Long-term inflammatory and neoplastic reaction of prostate tissues during its transurethral infection with uropathogens: evaluation of the results of animal model study


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. There is no convincing evidence of the persistence of acute or the development of chronic bacterial-induced prostatic inflammation in the long term when infected with various titers of the uropathogen. Along with this, controversial data are presented on the relationship between post-infectious chronic inflammation and neoplastic changes in prostate tissues. Objective. To carry out, based on the experimental data: 1) assessment of the degree ofbacterial contamination and the severity ofhistological changes in prostate tissues on the 60th follow-up day in case of transurethral infection with various uropathogens in titers of 102,3,5 CFU/ml; 2) fundamental comparative analysis between the indicators of the inoculated test-titer and microbial load with the severity of histological changes in prostate tissues; 3) verification of neoplastic transformations in the prostate tissues during a long-term persistent bacterial-induced inflammatory process. Materials and methods. Animal studies were conducted using FELASA protocols. Laboratory animals: 14 New Zealand rabbits. Tested uropathogens: aerobes - E. coli, S. haemolyticus, anaerobes - P. niger. Titers: 102,3,5 CFU/ml. Uropathogen inoculation technique: topical transurethral. Randomization: all laboratory animals were divided into 5 groups according to the uropathogen (4 experimental, 1 control). Follow-up period: 60 days. Sacrification and autopsy of the animals were performed on day 60. Biopsies were taken from various parts of the prostate, as well as from the bladder neck and the edge of the membranous urethra. Cultural, histological and immunohistochemical (expression of p53 and Ki-67) studies of prostate tissues were conducted. Statistical data processing was performed using the GraphPad Prism 9.0 program (GraphPad Software Inc., Graphpad Holdings LLC, San Diego, CA, USA) applying descriptive and non-parametric statistics. Results. Two individuals infected with S. haemolyticus + P. niger had a lethal outcome. The contamination of prostate tissue was determined in all cases of infection. In 88.9% of the cases, an increase in tissue microbial load was determined compared to the initial titer. Multivariate analysis of culture study values revealed the presence of intragroup differences in prostate contamination only between infection with E. coli 103 CFU/ml and E. coli 105 CFU/ml (p=0.006), as well as intergroup differences between infection with E. coli 105 CFU/ml and P. niger 105 CFU/ml (p=0.013). The histological study revealed moderate proliferative inflammation after inoculation with 102,3,5 CFU/ml in the E. coli and S. haemolyticus groups. In the case of S. haemolyticus, it was more pronounced due to the presence of persistent alterative lesion foci; in the P. niger group, mild proliferative transformations were observed in prostate tissues in all cases. The immunohistochemical study of changes determined p53 expression (=10.0%) in some areas ofthe glandular epithelium of prostate glands (but without a positive internal control) only in case of infection with E. coli 105 CFU/ml. Areas of glandular epithelium with Ki-67 expression (625.0%) were visualized in all tested groups, mainly at titers of 103 and 105 CFU/ml, but the severity of proliferative activity was not high (1+). There were no foci of prostate tissue with simultaneous nuclear activity of p53 and Ki-67. Conclusion. Proliferative inflammation of different intensity in prostate tissues was observed after sixty days. Its severity was mainly determined by the type of infecting agent (S. haemolyticus > E. coli > P. niger) and was not dependent on the inoculated titer and the subsequent microbial load of prostate tissues. No areas of neoplastic transformation of prostate tissues were reliably identified in the case of a bacterial-induced inflammatory process in the estimated follow-up period.

