Development of a personalized approach for determining pathological areas in the oral mucosa based on the determination of the gingiva permeability to methylene blue


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Timely diagnosis and a personalized approach to the treatment of diseases is accepted to be one of the most important modern tasks in medicine and in particular, dentistry. The use of pharmaceuticals for the diagnosis and treatment of various diseases is the basis of a new method - theranostics. Biological tissues have a complex multi-component structure; therefore, the diffusion of substances in them is non-linear. The quantitative determination of the permeability of biological membranes for marker agents is an urgent task of medical biophysics. Purpose of the study. In this work, the permeability of the attached pig gingiva is determined concerning an aqueous solution of a thiazine dye, widely used in dentistry - Methylene Blue (MB). Methods. The determination of permeability is based on the calculation of the effective diffusion coefficient of MB into the gingiva tissue in the wavelength range from 200 to 800 nm using diffuse reflection spectroscopy. Using the second Fick law and the Bouguer-Lambert-Beer law, there was obtained an equation to relate the kinetics of the change in effective optical density and the diffusion coefficient of the preparation into biological tissue. Results. For the first time, the permeability of the tissue of the attached pig gingiva was determined for an aqueous MB solution, which was р=(9.91+1.36)-101 cm2/s, the effective diffusion coefficient was D=(4.56±0.72)-1D~7 cm2/s (n=4) with a thickness of the samples of the gingival mucosa l=0.46±0.09 cm. Conclusion. The results obtained in the work correlate with published data for other biological tissues and can be used in clinical treatment protocols using MB. Since this dye has photosensitizing properties, the results must be taken into account when conducting photodynamic therapy sessions, during both light therapy and diagnostic procedures with the use MB as a marker for pathological areas of the oral mucosa.

全文:

受限制的访问

作者简介

Alexey Selifonov

Saratov State University; Saratov State Medical University

Email: selif-ei@yandex.ru
Post-graduate student of the Department of Optics and Biophotonics

Valery Tuchin

Saratov State University; Bach Institute of Biochemistry, Research Center of Biotechnology of the RAS; Tomsk State University; Institute of Precision Mechanics and Control of the RAS

Email: tuchinvv@mail.ru
Head Department of Optics and Biophotonics, Professor, Doctor of Physics & Mathematics, Corresponding Member of Russian Academy of Sciences

参考

  1. Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng QJ. Photodynamic Therapy. J. Natl. Cancer Inst. 1998; 90 (12): 889-905. https://doi. org/10.1093/jnci/90.12.889.
  2. Пальцев М.А., Белушкина Н.Н., Чабан Е.А. 4П-медицина как новая модель здравоохранения в Российской Федерации. Оргздрав: новости, мнения, обучение. 2015; 2 (2): 48-54.
  3. Тучин В.В. Оптика биологических тканей. Методы рассеяния света в медицинской диагностике, 2-е издание. Физматлит. 2012; 811. [Tuchin V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. 3rd edition. Bellingham. WA: SPIE Press. 2015; 866 (in Russian)]
  4. Lashkari S.M., Kariminezhad H., Amani H., Mataji P. Introduction of 5-aminolevulinic acid as a theranostics agent in dentistry. Photodiagnosis and Photodynamic Therapy. 2019; 25: 336-43. https://doi.org/10.1016/j.pdpdt.2019.01.021.
  5. Koushki E., Mohammadabadi F.M., Baedi J., Ghasedi A. The effects of glucose and glucose oxidase on the Uvvis spectrum of gold nanoparticles: A study on optical biosensor for saliva glucose monitoring. Photodiagnosis and Photodynamic Therapy. 2020; 30: 10171. https://doi.org/10.1016/j.pdpdt.2020.101771.
  6. Shitomi К., Miyaji Н., Miyata S., Sugaya T., Ushijima N., Akasaka T, Kawasaki H. Photodynamic inactivation of oral bacteria with silver nanoclusters/ rose bengal nanocomposite. Photodiagnosis and Photodynamic Therapy. 2020; 30: 101647. https://doi.org/10.1016/j.pdpdt.2019.101647.
  7. Macedo P.D., Corbi S.T, Oliveira G.J.P, Rodrigues J., Perussi J.R., Rib А.О., Marcantonio R.A.Ch. Hypericin-glucamine antimicrobial photodynamic therapy in the progression of experimentally induced periodontal disease in rats. Photodiagnosis and Photodynamic Therapy. 2019; 25: 43-9. https://doi.org/10.1016/j.pdpdt.2018.11.003.
  8. Wang W., Huang D., Ren J., Li R., Feng Zh., Guan Ch., Bao B., Cai B., Ling J., Zhou Ch. Research Paper Optogenetic control of mesenchymal cell fate towards precise bone regeneration. Theranostics. 2019; 9 (26): 8196-205. https://doi.org/10.7150/thno.36455.
  9. Huang T-Ch., Chen Ch-J., Ding Sh-J., Chen Ch-Ch. Antimicrobial efficacy of methylene blue-mediated photodynamic therapy on titanium alloy surfaces in vitro. Photodiagnosis and Photodynamic Therapy. 2019; 25: 7-16. https://doi.org/10.1016/j.pdpdt.2018.11.008.
  10. Panevin VYu., Firsov D.A., Sofronov A.N., Ter-Martirosyan A.L. A digital system of fluorescence visualization for antibacterial photodynamic therapy in dentistry. St. Petersburg Polytechnical University J.: Physics and Mathematics. 2015. https://doi.org/10.1016/j.spjpm.2015.12.009.
  11. Genina E.A., Titorenko V.A., Belikov A.V, Bashkatov A.N., Tuchin V.V. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing. J. Biomed. Opt. 2015; 20 (12): 128004. https://doi.org/10.1117/1. JBO.20.12.128004
  12. Okamoto С.В., Bussadori S.K., Prates R.A., Costa A.C., Horliana A.C.R.T, Fernandes K.P.S., Motta L.J. Photodynamic therapy for endodontic treatment of primary teeth: A randomized controlled clinical trial. Photodiagnosis and Photodynamic Therapy. 2020; 30: 101732. https://doi.org/10.1016/j.pdpdt.2020.101732.
  13. Гажва С.И., Котунова Н.А., Куликов А.С., Применение фотодинамической терапии в алгоритме лечения эрозивно-язвенной формы красного плоского лишая слизистой оболочки рта. Современные проблемы науки и образования. 2018; 4: 13-5.
  14. Беликов А.В., Пушкарева А.Е., Скрипник А.В. Теоретические и экспериментальные основы лазерной абляции биоматериалов. СПб: СПбГУ ИТМО, 2011; 230.
  15. Giannelli M., Formigli L., Lorenzini L., Bani D. Combined photoablative and photodynamic diode laser therapy as an adjunct to non-surgical periodontal treatment: a randomized split-mouth clinical trial. J. Clin. Periodontol. 2012; 39 (10): 962-70. https://doi. org/10.1111/j.1600- 051X.2012.01925.x.
  16. Afkhami F., Akbari S., Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: An in vitro Study. J. Endod. 2017; 43 (2): 279-82. https://doi.org/10.1016/j.joen.2016.08.029.
  17. Kotyk A., Janacek K. Cell membrane transport. Principles and Techniques. Second edition. Czechoslovakia In collaboration with the Staff of the Laboratory PLENUM PRESS. New York and London, 1974. https://doi. org/10.1007/978-1-4613-4413-1.
  18. Генина Э.А., Башкатов А.Н., Чикина Е.Э., Тучин В.В. Диффузия метиленового синего в слизистой оболочке верхнечелюстной пазухи человека. Биофизика. 2007; 52 (6): 1104-11. [Genina E.A., Bashkatov A.N., Chikina, E.E., Tuchin V.V. Diffusion of Methylene Blue in human maxillary sinus mucosa. Biophysics. 2007; 52 (6): 56-64 (in Russian)].
  19. Боровский Е.В. Терапевтическая стоматология. Учебник. МИА. 2003; 246.
  20. Генина Э.А., Башкатов А.Н., Тучин В.В. Исследование диффузии фотодинамического красителя индоцианинового зеленого в коже с помощью спектроскопии обратного рассеяния. Квантовая электроника. 2014; 44 (7): 689-95.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021
##common.cookie##