The main aspects of the impact of the new coronavirus infection SARS-CoV-2 on the development of infertility in men


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Since the end of 2019, the world has been overwhelmed by a pandemic of a new coronavirus infection (COVID-19), a disease that damages various organs and systems. Because of the extensive coverage of the population by the infection, the long-term effects of the disease are not well understood, which is of considerable scientific and practical interest. We performed an in-depth analysis and systematization of data from foreign and domestic publications in the Scopus, Web of Science, eLIBRARY, PubMed, Wiley Online Library, and Google Scholar databases were performed. Information searches included original articles, reviews, guidelines, manual comments, and editorials related to the effects of SARS-CoV-2 virus on the male reproductive system. Accumulated clinical evidence suggests that the SARS-CoV-2 virus and the COVID-19 disease it causes have a negative impact on male reproductive health.. Drugs with a negative effect on spermatogenesis are used in the therapy of patients with COVID-19. These include lopinavir, chloroquine and its derivatives, and widely used glucocorticosteroids. Lopinavir and chloroquine have subsequently been excluded from potential COVID-19 therapy. Although available data on the fertility of men with COVID-19 are scarce and the results of published studies are from a limited sample, it is clear that maintaining male reproductive health during the COVID-19 pandemic is a pressing issue in modern medicine and requires further in-depth study. Preconceptional screening should be recommended for men who have undergone COVID-19.

Full Text

Restricted Access

About the authors

S. P. Abdullaev

Russian Medical Academy of Continuous Professional Education

Email: luon@mail.ru
postgraduate student of Department of endoscopic urology Moscow, Russia

D. V Vihrev

Penza State Postgraduate Medical Institute -branch of Russian Medical Academy of Continuous Professional Education

Email: giuv@sura.ru
PhD, Associate Professor, Rector Penza, Russia

M. N Shatokhin

Russian Medical Academy of Continuous Professional Education

Email: sh.77@mail.ru
D. Med. Sci., Professor, Professor of the Department of endoscopic urology Moscow, Russia

O. V Teodorovich

Russian Medical Academy of Continuous Professional Education

Email: teoclinic1@gmail.com
D. Med. Sci., Professor, Head of Department of endoscopic urology Moscow, Russia