Full Text

Restricted Access

About the authors

M. I Kogan

Rostov State Medical University

Email: dept_kogan@mail.ru
Honored Scientist of the Russian Federation, M.D., Dr.Sc. (Med), Full Prof.; Head, Dept. of Urology and Human Reproductive Health (with the Pediatric Urology and Andrology Course) Rostov-on-Don, Russia

R. S Ismailov

Rostov State Medical University

Email: dr.ruslan.ismailov@gmail.com
M.D., Cand.Sc. (Med); Assist.Prof., Dept. of Urology and Human Reproductive Health (with the Pediatric Urology and Andrology Course) Rostov-on-Don, Russia

S. S Todorov

Rostov State Medical University

Email: sertodorov@gmail.com
M.D., Dr.Sc. (Med); Prof., Dept. of Pathology, Rostov State Medical University; Head, Morphology Division, Rostov State Medical University Clinic Rostov-on-Don, Russia

Yu. L Naboka

Rostov State Medical University

Email: nagu22@mail.ru
M.D., Dr.Sc. (Med), Full Prof.; Head, Dept. of Microbiology and Virology № 1 Rostov-on-Don, Russia

I. A Gudima

Rostov State Medical University

Email: naguirina22@gmail.com
M.D., Dr.Sc. (Med), Assoc. Prof.; Prof., Dept. of Microbiology and Virology № 1 Rostov-on-Don, Russia

References

  1. Коган М.И., Набока Ю.Л., Тодоров С.С., Исмаилов Р.С. Экспериментальная оценка течения воспалительного процесса в простате при ее трансуретральном инфицировании низким титром уропатогена. Урология. 2019;5:14-21.Doi: 10.18565/ urology.2019.5.14-21.
  2. Коган М.И., Набока Ю.Л., Тодоров С.С., Исмаилов Р.С. Сравнительная оценка развития и течения воспалительного процесса в простате при трансуретральном инфицировании с использованием каузативного и дебатируемых штаммов микроорганизмов в низких титрах. Экспериментальная и клиническая урология. 2019;3:40-48. doi: 10.29188/2222-8543-201911-3-40-48.
  3. Исмаилов Р.С., Набока Ю.Л., Тодоров С.С., Коган М.И. Связаны ли между собой бактериологические и патоморфологические признаки бактериального простатита? (экспериментальное исследование). Урология. 2020;6:44-52. doi: 10.18565/urology.2020.6.44-51.
  4. Dennis L.K., Lynch C.F., Torner J.C. Epidemiologic association between prostatitis and prostate cancer. Urology. 2002;60(1):78-83. Doi: 10.1016/ s0090-4295(02)01637-0.
  5. Jiang J., Li J., Yunxia Z., Zhu H., Liu J., Pumill C. The role of prostatitis in prostate cancer: meta-analysis. PLoS One. 2013;8( 12) :e85179. doi: 10.1371/journal.pone.0085179.
  6. Schetter A.J., Heegaard N.H., Harris C.C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37-49. doi: 10.1093/carcin/bgp272.
  7. Lonkar P., Dedon P.C. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.Int J Cancer. 2011;128(9):1999-2009. doi: 10.1002/ijc.25815.
  8. Pan JS, Hong MZ, Ren JL. Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009; 15( 14): 1702-1707. doi: 10.3748/wjg.15.1702.
  9. Shen H.M., Tergaonkar V. NF-kappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis. 2009;14(4):348- 363. doi: 10.1007/s10495-009-0315-0.
  10. Pascal L.E., Wang Y., Zhong M., Wang D., Chakka A.B., Yang Z., Li F., Song Q., Rigatti L.H., Chaparala S., Chandran U., Parwani A.V., Wang Z. EAF2 and p53 Co-Regulate STAT3 Activation in Prostate Cancer. Neoplasia. 2018;20(4):351-363. doi: 10.1016/j.neo.2018.01.011.
  11. Bollrath J., Greten F.R. IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 2009; 10(12):1314-1349. Doi: 10.1038/ embor.2009.243.
  12. Fisher G., Yang Z.H., Kudahetti S., Moller H., Scardino P., Cuzick J., Berney D.M. Transatlantic Prostate Group. Prognostic value of Ki-67 for prostate cancer death in a conservatively managed cohort. Br J Cancer. 2013 Feb 5;108(2):271-277. doi: 10.1038/bjc.2012.598. Epub 2013 Jan 17. PMID: 23329234; PMCID: PMC3566811.
  13. Kudryavtsev GY, Kudryavtseva LV, Mikhaleva LM, Solovieva NA, Babichenko II. Immunohistochemical study of Ki-67, p53 and Notch1 expressions in prostate cancer of different grades. Arkh Patol. 2020;82(5):42-49.Russian. doi: 10.17116/patol20208205142.
  14. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of Animals used for Scientific purposes. OJ L 2010;276: 33-79.
  15. European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS No.123). Appendix A «Guidelines for the maintenance and care of animals». Adopted: Strasbourg, 18.03.1986, entry in force: 01.01.1991. URL: https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?doc umentId=090000168007a67b
  16. Mahler M., Berard M., Feinstein R., Gallagher A., Illgen-Wilcke B., Pritchett-Corning K., Raspa M. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 2014;48(3); 178-192. doi: 10.1177/0023677213516312
  17. Kilkenny C., Browne W.J., Cuthill I.C., Emerson M., Altman D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010;8(6): e1000412. Doi: 10.1371/ journal.pbio.1000412.
  18. Nickel J.C., Olson M.E., Barabas A., Benediktsson H., Dasgupta M.K., Costerton J.W. Pathogenesis of Chronic Bacterial Prostatitis in an animal model. British J of Urol. 1990;66(6): 47-54. Doi: 10.1111/j. 1464-410X.1990.tb14864.x
  19. Petrescu A., Marzan L., Codreanu O., Niculescu L. Immunohistochemical detection of p53 protein as a prognostic indicator in prostate carcinoma. Rom J Morphol Embryol. 2006;47:143-146.
  20. Madani S.H., Ameli S., Khazaei S., Kanani M., Izadi B. Frequency of Ki-67 (MIB-1) and P53 expressions among patients with prostate cancer. Indian J Pathol Microbiol. 2011;54:688-691.
  21. Kaplan L., Lee C., Schaeffer A.J. Effect of castration on experimental bacterial prostatitis in rats. Prostate. 1983;4(6):625-630. Doi: 10.1002/ pros.2990040608.
  22. Seo S.I., Lee S.J., Kim J.C., Choi Y.J., S.W.S. W., Hwang T.K., Cho Y.H. Effects of androgen deprivation on chronic bacterial prostatitis in a rat model.Int J Urol. 2003; 10(9):485-491. Doi: 10.1046/j. 1442-2042.2003.00666.x. PMID: 12941127.
  23. Elkahwaji E., Zhong W., Janda L.M., Bjorling D.E., Bushman W. Chronic prostatic infection and inflammation induce reactive dysplasia and neoplasia in mice. J Urol 2006;175 (Suppl):258.
  24. Elkahwaji J.E., Ott C.J., Janda L.M., Hopkins W.J. Mouse model for acute bacterial prostatitis in genetically distinct inbred strains. Urology. 2005;66(4):883-887. doi: 10.1016/j.urology.2005.04.013.
  25. Verma R, Gupta V, Singh J, Verma M, Gupta G, Gupta S, Sen R, Ralli M. Significance of p53 and ki-67 expression in prostate cancer. Urol Ann. 2015;7(4):488-493. doi: 10.4103/0974-7796.158507.
  26. Jiang T., Jiang H., Song X.S., Li X.C., Li Q.L. P53 expression and its clinical significance in prostatic carcinoma. Zhonghua Nan Ke Xue. 2005;11:448-451:454.
  27. Olivier M., Hainaut P., Borresen-Dale A.L. (2007). Prognostic and Predictive Value of TP53 Mutations in Human Cancer. In: Hainaut, P., Wiman, K.G. (eds) 25 Years of p53 Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2922-6_14
  28. Bourdon J.C. p53 and its isoforms in cancer. Br J Cancer. 2007;97(3):277- 282. doi: 10.1038/sj.bjc.6603886.
  29. Wang Y., Abenojar E.C., Wang J., de Leon A.C., Tavri S., Wang X., Gopalakrishnan R., Walker E., MacLennan G.T., Giles A., Czarnota G.J., Basilion J.P., Exner A.A. Development of a novel castration-resistant orthotopic prostate cancer model in New Zealand White rabbit. Prostate. 2022;82(6):695-705. doi: 10.1002/pros.24314.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies