animal models. Acupuncture in medicine: J. of the British Medical Acupuncture Society. 2022; 40 (5): 474–83. https://doi.org/10.1177/09645284221076515
- Lassmann H. Chronic relapsing experimental allergic encephalomyelitis: its value as an experimental model for multiple sclerosis. J. of neurology. 1983; 229 (4): 207–20. https://doi.org/10.1007/BF00313549
- Praet J., Guglielmetti C., Berneman Z., Van der Linden A., Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neuroscience and biobehavioral reviews. 2014; 47: 485–505. https://doi.org/10.1016/j.neubiorev.2014.10.004
- Seemann S., Zohles F., Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. Journal of biomedical science. 2017; 24 (1): 60. https://doi.org/10.1186/s12929-017-0370-8
- Da Silva A.A.F., Fiadeiro M.B., Bernardino L.I., Baltazar G.M.F., Cristóvão A.C.B. Lipopolysaccharide-induced animal models for neuroinflammation – An overview. Journal of neuroimmunology. 2024; 387: 578273. https://doi.org/10.1016/j.jneuroim.2023.578273
- Skrzypczak-Wiercioch A., Sałat K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules (Basel, Switzerland). 2022; 27 (17): 5481. https://doi.org/10.3390/molecules27175481
- Klein G., Lindner B., Brade H., Raina S. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. The J. of biological chemistry. 2011; 286 (50): 42787–807. https://doi.org/10.1074/jbc.M111.291799
- Gorman A., Golovanov A.P. Lipopolysaccharide Structure and the Phenomenon of Low Endotoxin Recovery. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik. 2022; 180: 289–307. https://doi.org/10.1016/j.ejpb.2022.10.006
- Avila-Calderón E.D., Ruiz-Palma M.D.S., Aguilera-Arreola M.G., Velázquez-Guadarrama N., Ruiz E.A., Gomez-Lunar Z., Witonsky S., Contreras-Rodriguez A. Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis. Frontiers in microbiology. 2021; 12: 557902. https://doi.org/10.3389/fmicb.2021.557902
- Schröder N.W., Schumann R.R. Non-LPS targets and actions of LPS binding protein (LBP). Journal of endotoxin research. 2005; 11 (4): 237–42. https://doi.org/10.1179/096805105X37420
- Ryu J.K., Kim S.J., Rah S.H., Kang J.I., Jung H.E., Lee D., Lee H.K., Lee J.O., Park B.S., Yoon T.Y., Kim H.M. Reconstruction of LPS Transfer Cascade Reveals Structural Determinants within LBP, CD14, and TLR4-MD2 for Efficient LPS Recognition and Transfer. Immunity. 2017; 46 (1): 38–50. https://doi.org/10.1016/j.immuni.2016.11.007
- Jagtap P., Prasad P., Pateria A., Deshmukh S.D., Gupta S. A Single Step in vitro Bioassay Mimicking TLR4-LPS Pathway and the Role of MD2 and CD14 Coreceptors. Frontiers in immunology. 2020; 11: 5. https://doi.org/10.3389/fimmu.2020.00005
- Mazgaeen L., Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. International J. of molecular sciences. 2020; 21 (2): 379. https://doi.org/10.3390/ijms21020379
- Adhikarla S.V., Jha N.K., Goswami V.K., Sharma A., Bhardwaj A., Dey A., Villa C., Kumar Y., Jha S.K. TLR-Mediated Signal Transduction and Neurodegenerative Disorders. Brain sciences. 2021; 11 (11): 1373. https://doi.org/10.3390/brainsci11111373
- Al-Khafaji A.B., Tohme S., Yazdani H.O., Miller D., Huang H., Tsung A. Superoxide induces Neutrophil Extracellular Trap Formation in a TLR-4 and NOX-dependent mechanism. Molecular medicine (Cambridge, Massachusetts). 2016; 22: 621–31. https://doi.org/10.2119/molmed.2016.00054
- Yoo J.Y., Cha D.R., Kim B., An E.J., Lee S.R., Cha J.J., Kang Y.S., Ghee J. Y., Han J.Y., Bae Y.S. LPS-Induced Acute Kidney Injury Is Mediated by Nox4-SH3YL1. Cell reports. 2020; 33 (3): 108245. https://doi.org/10.1016/j.celrep.2020.108245
- Wang B., Zeng H., Zuo X., Yang X., Wang X., He D., Yuan J. TLR4-Dependent DUOX2 Activation Triggered Oxidative Stress and Promoted HMGB1 Release in Dry Eye. Frontiers in medicine. 2022; 8: 781616. https://doi.org/10.3389/fmed.2021.781616
- Pfalzgraff A., Correa W., Heinbockel L., Schromm A.B., Lübow C., Gisch N., Martinez-de-Tejada G., Brandenburg K., Weindl G. LPS-neutralizing peptides reduce outer membrane vesicle-induced inflammatory responses. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2019; 1864 (10): 1503–13. https://doi.org/10.1016/j.bbalip.2019.05.018
- Yang R., Zhang X. A potential new pathway for heparin treatment of sepsis-induced lung injury: inhibition of pulmonary endothelial cell pyroptosis by blocking hMGB1-LPS-induced caspase-11 activation. Frontiers in cellular and infection microbiology. 2022; 12: 984835. https://doi.org/10.3389/fcimb.2022.984835
