Sirtuin expression in skin fibroblasts: pharmacomodulatory effect of quercetin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Sirtuins (SIRTs) are NAD+-dependent histone deacetylases involved in the intracellular regulation of multiple biological processes including DNA repair, autophagy, inflammation, oxidative stress defence and metabolism associated with age-associated diseases, including dermal ageing. Reduced levels of these proteins in tissues correlate with the progression of endothelial dysfunction and cellular aging, which makes sirtuins promising targets for the prevention and therapy of age-related pathologies. The development of strategies to activate the expression of SIRT -1, -3, -6 in cells to inhibit the aging process is relevant. The natural flavonoid quercetin, a natural flavonoid with proven geroprotective efficacy, is capable of influencing sirtuin gene expression.

Purpose. To study the modulatory effect of quercetin in the hyaluronan gel on the content of endogenous geroprotective proteins SIRT -1, -3, -6 in human skin fibroblast culture during the development of inflammaging.

Material and methods. The study was carried out on cell cultures of human skin fibroblasts with modelling of genotoxic stress inflammaging by UV-irradiation. 1 ml of hydrogel preparation with quercetin was injected into growth cultures, obtaining 3 groups of cells under study. Methods of immunocytochemistry and immunofluorescence confocal microscopy were applied to visualise the content of sirtuins in them. The obtained images were analysed using ImageJ software. Relative area of expression was calculated as the area of marker expression to the total area of the field of view. Statistical processing was performed in Origin.

Results. Revitalisant containing hyaluronan and quercetin showed effective enhancement of SIRT-1, -3, -6 levels in senescent skin cells.

Conclusion. Quercetin, an activator of SIRT-1, -3, -6 dermal anti-aging biomarkers, has therapeutic potential in the treatment of age-related pathologies. Selective pharmacological modulation of sirtuin activity in skin fibroblasts by quercetin appears to be an effective and promising way to slow down dermal aging.

全文:

受限制的访问

作者简介

Anna Kosova

Saint-Petersburg Research Institute of Phthisiopulmonology; ITMO University

编辑信件的主要联系方式.
Email: annkosova@bk.ru
ORCID iD: 0009-0003-1893-4733
SPIN 代码: 4202-0293

research laboratory assistant of the Research Laboratory of Molecular Neuroimmunoendocrinology, Department of Translational Biomedicine, student

俄罗斯联邦, Ligovsky Prospekt, b. 2–4, Saint-Petersburg, 191036; Kronverksky pr. 49, lit. A, Saint-Petersburg, 197101

Ekaterina Mironova

Saint-Petersburg Research Institute of Phthisiopulmonology; ITMO University; Saint Petersburg Institute of bioregulation and gerontology; Saint-Petersburg State University

Email: katrine1994@mail.ru
ORCID iD: 0000-0001-8134-5104
SPIN 代码: 5992-1419

Head of the Research Laboratory of Molecular Neuroimmunoendocrinology, Department of Translational Biomedicine, practice teacher, Head of the Laboratory of Molecular Biology of the Cell, teacher

俄罗斯联邦, Ligovsky Prospekt, b. 2–4, Saint-Petersburg, 191036; Kronverksky pr. 49, lit. A, Saint-Petersburg, 197101; Dinamo Ave, 3, Saint-Petersburg, 197110; Universitetskaya amb. 7–9, Saint-Petersburg, 199034

Yulia Belova

Saint-Petersburg Research Institute of Phthisiopulmonology; Saint Petersburg Institute of bioregulation and gerontology

Email: bi.day.eddie@gmail.com
ORCID iD: 0009-0007-0961-3515
SPIN 代码: 7197-4731

research laboratory assistant of the Research Laboratory of Molecular Pathology, Department of Translational Biomedicine, Researcher at the Laboratory of Functional Morphology

俄罗斯联邦, Ligovsky Prospekt, b. 2–4, Saint-Petersburg, 191036; Dinamo Ave, 3, Saint-Petersburg, 197110

Anna Drobintseva

Saint-Petersburg Research Institute of Phthisiopulmonology; Saint-Petersburg State Pediatric Medical University

Email: anna.drobintseva@gmail.com
ORCID iD: 0000-0002-6833-6243
SPIN 代码: 4277-0122

Senior Researcher of the Research Laboratory of Molecular Neuroimmunoendocrinology, Department of Translational Biomedicine, Head of the Department of Histology and Embryology named after Prof. A.G. Knorre

俄罗斯联邦, Ligovsky Prospekt, b. 2–4, Saint-Petersburg, 191036; Litovskaya St., 2, Saint-Petersburg, 194100

Vladimir Khabarov

Hyaluronic Acid Research Center

Email: px716@mail.ru
ORCID iD: 0000-0002-4138-4835
SPIN 代码: 2784-9748

director, PhD

俄罗斯联邦, Komsomolsky pr., 38/16, Moscow, 119146

参考

  1. Shi M.Q., Xu Y., Fu X., Pan D.S., Lu X.P., Xiao Y., Jiang Y.Z. Advances in targeting histone deacetylase for treatment of solid tumors. J. Hematol Oncol. 2024; 17 (1): 37. doi: 10.1186/s13045-024-01551-8
  2. You Y., Liang W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim Biophys Acta BBA. Mol Basis Dis. 2023; 1869 (7): 166815. doi: 10.1016/j.bbadis.2023.166815
  3. Kupis W., Pałyga J., Tomal E., Niewiadomska E. The role of sirtuins in cellular homeostasis. J. Physiol Biochem. 2016; 72 (3): 371–80. doi: 10.1007/s13105-016-0492-6
  4. Wu Q.J., Zhang T.N., Chen H.H., Yu X.F., Lv J.L., Liu Y.Y., Liu Y.S. et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022; 7 (1): 402. doi: 10.1038/s41392-022-01257-8
  5. Zhao W., Sui M., Chen R., Lu H., Zhu Y., Zhang L., Zeng L. SIRT3 protects kidneys from ischemia-reperfusion injury by modulating the DRP1 pathway to induce mitochondrial autophagy. Life Sci. 2021; 286: 120005. doi: 10.1016/j.lfs.2021.120005
  6. Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol. Cell. Biol. 2021; 22 (2): 119–41. doi: 10.1038/s41580-020-00313-x
  7. Ministrini S., Puspitasari Y.M., Beer G., Liberale L., Montecucco F., Camici G.G. Sirtuin 1 in Endothelial Dysfunction and Cardiovascular Aging. Front Physiol. 2021; 12: 733696. doi: 10.3389/fphys.2021.733696
  8. Song Y., Wu Z., Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev Neurosci. 2022; 33 (4): 427–38. doi: 10.1515/revneuro-2021-0118
  9. Sun H.J., Xiong S.P., Cao X., Cao L., Zhu M.Y., Wu Z.Y., Bian J.S. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol. 2021; 38: 101813. doi: 10.1016/j.redox.2020.101813
  10. Пухальская А.Э., Дятлова А.С., Линькова Н.С., Кветной И.М. Сиртуины: роль в регуляции окислительного стресса и патогенезе нейродегенеративных заболеваний. Успехи Физиологических Наук. 2021; 52 (1): 90–104. doi: 10.31857/S0301179821010082 [Pukhalskaya A.E., Dyatlova A.S., Linkova N.S., Kvetnoy I.M. Sirtuins: role in regulation of oxidative stress and pathogenesis of neurodegenerative diseases. Uspekhi Fiziologicheskikh Nauk. 2021; 52 (1): 90–104. doi: 10.31857/S0301179821010082 (in Russian)]
  11. Yao C., Guo G., Huang R., Tang C., Zhu Q., Cheng Y., Kong L., et al. Manual therapy regulates oxidative stress in aging rat lumbar intervertebral discs through the SIRT1/FOXO1 pathway. Aging. 2022; 14 (5): 2400–17. doi: 10.18632/aging.203949
  12. Li G., Jian Z., Wang H., Xu L., Zhang T., Song J. Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. Oxid Med Cell Longev. 2022; 3319056. doi: 10.1155/2022/3319056
  13. Ma L.L., Kong F.J., Dong Z., Xin K.Y., Wang X.X., Sun A.J., Zou Y.Z., et al. Hypertrophic Preconditioning Attenuates Myocardial Ischaemia-Reperfusion Injury by Modulating SIRT3-SOD2-mROS-Dependent Autophagy. Cell Prolif. 2021; 54 (7): e13051. doi: 10.1111/cpr.13051
  14. Jiang W., Geng H., Lv X., Ma J., Liu F., Lin P., Yan C. Idebenone Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice Via Activation of the SIRT3-SOD2-mtROS Pathway. Cardiovasc Drugs Ther. 2021; 35 (6): 1129–45. doi: 10.1007/s10557-020-07018-5
  15. Xi S., Chen W., Ke Y. Advances in SIRT3 involvement in regulating autophagy-related mechanisms. Cell Div. 2024; 19 (1): 20. doi: 10.1186/s13008-024-00124-y
  16. He Y., Wu Z., Xu L., Xu K., Chen Z., Ran J., Wu L. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell. Mol. Life Sci CMLS. 2020; 77 (19): 3729–43. doi: 10.1007/s00018-020-03497-9
  17. Aventaggiato M., Vernucci E., Barreca F., Russo M.A., Tafani M. Sirtuins’ control of autophagy and mitophagy in cancer. Pharmacol Ther. 2021; 221: 107748. doi: 10.1016/j.pharmthera.2020.107748
  18. Cao M., Zhao Q., Sun X., Qian H., Lyu S., Chen R., Xia H. et al. Sirtuin 3: Emerging therapeutic target for cardiovascular diseases. Free Radic Biol. Med. 2022; 180: 63–74. doi: 10.1016/j.freeradbiomed.2022.01.005
  19. Zhang J., Xiang H., Liu J., Chen Y., He R.R., Liu B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics. 2020; 10 (18): 8315–42. doi: 10.7150/thno.45922
  20. Jung E.S., Choi H., Song H., Hwang Y.J., Kim A., Ryu H., Mook-Jung I. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci Rep. 2016; 6: 25628. doi: 10.1038/srep25628
  21. Jin A., Zhang Q., Li S., Li B. Downregulation of FOXO6 alleviates hypoxia-induced apoptosis and oxidative stress in cardiomyocytes by enhancing Nrf2 activation via upregulation of SIRT6. J. Bioenerg Biomembr. 2020; 52 (6): 409–19. doi: 10.1007/s10863-020-09856-2
  22. Gilbert M.M., Mathes S.C., Mahajan A.S., Rohan C.A., Travers J.B., Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med. 2023; 10: 1021908. doi: 10.3389/fmed.2023.1021908
  23. Cui Z., Zhao X., Amevor F.K., Du X., Wang Y., Li D., Shu G. et al. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol. 2022; 13: 943321. doi: 10.3389/fimmu.2022.943321
  24. Resende D.I.S.P., Almeida M.C., Maciel B., Carmo H., Sousa Lobo J., Dal Pozzo C., Cravo S.M. et al. Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging. Mol Basel Switz. 2020; 25 (12): 2782. doi: 10.3390/molecules25122782
  25. Chowdhury A., Nosoudi N., Karamched S., Parasaram V., Vyavahare N. Polyphenol treatments increase elastin and collagen deposition by human dermal fibroblasts; Implications to improve skin health. J. Dermatol Sci. 2021; 102 (2): 94–100. doi: 10.1016/j.jdermsci.2021.03.002

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Expression of SIRTs 1 and 3 in human skin fibroblast culture during the development of inflammaging. Note. Immunofluorescence staining with antibodies to: a – SIRT1 (green glow, Alexa 488), б – SIRT3 (red glow, Alexa 647). Cell nuclei stained with blue (DAPI). Magnification: ×1000.

下载 (36KB)
3. Fig. 2. Expression of SIRT6 in human skin fibroblast culture during the development of inflammaging. Immunofluorescence staining with antibodies to SIRT6 (green glow, Alexa 488). Cell nuclei stained with blue (DAPI). Magnification: ×1000 Note. a – control, б – Inflammaging, в – Inflammaging + quercetin + hyaluronan.

下载 (178KB)
4. Fig. 3. Expression of SIRT-1, -3, -6 proteins in human skin fibroblasts in control culture, during the development of inflammaging and under the influence of hyaluronan preparation with quercetin Note. * – statistically significant differences from the “control” group (p<0.05), ** – statistically significant differences from the “inflammaging” group (p<0.05).

下载 (79KB)

版权所有 © Russkiy Vrach Publishing House, 2025