Artificial intelligence in early diagnosis: integration of pre-nosological screening and personalized prevention of chronic non-communicable diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Chronic non-communicable diseases (NCDs) account for 75% of global mortality, while traditional treatment paradigm demonstrates inability to contain epidemiological burden. Artificial intelligence (AI) technologies combined with telemedicine enable healthcare transformation: from reactive treatment to proactive health management through personalized prevention. Russian school of pre-nosological diagnostics, focused on identifying pre-pathological states through assessment of body’s functional reserves, creates methodological foundation for personalized approach that can be significantly enhanced by modern machine learning methods.

Objective: to develop methodology for remote questionnaire-based screening of NCDs using AI with integration of holistic approach to pre-nosological diagnostics, providing generation of personalized prevention recommendations, and evaluate its effectiveness in young adults.

Material and methods. Study included 3,155 university students from St. Petersburg (mean age 19.6±1.5 years) from 83 regions of Russian Federation. AI-based technology for remote screening was developed using holistic approach. System verifies risk factors by five pathology profiles (cardiology, gastroenterology, pulmonology, endocrinology, oncology). Questionnaire contains 198 information requests. Decision rules system (1,098 rules) was applied. Systematic literature review in PubMed, Scopus, Web of Science, eLibrary for 2020–2025 was conducted; RCTs, systematic reviews, WHO and Food and Drug Administration regulatory documents, methodological guidelines were analyzed.

Results. Low NCD risk detected in 57.4%, moderate in 30.9%, high in 11.7% of examined individuals. Most frequent complaints related to endocrine (28.9%), digestive (21.8%), respiratory (21.1%), and cardiovascular systems (20.1%). More than 75% showed signs of polymorbidity. Statistical analysis confirmed significant consistency between system and physician assessments (p < 0.001). Cohen’s kappa showed substantial agreement for cardiology and pulmonology profiles, moderate for gastroenterology and endocrinology. System generates personalized recommendations considering age, gender, anthropometric data, harmful habits, and psychological state. Physician time savings reached 20%. User satisfaction – 96.6%, healthcare workers – 91.7%.

Conclusion. Developed methodology for remote questionnaire-based AI screening with holistic approach showed high effectiveness for early risk factor detection in young adults. Integration of Russian pre-nosological diagnostics experience through pathology profiles with modern machine learning technologies creates conditions for transition to personalized prevention focused on correction of body’s functional reserves. System demonstrates significant social and economic effectiveness.

Full Text

Restricted Access

About the authors

Pavel Vasilyevich Seliverstov

Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: seliverstovpv@yandex.ru
ORCID iD: 0000-0001-5623-4226
SPIN-code: 6166-7005

Associate Professor of the 2nd Department (advanced medical therapy), Responsible for Coordinating Scientific Work at the Department, Associate Professor

Russian Federation, Lebedeva St., 6, Saint-Petersburg, 194044

Valentin Viktorovich Shapovalov

Peter the Great Saint-Petersburg Polytechnic University

Email: valshapovalov@mail.ru
ORCID iD: 0000-0002-9764-4018
SPIN-code: 7996-2771

Professor, Institute of Biomedical Systems and Biotechnology, Doctor of Technical Sciences, Professor

Russian Federation, Saint-Petersburg, Politechnicheskaya str., 29, 194064

Yurii Alekseevich Kravchuk

Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation

Email: kravchuk2003@mail.ru
ORCID iD: 0000-0001-8347-0531
SPIN-code: 6767-5189

Professor of the 2nd Department (Therapy for Advanced Medical Studies), Doctor of Medical Sciences, Professor

Russian Federation, Lebedeva St., 6, Saint-Petersburg, 194044

Svetlana Petrovna Salikova

Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation

Email: salikova.1966@bk.ru
ORCID iD: 0000-0003-4839-9578
SPIN-code: 2012-8481

Professor of the 2nd Department (Therapy for Advanced Medical Studies), Doctor of Medical Sciences, Professor

Russian Federation, Lebedeva St., 6, Saint-Petersburg, 194044

Sergey Sergeevich Kupov

LLC Oncology Clinic, Scientific and Practical Center for Supportive Cancer Therapy, Integrative and Immuno-Oncology “Onco Rehab”

Email: kupov@onco.rehab.ru
ORCID iD: 0009-0009-8696-9579

Oncologist, Chief Physician, LLC Oncology Clinic, Scientific and Practical Center for Supportive Cancer Therapy, Candidate of Medical Sciences

Russian Federation, Stadionnaya St., 2, Orekhovo-Zuyevo, Moscow Region, 142603

Tatiana Nikolaevna Seliverstova

S.N. Fedorov NMRC “MNTK “Eye Microsurgery”

Email: tanyaseliverstova@yandex.ru
ORCID iD: 0009-0000-7497-3575

Ophthalmologist, Consultative and Diagnostic Department

Russian Federation, Yaroslav Hashek str., 21, Saint-Petersburg, 192283, Russian Federation

Evgeniya Andreevna Zadorozhnaya

Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University)

Email: zadorojnaya2001@mail.ru
ORCID iD: 0000-0001-8916-4164

6th year Student

Russian Federation, Miklukho-Maklaya St., 6, 117198, Moscow

Nadezhda Mevludievna Mikeladze

FSAEI HE I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: imikeladze2.06@gmail.com
ORCID iD: 0009-0002-9147-7893

6th year Student

Russian Federation, Trubetskaya st., 8, build. 2, Moscow, 119991

Ksenia Valentinovna Kormschikova

FSBEI HE “Russian University of Medicine” of the Ministry of Health of the Russian Federation