- Zamyatina A., Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Frontiers in immunology. 2020; 11: 585146. https://doi.org/10.3389/fimmu.2020.585146
- Gabarin R.S., Li M., Zimmel P.A., Marshall J.C., Li Y., Zhang H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J. of innate immunity. 2021; 13 (6): 323–32. https://doi.org/10.1159/000515740
- Wong M.L., Rettori V., al-Shekhlee A., Bongiorno P.B., Canteros G., McCann S.M., Gold P.W., Licinio J. Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nature medicine. 1996; 2 (5): 581–4. https://doi.org/10.1038/nm0596-581
- Mou Y., Du Y., Zhou L., Yue J., Hu X., Liu Y., Chen S., Lin X., Zhang G., Xiao H., Dong B. Gut Microbiota Interact with the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Frontiers in immunology. 2022; 13: 796288. https://doi.org/10.3389/fimmu.2022.796288
- Ineichen B.V., Okar S.V., Proulx S.T., Engelhardt B., Lassmann H., Reich D.S. Perivascular spaces and their role in neuroinflammation. Neuron. 2022; 110 (21): 3566–81. https://doi.org/10.1016/j.neuron.2022.10.024
- Hashioka S., Wu Z., Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer’s Disease. Current neuropharmacology. 2021; 19 (7): 908–24. https://doi.org/10.2174/1570159X18666201111104509
- Gasparotto J., Ribeiro C.T., da Rosa-Silva H.T., Bortolin R.C., Rabelo T.K., Peixoto D.O., Moreira J.C.F., Gelain D.P. Systemic Inflammation Changes the Site of RAGE Expression from Endothelial Cells to Neurons in Different Brain Areas. Molecular neurobiology. 2019; 56 (5): 3079–89. https://doi.org/10.1007/s12035-018-1291-6
- Diaz-Castro B., Bernstein A.M., Coppola G., Sofroniew M.V., Khakh B.S. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell reports. 2021; 36 (6): 109508. https://doi.org/10.1016/j.celrep.2021.109508
- Feldman R.A. Microglia orchestrate neuroinflammation. eLife. 2022; 11: e81890. https://doi.org/10.7554/eLife.81890
- Peng X., Luo Z., He S., Zhang L., Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Frontiers in cellular and infection microbiology. 2021; 11: 768108. https://doi.org/10.3389/fcimb.2021.768108
- Zhan X., Stamova B., Sharp F.R. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review. Frontiers in aging neuroscience. 2018; 10: 42. https://doi.org/10.3389/fnagi.2018.00042
- Galea I. The blood-brain barrier in systemic infection and inflammation. Cellular & molecular immunology. 2021; 18 (11): 2489–501. https://doi.org/10.1038/s41423-021-00757-x
- Gajewski M.P., Barger S.W. Design, synthesis, and characterization of novel system xC- transport inhibitors: inhibition of microglial glutamate release and neurotoxicity. Journal of neuroinflammation. 2023; 20 (1): 292. https://doi.org/10.1186/s12974-023-02972-x
- Yi Y.S. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology. 2017; 152 (2): 207–17. https://doi.org/10.1111/imm.12787
- Manouchehrian O., Ramos M., Bachiller S., Lundgaard I., Deierborg T. Acute systemic LPS-exposure impairs perivascular CSF distribution in mice. Journal of neuroinflammation. 2021; 18 (1): 34. https://doi.org/10.1186/s12974-021-02082-6
- Haileselassie B., Joshi A.U., Minhas P.S., Mukherjee R., Andreasson K.I., Mochly-Rosen D. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. Journal of neuroinflammation. 2020; 17 (1): 36. https://doi.org/10.1186/s12974-019-1689-8
- Banks W.A., Robinson S.M. Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain, behavior, and immunity. 2010; 24 (1): 102–9. https://doi.org/10.1016/j.bbi.2009.09.001
- Zhao J., Bi W., Xiao S., Lan X., Cheng X., Zhang J., Lu D., Wei W., Wang, Y., Li H., Fu Y., Zhu L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific reports. 2019; 9 (1): 5790. https://doi.org/10.1038/s41598-019-42286-8
- Дятлова А.С., Новикова Н.С., Юшков Б.Г., Корнева Е.А., Черешнев В.А. Гематоэнцефалический барьер в нейроиммунных взаимодействиях и патологических процессах. Вестник Российской академии наук. 2022. 92 (5): 590–9. https://doi.org/10.1134/S1019331622050100 [Dyatlova A.S., Novikova N.S., Yushkov B.G., Korneva E.A., Chereshnev V.A. The Blood-Brain Barrier in Neuroimmune Interactions and Pathological Processes. Herald of the Russian Academy of Sciences. 2022; 92 (5): 590–9. https://doi.org/10.1134/S1019331622050100]
- Adán Areán J.S., Vico T.A., Marchini T., Calabró V., Evelson P.A., Vanasco V., Alvarez S. Energy management and mitochondrial dynamics in cerebral cortex during endotoxemia. Archives of biochemistry and biophysics. 2021; 705: 108900. https://doi.org/10.1016/j.abb.2021.108900
- Munro D., Baldy C., Pamenter M.E., Treberg J.R. The exceptional longevity of the naked mole-rat may be explained by mitochondrial antioxidant defenses. Aging cell. 2019; 18 (3): e12916. https://doi.org/10.1111/acel.12916
- Dietrich J.B. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J. of neuroimmunology. 2002; 128 (1–2): 58–68. https://doi.org/10.1016/s0165-5728(02)00114-5
- Haruwaka K., Ikegami A., Tachibana Y., Ohno N., Konishi H., Hashimoto A., Matsumoto M., Kato, D., Ono R., Kiyama H., Moorhouse A.J., Nabekura J., Wake H. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nature communications. 2019; 10 (1): 5816. https://doi.org/10.1038/s41467-019-13812-z
- Пьявченко Г.А., Алексеев А.Г., Серегина Е.С., Стельмащук О.А., Жеребцов Е.А. Оценка токсического действия сукцината цинка на кору больших полушарий головного мозга крыс. Сеченовский вестник. 2019; 10 (2): 29–35. https://doi.org/10.26442/22187332.2019.2.29-35 [Piavchenko G.A., Alekseev A.G., Seryogina E.S., Stelmashchuk O.A., Zherebtsov Ye.A. Evaluation of the zinc succinate toxic effect on the cerebral cortex of rat. Sechenov Medical J. 2019; 10 (2): 29–35. https://doi.org/10.26442/22187332.2019.2.29-35]
- Clarke L.E., Liddelow S.A., Chakraborty C., Münch A.E., Heiman M., Barres B.A. Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115 (8): 1896–905. https://doi.org/10.1073/pnas.1800165115
- Qin L., Wu X., Block M.L., Liu Y., Breese G.R., Hong J.S., Knapp D.J., Crews F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007; 55 (5): 453–62. https://doi.org/10.1002/glia.20467
- Jeong H.K., Jou I., Joe E.H. Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Experimental & molecular medicine. 2010; 42 (12): 823–32. https://doi.org/10.3858/emm.2010.42.12.085
- Jung H., Lee D., You H., Lee M., Kim H., Cheong E., Um, J.W. LPS induces microglial activation and GABAergic synaptic deficits in the hippocampus accompanied by prolonged cognitive impairment. Scientific reports. 2023; 13 (1): 6547. https://doi.org/10.1038/s41598-023-32798-9
- Huang H.J., Chen Y.H., Liang K.C., Jheng Y.S., Jhao J.J., Su M.T., Lee-Chen G.J., Hsieh-Li H.M. Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PloS one. 2012; 7 (7): e39656. https://doi.org/10.1371/journal.pone.0039656
- Ryu K.Y., Lee H.J., Woo H., Kang R.J., Han K.M., Park H., Lee S.M., Lee J.Y., Jeong Y.J., Nam H.W., Nam Y., Hoe H.S. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J. of neuroinflammation. 2019; 16 (1): 190. https://doi.org/10.1186/s12974-019-1561-x
- Nam H.Y., Nam J.H., Yoon G., Lee J.Y., Nam Y., Kang H.J., Cho H.J., Kim J., Hoe H.S. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. Journal of neuroinflammation. 2018; 15 (1): 271. https://doi.org/10.1186/s12974-018-1308-0
- DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: the devil is in the details. Journal of neurochemistry. 2016; 139 (2): 136–53. https://doi.org/10.1111/jnc.13607
- Пьявченко Г.А., Венедиктов А.А., Кузьмин Е.А., Кузнецов С.Л. Морфофункциональные изменения у мышей после однократного введения высоких и низких доз Hsp70. Сеченовский вестник. 2023; 14 (4): 31–41. https://doi.org/10.47093/2218-7332.2023.918.13 [Piavchenko G.A., Venediktov A.A., Kuzmin E.A., Kuznetsov S.L. Morphofunctional features in mice treated by low and high Hsp70 doses. Sechenov Medical J. 2023; 14 (4): 31–41. https://doi.org/10.47093/2218-7332.2023.918.13]
- Стефанова Н.А., Корболина Е.Е., Ершов Н.И., Рогаев Е.И., Колосова Н.Г. Изменения транскриптома префронтальной коры мозга при развитии признаков болезни Альцгеймера у крыс OXYS. Вавиловский журнал генетики и селекции. 2015; 19 (4): 445–54. https://doi.org/10.118699/VJ15.059 [Stefanova N.A., Korbolina E.E., Ershov N.I., Rogaev Ye.I., Kolosova N.G. Changes in the transcriptome of the prefrontal cortex of OXYS rats as the signs of Alzheimer’s disease development. Vavilovskii Zhurnal Genetiki i Selektsii. Vavilov J. of genetics and Breeding. 2015; 19 (4): 445–54. https://doi.org/10.118699/VJ15.059].
Supplementary files