References

  1. Clerkin K.J., Fried J.A., Raikhelkar J., Sayer G., Griffin J.M., Masoumi A., Jain S.S., Burkhoff D., Kumaraiah D., Rabbani L., Schwartz A., Uriel N. COVID-19 and Cardiovascular Disease. Circulation. 2020;141(20):1648-1655. doi: 10.1161/CIRCULATIONAHA.120.046941.
  2. Alomari S.O., Abou-Mrad Z., Bydon A. COVID-19 and the central nervous system. Clin Neurol Neurosurg. 2020; 198:106116. Doi: 10.1016/j. clineuro.2020.106116
  3. Ng S.C., Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973-974. doi: 10.1136/gutjnl-2020-321195.
  4. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-430. doi: 10.1016/S2468-1253(20)30057-1.
  5. Migliaccio M.G., Di Mauro M., Ricciolino R., et al. Renal Involvement in COVID-19: A Review of the Literature. Infect Drug Resist. 2021;14:895-903. doi: 10.2147/IDR.S288869.
  6. Chen F., Lou D. Rising Concern on Damaged Testis of COVID-19 Patients. Urology. 2020;142:42. doi: 10.1016/j.urology.2020.04.069.
  7. Delgado-Roche L., Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch Med Res. 2020;51(5):384-387. doi: 10.1016/j.arcmed.2020.04.019.
  8. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Muller M.A. Drosten C., Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.
  9. Stanley K.E., Thomas E., Leaver M., Wells D. Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil Steril. 2020;114(1):33-43. Doi: 10.1016/j. fertnstert.2020.05.001.
  10. Illiano E., Trama F., Costantini E. Could COVID-19 have an impact on male fertility? Andrologia. 2020;52(6):e13654. doi: 10.1111/and.13654.
  11. Conde Cardona G., Quintana Pajaro L.D., Quintero Marzola I.D., Ramos Villegas Y., Moscote Salazar L.R. Neurotropism of SARS-CoV 2: Mechanisms and manifestations. J Neurol Sci. 2020;412:116824. doi: 10.1016/j.jns.2020.116824.
  12. Vishvkarma R., Rajender S. Could SARS-CoV-2 affect male fertility?. Andrologia. 2020;52(9):e13712. doi: 10.1111/and.13712.
  13. Ахвледиани Н.Д., Рева И.А., Чернушенко А.С., Пушкарь Д.Ю. Андрологические аспекты новой коронавирусной инфекции COVID-19. Урология. 2021:6:130-135. https://dx.doi.org/10.18565/urology.2021.6.130-135
  14. Wu A., Peng Y., Huang B., et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-328. doi: 10.1016/j.chom.2020.02.001.
  15. Ge X.Y., Li J.L., Yang X.L. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535-538. doi: 10.1038/nature12711.
  16. Khalili M.A., Leisegang K., Majzoub A., Finelli R., Panner Selvam M.K., Henkel R., Mojgan M., Agarwal A. Male Fertility and the COVID-19 Pandemic: Systematic Review of the Literature. World J Mens Health. 2020;38(4):506-520. doi: 10.5534/wjmh.200134.
  17. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., Hennig B.P., Kreuter M., Conrad C., Eils R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39(10):e105114. doi: 10.15252/embj.20105114.
  18. de Carvalho R.C., Groner M.F., Camillo J., Ferreira P.R.A., Fraietta R. The interference of COVID-19 in the male reproductive system: Important questions and the future of assisted reproduction techniques. Clinics (Sao Paulo). 2020;75:e2183. doi: 10.6061/clinics/2020/e2183
  19. Heurich A., Hofmann-Winkler H., Gierer S., Liepold T., Jahn O., Pohlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293-307. doi: 10.1128/JVI.02202-13.
  20. Shen Q., Xiao X., Aierken A., Yue W., Wu X., Liao M., Hua J. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med. 2020;24(16):9472- 9477. doi: 10.1111/jcmm.15541.
  21. Verma S., Saksena S, Sadri-Ardekani H. ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesis. Biol Reprod. 2020;103(3):449-451. doi: 10.1093/biolre/ioaa080.
  22. Wang Z., Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells. 2020;9(4):920. doi: 10.3390/cells9040920.
  23. Hikmet F., Mear L., Edvinsson A., Micke P., Uhlen M., Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610. doi: 10.15252/msb.20209610.
  24. Kuba K., Imai Y., Rao S., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879. doi: 10.1038/nm1267.
  25. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2):107-10. Doi: 10.1016/ s0014-5793(02)03640-2.
  26. Younis J.S., Abassi Z., Skorecki K. Is there an impact of the COVID-19 pandemic on male fertility? The ACE2 connection. Am J Physiol Endocrinol Metab. 2020;318(6):E878-E880.doi: 10.1152/ajpendo.00183.2020.
  27. Reis A.B., Araujo F.C., Pereira V.M., Dos Reis A.M., Santos R.A., Reis F.M. Angiotensin (1-7) and its receptor Mas are expressed in the human testis: implications for male infertility. J Mol Histol. 2010;41(1):75-80. doi: 10.1007/s10735-010-9264-8.
  28. Alexandre J., Cracowski J.L., Richard V., Bouhanick B.; ‘Drugs, COVID-19’ working group of the French Society of Pharmacology, Therapeutics. Renin-angiotensin-aldosterone system and COVID-19 infection. Ann Endocrinol (Paris). 2020;81(2-3):63-67.D oi: 10.1016/j.ando.2020.04.005.
  29. AlGhatrif M., Cingolani O., Lakatta E.G. The Dilemma of Coronavirus Disease 2019, Aging, and Cardiovascular Disease: Insights From Cardiovascular Aging Science. JAMA Cardiol. 2020;5(7):747-748. doi: 10.1001/jamacardio.2020.1329.
  30. Eroglu I., Uyaroglu O.A., Sain Guven G. The Relation Between COVID-19 and Renin Angiotensin Aldosterone System in the Light of Current Literature. Osmangazi Tip Dergisi. 2021 ;43(1):86-93. Doi: 10.20515/ otd.756606.
  31. Stopsack K.H., Mucci L.A., Antonarakis E.S., Nelson P.S., Kantoff P.W. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 2020;10(6):779-782. doi: 10.1158/2159-8290.CD-20-0451.
  32. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., Zhong N. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708-1720. doi: 10.1056/nejmoa2002032.
  33. Gagliardi L., Bertacca C., Centenari C., Merusi I., Parolo E., Ragazzo V., Tarabella V. Orchiepididymitis in a Boy With COVID-19. Pediatr Infect Dis J. 2020;39(8):e200-e202. doi: 10.1097/INF.0000000000002769.
  34. Abdel-Moneim A. COVID-19 Pandemic and Male Fertility: Clinical Manifestations and Pathogenic Mechanisms. Biochemistry (Mosc). 2021;86(4):389-396. doi: 10.1134/S0006297921040015.
  35. Pan F., Xiao X., Guo J., Song Y., Li H., Patel D.P., Spivak A.M., Alukal J.P., Zhang X., Xiong C., Li P.S., Hotaling J.M. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril. 2020;113(6):1135-1139. doi: 10.1016/j.fertnstert.2020.04.024.
  36. Pouletty, Marie et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Annals of the rheumatic diseases. 2020;79,8:999-1006. doi: 10.1136/annrheumdis-2020-217960.
  37. Duarte-Neto A.N., Monteiro R.A.A., da Silva L.F.F., Malheiros DMAC, de Oliveira E.P., Theodoro-Filho J., Pinho J.R.R., Gomes-Gouvea M.S., Salles A.P.M., de Oliveira I.R.S., Mauad T., Saldiva P.H.N., Dolhnikoff M. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology. 2020;77(2):186-197. doi: 10.1111/his.14160.
  38. Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., Kruessel J.S., Bielfeld A.P. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril. 2020;114(2):233-238. Doi: 10.1016/j. fertnstert.2020.05.028.
  39. Xu J., Qi L., Chi X., Yang J., Wei X., Gong E., Peh S., Gu J. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006;74(2):410-416. doi: 10.1095/biolreprod.105.044776.
  40. Kharbach Y., Khallouk A. Male genital damage in COVID-19 patients: Are available data relevant? Asian J Urol. 2021;8(3):324-326. Doi: 10.1016/j. ajur.2020.06.005.
  41. Ozveri H., Eren M.T., Kuroglu C.E., Sariguzel N. Atypical presentation of SARS-CoV-2 infection in male genitalia. Urol Case Rep. 2020;33:101349. doi: 10.1016/j.eucr.2020.101349.
  42. Ибишев Х.С., Мамедов Э.А., Гусова З.Р., Паленный А.И., Прокоп Я.О. Показатели тестостерона в сыворотке крови и гемодинамики тестикул до и после инфицирования SARS-COV-2 (пилотное исследование). Урология. 2021:5:5-9
  43. Yang M., Chen S., Huang B., et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. Eur Urol Focus. 2020;6(5):1124-1129. doi: 10.1016/j.euf.2020.05.009.
  44. Osuji, F.N., Onyenekwe, C.C., Ahaneku, J.E. et al. The effects of highly active antiretroviral therapy on the serum levels of pro-inflammatory and anti-inflammatory cytokines in HIV infected subjects. J Biomed Sci. 2018;25:88. https://doi.org/10.1186/s12929-018-0490-9
  45. Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004;24(8):439-454. doi: 10.1089/1079990041689665.
  46. Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001;65(1):131-150. doi: 10.1128/MMBR.65.1.131-150.2001.
  47. Sproston N.R., Ashworth J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018;9:754. Doi: 10.3389/ fimmu.2018.00754.
  48. Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease.Int J Mol Sci. 2019;20(23):6008. doi: 10.3390/ijms20236008.
  49. Abd-Allah A.R., Helal G.K., Al-Yahya A.A., Aleisa A.M., Al-Rejaie S.S. Al-Bakheet S.A. Pro-inflammatory and oxidative stress pathways which compromise sperm motility and survival may be altered by L-carnitine. Oxid Med Cell Longev. 2009;2(2):73-81. doi: 10.4161/oxim.2.2.8177.
  50. Aitken R.J., Roman S.D. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008;1(1):15-24. Doi: 10.4161/ oxim.1.1.6843.
  51. Попова А.Ю., Гамидов С.И., Овчинников Р.И. и др. Влияние COVID-19 на фертильность. Какие предпосылки и риски возникнут в новой реальности? Consilium Medicum. 2020;22(6):73-77
  52. Tremellen K., McPhee N., Pearce K., Benson S., Schedlowski M., Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. Am J Physiol Endocrinol Metab. 2018;314(3):E206-E213. doi: 10.1152/ajpendo.00279.2017.
  53. Fischer S., Ehlert U., Amiel Castro R. Hormones of the hypothalamic-pituitary-gonadal (HPG) axis in male depressive disorders - A systematic review and meta-analysis. Front Neuroendocrinol. 2019;55:100792. doi: 10.1016/j.yfrne.2019.100792.
  54. Julkunen I., Melen K., Nyqvist M., Pirhonen J., Sareneva T., Matikainen S. Inflammatory responses in influenza A virus infection. Vaccine. 2000;19 Suppl 1:S32-37. doi: 10.1016/s0264-410x(00)00275-9.
  55. Jung A., Schuppe H.C. Influence of genital heat stress on semen quality in humans. Andrologia. 2007;39(6):203-215. Doi: 10.1111/j. 1439-0272.2007.00794.x.
  56. Patel D.P., Guo J., Hotaling J.M. The jury is still out: COVID-19 and male reproduction. Fertil Steril. 2020;114(2):257-258. Doi: 10.1016/j. fertnstert.2020.06.013.
  57. Hedger M.P. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl. 2011 ;32(6):625-640. Doi: 10.2164/ jandrol.111.012989.
  58. Satie A.P., Mazaud-Guittot S., Seif I., et al. Excess type I interferon signaling in the mouse seminiferous tubules leads to germ cell loss and sterility. J Biol Chem. 2011;286(26):23280-23295. doi: 10.1074/jbc.M111.229120.
  59. Baker H.W. Reproductive effects of nontesticular illness. Endocrinol Metab Clin North Am. 1998;27(4):831-850. doi: 10.1016/s0889-8529(05)70043-8.
  60. Dong Q., Hawker F., McWilliam D., Bangah M., Burger H., Handelsman D.J. Circulating immunoreactive inhibin and testosterone levels in men with critical illness. Clin Endocrinol (Oxf). 1992;36(4):399-404. doi: 10.1111/j.1365-2265.1992.tb01466.x.
  61. Hedger M.P. The Immunophysiology of Male Reproduction. Knobil and Neill’s Physiology of Reproduction. 2015;805-892. doi: 10.1016/B978-0-12-397175-3.00019-3.
  62. Liew S.H., Meachem S.J., Hedger M.P. A stereological analysis of the response of spermatogenesis to an acute inflammatory episode in adult rats. J Androl. 2007;28(1):176-185. doi: 10.2164/jandrol.106.000752.
  63. Cayan S., Uguz M., Saylam B., Akbay E. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study. Aging Male. 2020;23(5):1493-1503. doi: 10.1080/13685538.2020.1807930.
  64. Ma L., Xie W., Li D., et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol. 2021;93(1):456-462. doi: 10.1002/jmv.26259.
  65. Камалов А.А., Мареев В.Ю., Орлова Я.А., Охоботов Д.А., Мареев Ю.В., Беграмбекова Ю.Л., Павлова З.Ш., Плисюк А.Г., Самоходская Л.М., Мершина Е.А., Третьяков А.А., Нестерова О.Ю., Шурыгина А.С. Особенности течения новой коронавирусной инфекции и варианты терапии больных в зависимости от андрогенного статуса (ОСНОВАТЕЛЬ): андрогенный статус у мужчин с COVID-19 и его связь с течением заболевания. Урология. 2021:6:85-99 Doi: 10.18565/ urology.2021.6.85-99