Email: ksenikor@list.ru
ORCID iD: 0009-0009-1463-0023

6th year Student

Russian Federation, Dolgorukovskaya St., 4, Moscow, 127006

References

  1. World Health Organization. Noncommunicable diseases. Geneva: WHO, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
  2. World Health Organization. Global health estimates 2021: deaths by cause, age, sex, by country and by region, 2000–2021. Geneva: WHO, 2023.
  3. Селивёрстов П.В., Безручко Д.С., Васин А.В. и др. Телемедицинский дистанционный многопрофильный анкетный скрининг как инструмент раннего выявления хронических неинфекционных заболеваний. Медицинский совет. 2023; 17 (6): 311–21. DOI https://doi.org/10.21518/ms2023-070. [Seliverstov P.V., Bezruchko D.S., Vasin A.V. et al. Telemedicine remote multidisciplinary questionnaire screening as a tool for early detection of chronic non-communicable diseases. Meditsinskiy sovet = Medical Council. 2023; 17 (6): 311–21. https://doi.org/10.21518/ms2023-070 (in Russian)]
  4. GBD 2021 Diseases and Injuries Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024; 403 (10440): 2100–32. doi: 10.1016/S0140-6736(24)00367-2
  5. Ткаченко Е.И., Гриневич В.Б., Селивёрстов П.В. Болезнь (синдром) психосоматической дезадаптации. Врач. 2025; 7: 81–4. https://doi.org/10.29296/25877305-2025-07-14. [Tkachenko E.I., Grinevich V.B., Seliverstov P.V. The disease (syndrome) of psychosomatic maladaptation. Vrach. 2025; 7: 81–4. https://doi.org/10.29296/25877305-2025-07-14 (in Russian)]
  6. World Health Organization. Medication without harm: WHO’s third global patient safety challenge. Geneva: WHO; 2017.
  7. World Health Organization. Medication Without Harm Initiative. Geneva: WHO; 2023. Available from: https://www.who.int/initiatives/medication-without-harm
  8. Khezrian M., McNeil C.J., Murray A.D., Myint P.K. An overview of prevalence, determinants and health outcomes of polypharmacy. Ther Adv Drug Saf. 2020; 11: 2042098620933741. doi: 10.1177/2042098620933741
  9. Улумбекова Г.Э. Здравоохранение России: проблемы и решения. Вестник Росздравнадзора. 2010; 5: 12–20. [Ulumbekova G.E. Healthcare in Russia: problems and solutions. Vestnik Roszdravnadzora. 2010; 5: 12–20 (in Russian)]
  10. Селивёрстов П.В., Крюков Е.В., Гриневич В.Б. Практическая реализация технологий искусственного интеллекта при проведении профилактического медицинского осмотра. Медицинский Совет. 2025; 19 (13): 282–8. https://doi.org/10.21518/ms2025-322. [Seliverstov P.V., Kryukov E.V., Grinevich V.B. Practical implementation of artificial intelligence technologies during preventive medical examination. Meditsinskiy sovet = Medical Council. 2025; 19 (13): 282–8. https://doi.org/10.21518/ms2025-322 (in Russian)]
  11. Баевский Р.М., Берсенева А.П. Введение в донозологическую диагностику. М.: Слово, 2008; 220. [Baevsky R.M., Berseneva A.P. Introduction to pre-nosological diagnostics. Moscow: Slovo, 2008; 220 (in Russian)]
  12. Баевский Р.М. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации). Вестник аритмологии. 2001; 24: 65–87. [Baevsky R.M. Analysis of heart rate variability using various electrocardiographic systems (methodological recommendations). Vestnik Aritmologii. 2001; 24: 65–87 (in Russian)]
  13. Гриневич В.Б., Губонина И.В., Ткаченко Е.И. и др. Концепция системной диагностики и коррекции функциональных расстройств. Вестник Санкт-Петербургской медицинской академии последипломного образования. 2009; 1 (1): 15–25. [Grinevich V.B., Gubonina I.V., Tkachenko E.I., et al. The concept of systemic diagnosis and correction of functional disorders. Vestnik Sankt-Peterburgskoy meditsinskoy akademii poslediplomnogo obrazovaniya. 2009; 1 (1): 15–25 (in Russian)].
  14. Степаненко Д.А., Павлов В.И., Козлова Н.М. Методология создания индивидуальной модели здоровья человека с использованием искусственного интеллекта. Байкальский медицинский журнал. 2024; 3 (1): 28–37. https://doi.org/10.57256/2949-0715-2024-3-1-28-37. Stepanenko D.A., Pavlov V.I., Kozlova N.M. Methodology of creating an individual human health model using artificial intelligence. Baikal Medical J. 2024; 3 (1): 28–37. https://doi.org/10.57256/2949-0715-2024-3-1-28-37 (in Russian)]
  15. Селивёрстов П.В., Бакаева С.Р., Шаповалов В.В., Алешко О.В. Телемедицинские технологии: от теории к практике. Медицинский совет. 2022; 16 (23): 366–72. DOI https://doi.org/10.21518/2079-701X-2022-16-23-366-372. [Seliverstov P.V., Bakaeva S.R., Shapovalov V.V., Aleshko O.V. Telemedical technologies: from theory to practice. Meditsinskiy sovet = Medical Council. 2022; 16 (23): 366–72. https://doi.org/10.21518/2079-701X-2022-16-23-366-372 (in Russian)]
  16. Chen J., Wu L., Zhang J. et al. Machine learning and multi-omics integration: advancing cardiovascular translational research and clinical practice. J. Transl Med. 2025; 23 (1): 45. doi: 10.1186/s12967-025-06425-2
  17. Ahola-Olli A.V., Mustelin L., Kalimeri M. et al. Metabolome-wide association study on metabolic risk scores for type 2 diabetes in a diverse population. Nat Commun. 2024; 15 (1): 3291. doi: 10.1038/s41467-024-47627-8
  18. Chi Y., Chen L., Hu Q. et al. Artificial intelligence in metabolomics: a current review. Trends Biotechnol. 2024; 42 (11): 1410–29. doi: 10.1016/j.tibtech.2024.05.006
  19. Rajkomar A., Dean J., Kohane I. Machine learning in medicine. N. Engl. J. Med. 2019; 380 (14): 1347–58. doi: 10.1056/NEJMra1814259
  20. Ting D.S.W., Cheung G.C.M., Wong T.Y. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin. Exp. Ophthalmol. 2016; 44 (4): 260–77. doi: 10.1111/ceo.12696
  21. U.S. Food and Drug Administration. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. FDA News Release. 2018.
  22. Khan Z., Alshahrani M., Alodhayb A. et al. Diagnostic accuracy of IDX-DR for detecting diabetic retinopathy: a systematic review and meta-analysis. Am. J. Ophthalmol. 2025; 273: 192–204. doi: 10.1016/j.ajo.2025.02.022
  23. Kowalski M., Pachade S., Ramtohul P. et al. Accuracy of autonomous artificial intelligence-based diabetic retinopathy screening in real-life clinical practice. Diagnostics. 2024; 14 (16): 1822. doi: 10.3390/diagnostics14161822
  24. Bellemo V., Lim G., Rim T.H. et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application. Curr Diab Rep. 2019; 19 (9): 72. doi: 10.1007/s11892-019-1189-3
  25. Wolf R.M., Channa R., Abramoff M.D., Lehmann H.P. Cost-effectiveness of autonomous point-of-care diabetic retinopathy screening for pediatric patients with diabetes. JAMA Ophthalmol. 2020; 138 (10): 1063–9. doi: 10.1001/jamaophthalmol.2020.3190
  26. Lång K., Josefsson V., Larsson A.M. et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 2023; 24 (8): 936–44. doi: 10.1016/S1470-2045(23)00298-X
  27. Dembrower K., Wåhlin E., Liu Y. et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health. 2020; 2 (9): 468–74. doi: 10.1016/S2589-7500(20)30185-0
  28. Rodriguez-Ruiz A., Lång K., Gubern-Merida A. et al. Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J. Natl Cancer Inst. 2019; 111 (9): 916–22. doi: 10.1093/jnci/djy222
  29. Marinovich M.L., Wylie E., Lotter W. et al. Artificial intelligence (AI) augmentation of radiologist performance in breast cancer screening: a real-world implementation study. Eur Radiol. 2023; 33 (10): 6784–93. doi: 10.1007/s00330-023-09684-2
  30. Health Technology Wales. Artificial intelligence for analysing digital images in breast cancer screening. Cardiff: Health Technology Wales; 2024. HTW Guidance Report 008.
  31. Shapovalov V., Seliverstov P. «Smart» in-house mammograph for breast cancer screening. Archiv EuroMedica. 2022; 12 (4). doi: 10.35630/2199-885x/2022/12/4.9. EDN FCVMZX.
  32. Ming D.K., Sangkaew S., Chanh H.Q. et al. Continuous digital health monitoring and predictive modeling in dengue: a proof of concept. BMC Med. 2024; 22 (1): 123. doi: 10.1186/s12916-024-03341-7
  33. Goff D.C.Jr, Lloyd-Jones D.M., Bennett G. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129 (25 Suppl 2): 49–73. doi: 10.1161/01.cir.0000437741.48606.98
  34. Shin S., Austin P.C., Ross H.J. et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail. 2021; 8 (1): 106–15. doi: 10.1002/ehf2.13073
  35. Budzyń K., Romanczyk M., Kitala D. et al. Endoscopist deskilling risk after exposure to artificial intelligence in colonoscopy: a multicentre, observational study. Lancet Gastroenterol Hepatol. 2025; 10 (2): 146–54. doi: 10.1016/S2468-1253(25)00133-5
  36. Ladabaum U., Dominitz J.A., Kahi C., Schoen R.E. Strategies for colorectal cancer screening. Gastroenterology. 2020; 158 (2): 418–32. doi: 10.1053/j.gastro.2019.06.043
  37. Селивёрстов П.В., Шаповалов В.В., Кравчук Ю.А., Саликова С.П., Шаваева Ф.В., Исаева П.А., Салманова М.М., Арсланбекова Р.М. Информационные технологии на основе искусственного интеллекта в эру персонализированной оценки здоровья. Молекулярная медицина. 2025; 3: 11–8 https://doi.org/10.29296/24999490-2025-03-02. [Seliverstov P.V., Shapovalov V.V., Kravchuk Yu.A., Salikova S.P., Shavaeva F.V., Isaeva P.A., Salmanova M.M., Arslanbekova R.M. Information technologies based on artificial intelligence in the era of personalized health assessment. Molecular Medicine. 2025; 3: 11–8. https://doi.org/10.29296/24999490-2025-03-02 (in Russian)]
  38. Parasuraman R., Manzey D.H. Complacency and bias in human use of automation: an attentional integration. Hum Factors. 2010; 52 (3): 381–410. doi: 10.1177/0018720810376055
  39. Bisschops R., East J.E., Hassan C. et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2024. Endoscopy. 2024; 56 (9): 451-94. doi: 10.1055/a-2245-8568

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House