Sperm DNA defects and male infertility


Cite item

Full Text

Abstract

About the authors

A N Abubakirov

A N Abubakirov

References

  1. Sharlip I. D. et al. Best practice policies for male infertility. Fertil. and Steril. 2002; 77: 873-882.
  2. Тер-Аванесов Г. В. Андрологические аспекты бесплодного брака: Автореф. дис. ... д-ра мед. наук. М.; 2002.
  3. Mortimer D., Fraser L. ESHRE Andrology Special Interest Group. Consensus workshop on advanced diagnostic andrology techniques. Hum. Reprod. 1996; 11: 1463-1479.
  4. McLachlan R., de Krester D. Male infertility: The case for continued research. Med. J. Aust. 2001; 174: 116-117.
  5. Артифексов С. Б. Андрологические аспекты бесплодного брака. Акуш. и гин. 1996; 2: 46-47.
  6. Николаева М. А. Антитела к антигенам сперматозоидов человека в норме и при нарушениях репродуктивной функции: Автореф. дис. ... д-ра биол. наук. М.; 2007.
  7. Nagy Z. P. et al. The result of intracytoplasmic sperm injection is not related to any of the basic sperm parameters. Hum. Reprod. 1995; 10: 1123-1129.
  8. Katsuki T. et al. Prediction of outcomes of assisted reproduction treatment using the calcium ionophore-induced acrosome reaction. Hum. Reprod. 2005; 20: 469-475.
  9. Hammadeh M. E. et al. The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum. Reprod. 1996; 11: 2468-2471.
  10. Tesarik J. The paternal effects on cell division in the human preimplantation embryo. Reprod. BioMed. Online 2005; 10: 370-375.
  11. Tesarik J., Greco E., Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum. Reprod. 2004; 19: 611-615.
  12. Sun J. G., Jurisicova A., Casper R. F. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol. Reprod. 1997; 56: 602-607.
  13. Duran E. H. et al. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum. Reprod. 2002; 17: 3122-3128.
  14. Oliva R. Protamines and male infertility. Hum. Reprod. Update 2006; 12: 417-435.
  15. Aitken R. J. et al. Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic. Biol. Med. 1996; 21: 495-504.
  16. Henkel R. et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm function in non-leukocytospermic patients. Fertil. and Steril. 2005; 83: 635-642.
  17. Hendin B. N. et al. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J. Urol. (Baltimore) 1999; 161: 1831-1834.
  18. Gorczyca W. et al. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp. Cell Res. 1993; 207: 202-205.
  19. Collins A. R. et al. The Comet assay: what can it really tell us? Mutat. Res. 1997; 375: 183-193.
  20. Lopes S. et al. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil. and Steril. 1998; 69: 528-532.
  21. Tomlinson M. J. et al. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum. Reprod. 2001; 16: 2160-2165.
  22. Tomsu M., Sharma V., Miller D. Embryo quality and IVF treatment outcomes may correlate with different sperm Comet assay parameters. Hum. Reprod. 2002; 17: 1856-1862.
  23. Беломестнов С. Р. Обоснование применения методов коррекции эндотоксикоза в комплексе преконцепционной подготовки супружеских пар с невынашиванием беременности: Автореф. дис. ... канд. мед. наук. Челябинск; 2006.
  24. Henkel R. et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil. and Steril. 2004; 81: 965-972.
  25. Donnelly E. T. et al. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum. Reprod. 2001; 16: 1191-1199.
  26. Larson K. L. et al. Density gradient centrifugation and glass wool filtration of semen remove spermatozoa with damaged chromatin structure. Hum. Reprod. 1999; 14: 2015-2019.
  27. Agarwal A. et al. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod. BioMed. Online 2004; 8: 616-627.
  28. Nicopoullos J. D.et al. Assisted reproduction in the azoospermic couple. Int. J. Obstetr. Gynaecol. 2004; 111: 1190-1203.
  29. Hazout A. et al. High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod. BioMed. Online 2006; 12: 19-25.
  30. Oliva R., Dixon G. H. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Progr. Nucleic Acid Res. Mol. Biol. 1991; 40: 25-94.
  31. Meistrich M. L., Mohapatra B., Shirley C. R., Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 2003; 111: 438-488.
  32. Ward W. SW., Coffey D. S. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod. 1991; 44: 569-574.
  33. Hud N. V., Allen M. J., Downing K. H. et al. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem. Biophys. Res. Commun. 1993; 193: 1347-1354.
  34. Sotolongo B., Lino E., Ward W. S. Ability of hamster spermatozoa to digest their own DNA. Biol. Reprod. 2003; 69: 2029-2035.
  35. Wykes S. M., Krawetz S. A. The structural organization of sperm chromatin. J. Biol. Chem. 2003; 278: 29471-29477.
  36. Aitken R. J., Baker M. A., Sawyer D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod. BioMed. Online 2003; 7: 65-70.
  37. Olsen A. K. et al. How do male germ cells handle DNA damage? Toxicol. Appl. Pharmacol. 2005; 207: 521-531.
  38. Jones R., Mann T., Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil. and Steril. 1979; 31: 531-537.
  39. Aitken R. J., Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 2001; 122: 497-506.
  40. Kao S. H. et al. Increase of oxidative stress in human sperm with lower motility. Fertil. and Steril. 2008; 89: 5: 1183-1190.
  41. Zorn B., Vidmar G., Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int. J. Androl. 2003; 26: 279-285.
  42. Twigg J. et al. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol. Hum. Reprod. 1998; 4: 439-445.
  43. Plante M., de Lamirande E., Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil. and Steril. 1994; 62: 387-393.
  44. Agarwal A., Said T. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum. Reprod. Update 2003; 9: 331-345.
  45. Agarwal A., Saleh R. A. Role of oxidants in male infertility: rationale, significance, and treatment. Urol. Clin. N. Am. 2002; 29: 817-827.
  46. Henkel R. et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod. BioMed. Online 2003; 7: 477-484.
  47. Hammadeh M. E. et al. Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod. BioMed. Online 2006; 13: 696-706.
  48. Verit F. F. et al. No increase in sperm DNA damage and seminal oxidative stress in patients with idiopathic infertility. Arxh. Gynecol. Obstetr. 2006; 274: 339-344.
  49. Greco E. et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum. Reprod. 2005; 20: 226-230.
  50. Steele E. K. et al. A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol. Hum. Reprod. 1999; 5: 831-835.
  51. Irvine D. S. et al. DNA integrity in human spermatozoa: relationships with semen quality. J. Androl. 2000; 21: 33-44.
  52. Nasr-Esfahani M. H. et asl. Effect of protamine-2 deficiency on ICSI outcome. Reprod. Biomed. Online 2004; 9: 652-658.
  53. McPherson S., Longo F. J. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur. J. Histochem. 1993; 37: 109-128.
  54. Tarozzi N., Bizzaro D., Flamigni C., Borini A. Clinical relevance of sperm DNA damage. Reprod. BioMed. Online 2007; 14: 746-757.
  55. Huckins C. The morphology and kinetics of spermatogonial degeneration in normal adult rats: an analysis using a simplified classification of the germinal epithelium. Anat. Rec. 1978; 190: 905-926.
  56. Blanco-Rodriguez J., Martinez-Garcia C. Spontaneous germ cell death in the testis of the adult rat takes the form of apoptosis: re-evaluation of cell types that exhibit the ability to die during spermatogenesis. Cell Proliferat. 1996; 29: 13-31.
  57. Richburg J. H. The relevance of spontaneous- and chemically-induced alterations in testicular germ cell apoptosis to toxicology. Toxicol. Lett. 2000; 112-113; 79-86.
  58. Sakkas D., Mariethoz E., St John J. C. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp. Cell Res. 1999; 251: 350-355.
  59. Muratori M. et al. Functional and ultrastructural features of DNA-fragmented human sperm. J. Androl. 2000; 21: 903-912.
  60. De Jonge C. The clinical value of sperm nuclear DNA assessment. Hum. Fertil. (Cambridge) 2002; 5: 51-53.