  66. Huang C., Ji X., Zhou W., Huang Z., Peng X., Fan L., Lin G., Zhu W. Coronavirus: A possible cause of reduced male fertility. Andrology. 2021;9(1):80-87. doi: 10.1111/andr.12907.
  67. Selvaraj K., Manickam N., Kumaran E., et al. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington’s disease: A putative role of the huntingtin gene in steroidogenesis. J Steroid Biochem Mol Biol. 2020;197:105526. doi: 10.1016/j.jsbmb.2019.105526
  68. Acevedo-Rodriguez A., Kauffman A.S., Cherrington B.D., Borges C.S., Roepke T.A., Laconi M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol. 2018;30(10). doi: 10.1111/jne.12590.
  69. Ma L., Xie W., Li D., et al. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. medRxiv; 2020. doi: 10.1101/2020.03.21.20037267.
  70. Pozzilli P., Lenzi A.Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism. 2020;108:154252. doi: 10.1016/j.metabol.2020.154252.
  71. Iglesias P., Prado F., Macias M.C., Guerrero M.T., Munoz A., Ridruejo E., Tajada P., Garcia-Arevalo C., Diez J.J. Hypogonadism in aged hospitalized male patients: prevalence and clinical outcome. J Endocrinol Invest. 2014;37(2):135-141. doi: 10.1007/s40618-013-0009-x.
  72. Dutta S., Sengupta P. SARS-CoV-2 and Male Infertility: Possible Multifaceted Pathology. Reprod Sci. 2021 Jan;28(1):23-26. Doi: 10.1007/ s43032-020-00261-z.
  73. Sansone A., Mollaioli D., Ciocca G., et al. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J Endocrinol Invest. 2021;44(2):223-231. doi: 10.1007/s40618-020-01350-1.
  74. Kandasamy M, Radhakrishnan R.K., Poornimai Abirami G.P. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res. 2019;44(8):1781-1795. doi: 10.1007/s11064-019-02833-1.
  75. Асфандияров Ф.Р., Круглов В.А., Выборнов С.В., Сеидов К.С., Нерсесян А.Ю., Круглова Е.Ю. Постковидный транзиторный гипогонадизм и эректильная дисфункция. Экспериментальная и клиническая урология 2021;14(3):112-118
  76. Временные методические рекомендации. Профилактика диагностика и лечение новой коронавирусной инфекции COVID-19 версия 5, 1-122 (2020)
  77. Adaramoye O.A., Akanni O.O., Adewumi O.M., Owumi S.E. Lopinavir/ Ritonavir, an Antiretroviral Drug, Lowers Sperm Quality and Induces Testicular Oxidative Damage in Rats. Tokai J Exp Clin Med. 2015 Jun 20;40(2):51-57.
  78. Cao B., Wang Y., Wen D., et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. doi: 10.1056/NEJMoa2001282.
  79. Colson P., Rolain J.M., Lagier J.C., Brouqui P., Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-Int J Antimicrob Agents. 2020;55(4):105932. Doi: 10.1016/j. ijantimicag.2020.105932.
  80. Gautret P., Lagier J.C., Parola P., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label nonrandomized clinical trial.Int J Antimicrob Agents. 2020;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949.
  81. Asuquo O.R., Igiri A.O., Olawoyin O.O., Eyong E.U. Correlation of histological and histometric changes in rats testes treated with chloroquine phosphate. Niger J Physiol Sci. 2007;22(1-2):135-139. doi: 10.4314/njps. v22i1-2.54885.
  82. Wilson K.C., Chotirmall S.H., Bai C. & Rello J. COVID-19: Interim Guidance on Management Pending Empirical Evidence. Am. Thorac. Soc.Int. Task Force 1-12 (2020).
  83. Временные методические рекомендации. Профилактика диагностика и лечение новой коронавирусной инфекции COVID-19 версия 14, 1-233 (2021)
  84. Bambino T.H.,Hsueh A.J.Direct inhibitory effectofglucocorticoidsupon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinology. 1981;108(6):2142-2148. doi: 10.1210/endo-108-6-2142.
  85. Whirledge S., Cidlowski J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010;35(2):109-125.
  86. Yazawa H., Sasagawa I., Nakada T. Apoptosis oftesticular germ cells induced by exogenous glucocorticoid in rats. Hum Reprod. 2000;15(9):1917-1920. doi: 10.1093/humrep/15.9.1917.
  87. Zhang J., Hu G., Huang B. et al. Dexamethasone suppresses the differentiation of stem Leydig cells in rats in vitro. BMC Pharmacol Toxicol. 2019;20. https://doi.org/10.1186/s40360-019-0312-z

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies