IMMUNOHISTOCHEMICAL STUDY OF TRANSCRIPTION FACTORS NEUROD1, PROX1, FOXM1, SOMATOSTATIN, AND CXCR4 RECEPTORS, CD38 IN GLIOBLASTOMAS TO DEVELOP NEW APPROACHES FOR THE TARGETED THERAPY


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Currently, glioblastoma is an extremely malignant tumor, for which treatment only temozolomide is relatively effective. Aim to study the expression and variants of coexpression of transcription factors NeuroD1, Prox1, FoxM1, somatostatin receptors of the 2nd and 5th type, CD38 and CXCR4 receptors in glioblastoma. The methods included an immunohistochemicalstudy with antibodies to Neuro1l, CXCR4, Prox1, FoxM1, CD38, SSTR2, SSTR5and morphometric analysis of glioblastoma fragments from 22 patients (surgical material). Results. A high level of expression (>50% of the cells) of FoxM1 was detected in 85,7% of glioblastomas samples. The average expression level of FoxM1 accouned of 82,8±5,5%. NeuroD1 was expressed in the nuclei of glioblastoma cells in l00% of cases, the average level of its expression was 95,4±0,7%. High levels of CXCR4 expression were detected in l6 tumors (76,2%). The average expression level of CXCR4 was 76,2±6,1%. Proxl was expressed in 57,l% of cases with an average expression level of 58,4±7,0%. All of the above proteins were found in the tumor cells and the walls of its vessels. SSTRs of the 2nd and 5th types were expressed in the cells of the vascular walls in all cases, the expression level was 2,2±1,1 and 6,7±1,2%, respectively. Marked expression of CD38 was observed in only 9,5% of cases. The average level of expression of CD38 - l0,8±3,4%. When analyzing combinations of marker expression, FoxM1+/NeuroD1+/Prox1-/CXCR4+/ CD38- immunophenotype was most often found (in 38,1% of cases). Conclusion. As a result of the study, the expression of CD38 was detected for the first time in glioblastoma cells. High levels of expression of the studied proteins were recorded in the tumor cells and in walls of its vessels. The immunophenotypic heterogeneity of glioblastoma was determined, the most common variant of protein combination in one tumor, FoxM1+/NeuroD1+/Prox1-/CXCR4+/CD38-, was revealed. According to the data obtained, a new personalized approach to treatment is required with the definition of targets for exposure and the corresponding spectrum of drugs in each individual case.

全文:

受限制的访问

作者简介

B. Galkovsky

Almazov National Medical Research Centre

Email: lubamitr@yandex.ru
Russian Federation, St. Petersburg

L. Mitrofanova

Almazov National Medical Research Centre

Email: lubamitr@yandex.ru
Russian Federation, St. Petersburg

D. Gulyaev

Almazov National Medical Research Centre

Email: lubamitr@yandex.ru
Russian Federation, St. Petersburg

Y. Lakhina

Almazov National Medical Research Centre

Email: lubamitr@yandex.ru
Russian Federation, St. Petersburg

Y. Osipov

Almazov National Medical Research Centre

Email: lubamitr@yandex.ru
Russian Federation, St. Petersburg

参考

  1. Thakkar J.P., Dolecek T.A., Horbinski C., Ostrom Q.T., Lightner D.D., Barnholtz-Sloan J.S. and Villano J.L. Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014; 23 (10): 1985-96. https://doi. org/10.1158/1055-9965.EPI-14-0275. Epub 2014 Jul 22.
  2. Chakrabarti I., Cockburn M., Cozen W., Wang Y., Preston-Martin S. A population-based description of glioblastoma multiforme in Los Angeles County, 1974-1999. Cancer. 2005; 104 (12): 2798-806. https:// doi.org/10.1002/cncr.21539.
  3. Davis M. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016; 20 (5 Suppl): 2-8. https://doi. org/10.1188/16.CJON.S1.2-8.
  4. Tamimi A.F., Juweid M. Epidemiology and Outcome of Glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma (Internet). Brisbane (AU): Codon Publications; 2017 Sep 27. Chapter 8. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK470003/ https://doi.org/10.15586/codon.glioblas-toma.2017.ch8
  5. Malmström A., Gronberg B.H., Marosi C., Stupp R., Frappaz D., Schultz H., Abacioglu U., Tavelin B., Lhermitte B., Hegi M.E. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012; 13 (9): 916-26. https://doi.org/10.1016/S1470-2045(12)70265-6. Epub 2012 Aug 8.
  6. Mrugala M.M. Advances and challenges in the treatment of glioblastoma: a clinician's perspective. Discov Med. 2013; 15 (83): 221-30. http://www.discoverymedicine. com/Maciej-M-Mrugala/2013/04/25/ad-vances-and-challenges-in-the-treatment-of-glioblastoma-a-clinicians-perspective/.
  7. Burger J.A., Kipps T.J. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006; 107 (5): 1761-7. https://doi.org/10.1182/ blood-2005-08-3182.Epub 2005 Nov 3.
  8. Wang Z., Zhang S., Siu T., Huang S. Glioblastoma Multiforme Formation and EMT: Role of FoxM1 Transcription Factor. Curr Pharm Des. 2015; 21 (10): 1268-71. https://doi.org/ 10.2174/1381612821666141211115949.
  9. Sun L.C., Coy D.H. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Deliv. 2011; 8 (1): 2-10. https://doi. org/10.2174/156720111793663633
  10. Elsir T, Smits A., Lindström M.S., Nistér M. Transcription factor PROX1: its role in development and cancer. Cancer Metastasis Rev. 2012; 31 (3-4): 793-805. https://doi. org/10.1007/s10555-012-9390-8.
  11. Levy A., Blacher E., Vaknine H., Lund F.E., Stein R., Mayo L. CD38 deficiency in the tumor microenvironment attenuates glioma progression and modulates features of tumor-associated microglia/ macrophages. Neuro Oncol. 2012; 14 (8): 1037-49. https://doi.org/10.1093/neuonc/ nos121. Epub 2012 Jun 14.
  12. Гальковский Б.Э., Воробьева О.М., Митрофанова Л.Б. Клинико-морфологическое исследование прогностических факторов NeuroD1, HLA-DR и Ki-67 в различных типах аденом надпочечников и гипофиза Медлайн. 2017; 18: 572-90. http://www. medline.ru/public/art/tom18/art39.html
  13. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T, Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V, Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9 (7): 676-82. https://doi.org/10.1038/nmeth.2019.
  14. Sonikpreet A., Manna A., Schiapparelli P., Ailawadhi S., Paulus A., Rosenfeld S., Chanan-Khan A.A., Quinones-Hinojosa A. CD38-targeted therapy in glioblastoma: A step forward. J. Clin. Oncol. 2018; 36 (15): e14030. https://doi.org/10.1200/ JCO.2018.36.15_suppl.e14030
  15. Lohela M., Alitalo K. Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy 1st ed. Marmé D, Fusenig N, Berlin: Springer Science & Business Media. 2008; 327.
  16. Richardson P.J. CXCR4 and Glioblastoma Anticancer Agents Med Chem. 2016; 16 (1): 59-74. https://doi.org/10.2174/1871520 615666150824153032.
  17. Alvarez-Fernandez M., Medema R.H. Novel functions of FoxM1: from molecular mechanisms to cancer therapy. Front Oncol. 2013; 3: 30. https://doi.org/10.3389/ fonc.2013.00030. eCollection 2013.
  18. Kaemmerer D., Schindler R., Mußbach F, Dahmen U., Altendorf-Hofmann A., Dirsch O., Sänger J., Schulz S., Lupp A. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promising targets. BMC Cancer. 2017; 17 (1): 896. https://doi.org/10.1186/s12885-017-3911-3.
  19. Guichet P.O., Bieche I., Teigell M., Serguera C., Rothhut B., Rigau V, Scamps F., Ripoll C., Vacher S., Taviaux S., Chevassus H., Duffau H., Mallet J., Susini A., Joubert D., Bauchet L., Hugnot J.P. Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia. 2013; 61 (2): 225-39. https://doi. org/10.1002/glia.22429. Epub 2012 Oct 9.
  20. Vieira L. Neto, Boguszewski C.L., Araujo L.A., Bronstein M.D., Miranda PA., Musolino N.R., Naves L.A., Vilar L., Ribeiro-Oliveira A. Junior, Gadelha M.R. A review on the diagnosis and treatment of patients with clinically nonfunctioning pituitary adenoma by the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism. Arch Endocrinol Metab. 2016; 60 (4): 374-90. https://doi.org/10.1590/2359-3997000000179.
  21. Shenoy P.A., Kuo A., Khan N., Gorham L., Nicholson J.R., Corradini L., Vetter I., Smith M.T. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol. 2018; 9: 495. https://doi.org/10.3389/ fphar.2018.00495. ECollection 2018.
  22. Melpomeni F., Nicolas G.P., Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy J. Nucl. Med. 2017; 58 (Suppl 2): 61-6. https://doi.org/10.2967/ jnumed.116.186783.
  23. Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., Alexe G., Lawrence M., O'Kelly M., Tamayo P., Weir B.A., Gabriel S., Winckler W., Gupta S., Jakkula L., Feiler H.S., Hodgson J.G., James C.D., Sarkaria J.N., Brennan C., Kahn A., Spellman P.T., Wilson R.K., Speed T.P., Gray J.W., Meyerson M., Getz G., Perou C.M., Hayes D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Genome Atlas Research Network. Cancer Cell. 2010; 17 (1): 98-110. https:// doi.org/10.1016/j.ccr.2009.12.020.
  24. Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., Curtis C., Watts C., Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013; 110 (10): 4009-14. https://doi.org/10.1073/ pnas.1219747110. Epub 2013 Feb 14.
  25. Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971; 285 (21): 1182-6. https://doi.org/10.1056/ NEJM197111182852108
  26. Sharma A., Shiras A. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Biochem Biophys Res Commun. 2016; 473 (3): 688-92. https://doi.org/10.10Wj. bbrc.2015.12.022. Epub 2015 Dec 12.
  27. Plaks V, Kong N., Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015; 16 (3): 225-38. https://doi. org/10.1016/j.stem.2015.02.015.
  28. Brooks M.D., Sengupta R., Snyder S.C., Rubin J.B. Hitting Them Where They Live: Targeting the Glioblastoma Perivascular Stem Cell Niche. Curr Pathobiol Rep. 2013; (2): 101-10. https://doi.org/10.1007/ s40139-013-0012-0.
  29. Codrici E., Enciu A.M., Popescu I.D., Mihai S., Tanase C. Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int. 2016; 2016: 5728438. https://doi. org/10.1155/2016/5728438. Epub 2016 Feb 10.
  30. Osswald M., Jung E., Weil S., Blaes J., Solecki G., Kurz F.T., Heiland S., Huber P.E., Wick W., Winkler F. P08.31 A perivascular niche for progression and resistance in glioblastoma. Neuro Oncol. 2016; 18 (Suppl 4): iv48. Published online 2016 Sep 21. https:// doi.org/10.1093/neuonc/now188.164
  31. Seano G. Targeting the perivascular niche in brain tumors. Curr Opin Oncol. 2018; (1): 54-60. https://doi.org/10.1097/ CCO.0000000000000417.
  32. Lee S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016; (3): 198-210. https://doi.org/10.10Wj. gendis.2016.04.007. eCollection 2016 Sep.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2020
##common.cookie##