  61. Perrealt S. D. et al. Integrating new tests of sperm genetic integrity into semen analysis: breakout group discussion. Advanc. Exp. Med. Biol. 2003; 518: 253-268.
  62. Oehninger S. C., Kruger T. F. Male infertility diagnosis and treatment. Informa Healthcare. London; 2007.
  63. Evenson D., Jost L. Sperm chromatin structure assay is useful for fertility assessment. Meth. Cell Sci. 2000; 22: 169-189.
  64. Evenson D. P., Larson K. L., Jost L. K. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 2002; 23: 25-43.
  65. Zini A. et al. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil. and Steril. 2001; 75: 674-677.
  66. Bungum M. et al. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum. Reprod. 2004; 19: 1401-1408.
  67. Borini A. et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum. Reprod. 2006; 21: 2876-2881.
  68. Sergerie M. et al. Sperm DNA fragmentation: threshold value in male fertility. Hum. Reprod. 2005; 20: 3446-3451.
  69. Lewis S. E. et al. An algorithm to predict pregnancy in assisted reproduction. Hum. Reprod. 2004; 19: 1385-1394.
  70. Aravindan G. R. et al. Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp. Cell Res. 1997; 236: 231-237.
  71. Virro M. R., Larson-Cook K. L., Evenson D. P. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil. and Steril. 2004; 81: 1289-1295.
  72. Morris I. D. et al. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum. Reprod. 2002; 17: 990-998.
  73. Benchaib M. et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum. Reprod. 2003; 18: 1023-1028.
  74. Huang C. C. et al. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil. and Steril. 2005; 84: 130-140.
  75. Zini A. et al. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum. Reprod. 2005; 20: 3476-3480.
  76. Seli E. et al. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil. and Steril. 2004; 82: 378-383.
  77. Nasr-Esfahani M. H. et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod. BioMed. Online 2005; 11: 198-205.
  78. Greco E. et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum. Reprod. 2005; 20: 2590-2594.
  79. Lin M. H., Kuo-Kuang Lee R., Li S. H. et al. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytopasmic sperm injection, but might be related to spontaneous abortion rates. Fertil. and Steril. 2008; 90: 2: 352-359.
  80. Gandini L. et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum. Reprod. 2004; 19: 1409-1417.
  81. Slama R. et al. Influence of paternal age on the risk of spontaneous abortion. Am. J. Epidemiol. 2005; 161: 816-823.
  82. Carrell D. T. et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch. Androl. 2003; 49: 49-55.
  83. Braude P., Bolton V., Moore S. Human gene expression first occurs between the four- and eight-cell stags of preimplantation development. Nature; 332: 459-461.
  84. Benchaib M. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator oif assisted reproductive technology outcome. Fertil. and Steril. 2007; 87: 93-100.
  85. Menkveld R. et al. Sperm selection capacity of the human zona pellucida. Mol. Reprod. Dev. 1991; 30: 346-352.
  86. Tesarik J., Mendoza-Tesarik R., Mendoza C. Sperm nuclear DNA damage: update on the mechanism, diagnosis and treatment. Reprod. BioMed. Online 2006; 12: 715-721.
  87. Mйnйzo Y. J. Paternal and maternal factors in preimplantation embryogenesis: interaction with the biochemical environment. Reprod. BioMed Online 2006; 12: 616-621.
  88. Sakkas D. et al. The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Hum. Reprod. 2000; 15: 1112-1116.
  89. Zini A. et al. Influence of semen processing technique on human sperm DNA integrity. Urology 2000; 56: 1081-1084.
  90. Rolf C. et al. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study. Hum. Reprod. 1999; 14: 1028-1033.
  91. Berkovitz A. et al. The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum. Reprod. 2005; 20: 185-190.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies