Plasma acid reproduces oxidative and nitrosative stress in bladder tissue in vitro: experimental study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Aim. To analyze some effects of plasma acid in vitro on the bladder tissue obtained from laboratory animals and to evaluate the possibility of its application for in vitro modeling of IC/BPS. Materials and methods. The tissue samples of the bladder wall were obtained from female Wistar rats aged 3 months (n=16, weighing 180-200 g). The tissues were processed for 1 hour in the plasma acid prepared by spark discharge of water for injection in air. The immunohistochemical study of obtained samples was performed. Results. The changes in the expression profile of bladder epithelial cells under the action of plasma acid in vitro were found indicating the development of oxidative, nitrosative and dicarbonyl stress, impaired expression of NADPH oxidase DUOX2 and VEGF, and a decrease in cell proliferative activity, which, in general, corresponds to the main mechanisms of urothelial alterations specific for the IC/BPS. Conclusion. The revealed effects of plasma acid on bladder epithelial cells confirm the possibility of using it as an inducer of urothelial cell damage typical for IC/BPS in the in vitro models.

Full Text

Restricted Access

About the authors

E. A Alekseeva

FGBOU VO Krasnoyarsk State Medical University. Prof. V.F. Voino-Yasenetsky Ministry of Health of Russia

Ph.D., associate Professor at the Department of Urology, Andrology and Sexology Krasnoyarsk, Russia

M. A Firsov

FGBOU VO Krasnoyarsk State Medical University. Prof. V.F. Voino-Yasenetsky Ministry of Health of Russia

Ph.D., Head of the Department of Urology, Andrology and Sexology Krasnoyarsk, Russia

N. A Malinovskaya

FGBOU VO Krasnoyarsk State Medical University. Prof. V.F. Voino-Yasenetsky Ministry of Health of Russia

Ph.D., MD, professor, Head of the Department of Biological Chemistry with courses in Medical, Pharmaceutical and Toxicological Chemistry Krasnoyarsk, Russia

A. B Salmina

FGBOU VO Krasnoyarsk State Medical University. Prof. V.F. Voino-Yasenetsky Ministry of Health of Russia; FGBNU Research Center of Neurology

Ph.D., MD, professor, Chief Researcher of Scientific and Research Institute of Molecular Medicine and Pathobio chemistry; Chief Researcher of Laboratory of Neurobiology and Tissue Engineering Krasnoyarsk, Russia; Moscow, Russia

V. V Salmin

FGBOU VO Krasnoyarsk State Medical University. Prof. V.F. Voino-Yasenetsky Ministry of Health of Russia

Ph.D., MD, Head of the Department of Medical and Biological Physics Krasnoyarsk, Russia


  1. Мартов А., Мужецкая Н., Салюкова Ю., Салюков Р. Малоинвазивные методы лечения интерстициального цистита/мочепузырного болевого синдрома. Урология. 2020;5:93- 98.
  2. Van de Merwe J.P., Nordling J., Bouchelouche P., Bouchelouche K., Cervigni M., Daha L.K., Elneil S., Fall M., Hohlbrugger G., Irwin P. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: an ESSIC proposal. European urology. 2008:53(1):60-67.
  3. Onopko V., Kirilenko E., Baranova E., Golubeva V.Interstitial cystitis or bladder pain syndrome: a modern perspective on the problem. Acta Biomedica Scientifica (East Siberian Biomedical Journal). 2016;1(1):65- 69.
  4. Greenwood-Van Meerveld B., Mohammadi E., Tyler K., Van Gordon S., Parker A., Towner R., Hurst R. Mechanisms of visceral organ crosstalk: importance of alterations in permeability in rodent models. The Journal of urology. 2015;194(3):804-811.
  5. Игнатов Ю.А., Кузьмин И.В., Слесаревская М.Н. Синдром болезненного мочевого пузыря: исторические аспекты. Урологические ведомости. 2016;6(3):5-10.
  6. Sant G.R. Etiology, pathogenesis, and diagnosis of interstitial cystitis. Reviews in urology. 2002:4(Suppl 1):S9.
  7. Ke Q.-S., Kuo H.-C. Pathophysiology of interstitial cystitis/bladder pain syndrome. Tzu Chi Medical Journal. 2015;27(4):139-144.
  8. Parsons C.L., Zupkas P., Parsons J.K.Intravesical potassium sensitivity in patients with interstitial cystitis and urethral syndrome. Urology. 2001;57(3):428-432.
  9. Neuhaus J., Gonsior A., Cheng S., Stolzenburg J.-U., Berger F.P. Mechanosensitivity Is a Characteristic Feature of Cultured Suburothelial Interstitial Cells of the Human Bladder.International journal of molecular sciences. 2020;21(15):5474.
  10. Logadottir Y., Hallsberg L., Fall M., Peeker R., Delbro D. Bladder pain syndrome/interstitial cystitis ESSIC type 3C: high expression of inducible nitric oxide synthase in inflammatory cells. Scandinavian journal of urology. 2013;47(1):52-56.
  11. Oliveira M.G.d., Medeiros M.L.d., Tavares E.B., Monica F.Z., Antunes E. Methylglyoxal, a reactive glucose metabolite, induces bladder overactivity in addition to inflammation in mice. Frontiers in physiology. 2020;11:290.
  12. Palma T., Seabra A., Souto S., Maciel L., Alvarenga M., Siniscalchi R., Ganzarolli M., Ricetto C. A new experimental model for inducing interstitial cystitis by oxidative stress using bladder instillation of a nitric oxide donor gel. Actas Urologicas Espanolas (English Edition). 2011;35(5):253-258.
  13. Westropp J.L., Buffington C.T. In vivo models of interstitial cystitis. The Journal of urology. 2002;167(2) 694-702.
  14. Kwon W.-A. Animal model of interstitial cystitis/bladder pain syndrome.International neurourology journal. 2018:;22(Suppl 1):S1.
  15. Jin X.-W., Wang Q.-Z., Zhao Y, Liu B.-K., Zhang X., Wang X.-J., Lu G.-L., Pan J.-W., Shao Y. An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis. Translational Andrology and Urology. 2021;10(11):4120.
  16. Rooney P., Ryan C., McDermott B.J., Dev K., Pandit A., Quinlan L.R Effect of Glycosaminoglycan Replacement on Markers of Interstitial Cystitis In Vitro. Frontiers in Pharmacology. 2020:1904.
  17. Muradyan G., Gudkova E., Khilazheva E., Morgun A., Malinovskaya N., Salmina A., Salmin V. Effect of sliding discharge on proliferation and death of brain microvessel endothelial cells in vitro. Biomeditsinskaia Khimiia. 2021;67(2):150-157.
  18. Оловянникова Р., Макаренко Т., Лычковская Е., Гудкова Е., Мурадян Г., Медведева Н., Чекишева Т., Бердников С., Семичев Е., Малиновская Н. Химические механизмы действия холодной плазмы на клетки. Фундаментальная и клиническая медицина. 2020:5(4).
  19. Robinson R.D., Gutsol K., Rabinovich A., Fridman A.A. Plasma acid production in a gliding arc plasmatron. Plasma Medicine. 2012:2(4).
  20. Пискарев И., Иванова И., Самоделкин А., Иващенко М. (2016), Инициирование и исследование свободно-радикальных процессов в биологических экспериментах, Нижний Новгород, 106
  21. Салмин В.В., Салмина А.Б., Моргун А.В. Плагин для программы ImageJ для подсчета флуоресцентных меток на микрофотографиях. 2020: RU 2020612777.
  22. Grasberger H., Gao J., Nagao-Kitamoto H., Kitamoto S., Zhang M., Kamada N., Eaton K.A., El-Zaatari M., Shreiner A.B., Merchant J.L. Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology. 2015;149(7): 1849-1859.
  23. Zhang X., Han J., Feng L., Zhi L., Jiang D., Yu B., Zhang Z., Gao B., Zhang C., Li M. DUOX2 promotes the progression of colorectal cancer cells by regulating the AKT pathway and interacting with RPL3. Carcinogenesis. 2021;42(1):105-117.
  24. Nguyen D.M., Parekh P.R., Chang E.T., Sharma N.K., Carrier F. Contribution of dual oxidase 2 (DUOX2) to hyper-radiosensitivity in human gastric cancer cells. Radiation research. 2015;184(2):151-160.
  25. Nigro C., Leone A., Fiory F., Prevenzano I., Nicolo A., Mirra P., Beguinot F., Miele C. Dicarbonyl stress at the crossroads of healthy and unhealthy aging. Cells. 2019;8(7):749.
  26. Mey J.T., Haus J.M. Dicarbonyl stress and glyoxalase-1 in skeletal muscle: implications for insulin resistance and type 2 diabetes. Frontiers in cardiovascular medicine. 2018;5:117.
  27. Barzegar Behrooz A., Syahir A., Ahmad S. CD133: beyond a cancer stem cell biomarker. Journal of drug targeting. 2019;27(3):257-269.
  28. Karbanova J.,Missol-Kolka E., Fonseca A.-V., Lorra C., Janich P., Hollerova H., Jaszai J., Ehrmann J., Kolar Z., Liebers C. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. Journal of Histochemistry & Cytochemistry. 2008;56(11): 977-993.
  29. Grant D., Rose R.W., Kinsella J., Kibbey M. Angiogenesis as a component of epithelial-mesenchymal interactions. Epithelial-Mesenchymal Interactions in Cancer. 1995:235-248.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies