MAGNETIC RESONANCE SPECTROSCOPY OF THE PROSTATE: A DESCRIPTION OF THE METHODOLOGY AND THE OWN RESULTS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The first part of the article discusses the technical details of the magnetic resonance spectroscopy (MRS) of the prostate, postprocessing and assessment of the results; the second part of article presents a several own clinical examples, and describes the advantages and disadvantages of the methodology. Of all available clinical MRI techniques for the evaluation of the prostate multivoxel spectroscopy is the most difficult. Thus, even with abidance of all the technical aspects of the evaluation, it impossible to be sure absolutely that qualitative range of voxels of interest will be received. Upon receipt of quality results with interpretable spectra, it is still difficult to perform the differential diagnosis of cancer with benign changes. These complexities limit the widespread use of prostate MRS. In our opinion, the use of this method is most effective for a diagnosis of cancer localized in the peripheral zone of the prostate, and for the assessment of the dynamics of non-surgical treatment of the tumor.

Full Text

Restricted Access

About the authors

S. V Kitaev

European Medical Center

Email: skitaev@emcmos.ru
Radiology Unit MD, radiologist Moscow

S. P Morozov

European Medical Center

Radiology Unit Moscow

A. V Zhivov

European Medical Center

Urology Unit Moscow

References

  1. Nagarajan R., Margolis D.J.A., Raman S.S. et al. MR Spectroscopic Imaging of peripheral zone in prostate cancer using a 3T MRI Scanner: Endorectal versus External Phased Array Coils. Magnetic Resonance Insights. 2013; 6: 51-58.
  2. Qayyum A., Coakley F.V., Lu Y. et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. A J R. 2004; 183: 1079-1083.
  3. Scheenen T.W., Klomp D.W., Roll S.A. et al. Fast acquisition-weighted three-dimensional proton MR spectroscopic imaging of the human prostate. Magn. Reson. Med. 2004; 52: 80-88.
  4. Cunningham C.H., Vigneron D.B., Marjanska M. et al. Sequence design for magnetic resonance spectroscopic imaging of prostate cancer at 3 T Magn. Reson. Med. 2005; 53: 1033-1039.
  5. Fütterer J.J., Scheenen T.W., Huisman H.J. et al. Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest. Radiol. 2004; 39: 671-680.
  6. Chen A.P., Cunningham C.H., Ozturk-Isik E. et al. High-speed 3T MR spectroscopic imaging of prostate with flyback echo-planar encoding. J. Magn. Reson. Imaging. 2007; 25: 1288-1292.
  7. Claus F.G., Hricak H., Hattery R.R. Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. RadioGraphics. 2004; 24(suppl 1): 167-180.
  8. Hricak H. MR imaging and MR spectroscopic imaging in the pretreatment evaluation of prostate cancer. Br. J. Radiol. 2005; 78(spec no 2): 103-111.
  9. Scheenen T.W., Klomp D.W., Roll S.A. et al. Fast acquisition-weighted three-dimensional proton MR spectroscopic imaging of the human prostate. Magn. Reson. Med. 2004; 52: 80-88.
  10. Tran T.K., Vigneron D.B., Sailasuta N. et al. Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn. Reson. Med. 2000; 43: 23-33.
  11. Costello L.C., Franklin R.B. Concepts of citrate production and secretion by prostate. Part 1. Metabolic relationships. Prostate. 1991; 18: 25-46.
  12. Mulkern R.V., Bowers J.L., Peled S. et al. Citrate signal enhancement with a homonuclear J-refocusing modification to double-echo PRESS sequences. Magn. Reson. Med. 1996; 36: 775-780.
  13. Heerschap A., Jager G.J., van der Graaf M. et al. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anti-cancer Res. 1997; 17: 1455-1460.
  14. Kurhanewicz J., Swanson M.G., Nelson S.J. et al. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Magn. Reson. Imaging. 2002; 16: 451-463.
  15. Coakley F.V., Kurhanewicz J., Qayyum A. Prostate. In: Edelman R.R., Hesselink J.R., Zlatkin M.B., Crues J.V. editors. Clinical magnetic resonance imaging. Elsevier; Philadelphia, PA. 2006. Р. 2906-2931.
  16. Jung J.A., Coakley F.V., Vigneron D.B. et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology. 2004; 233: 701-708.
  17. Fütterer J.J., Scheenen T.W., Heijmink S.W. et al. Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate. Invest. Radiol. 2007; 42: 116-122.
  18. Kurhanewicz J., Vigneron D.B. Advances in MR spectroscopy of the prostate. Magn Reson Imaging. Clin. N. Am. 2008; 16: 697-710.
  19. Engelhard K., Hollenbach H.P., Deimling M. et al. Combination of signal intensity measurements of lesions in the peripheral zone of prostate with MRI and serum PSA level for differentiating benign disease from prostate cancer. Eur. Radiol. 2000; 10: 1947-1953.
  20. van Dorsten F.A., van der Graaf M., Engelbrecht M.R. et al. Combined quantitative dynamic contrast enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cance. J Magn Reson Imaging. 2004; 20: 279-287.
  21. Shukla-Dave A., Hricak H., Eberhardt S.C. et al. Chronic Prostatitis: MR Imaging and 1H MR Spectroscopic Imaging findings - initial observations. Radiology. 2004; 231. N. 3: 717-724.
  22. Zakian K.L., Eberhardt S., Hricak H. et al. Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging - initial results. Radiology. 2003; 229: 241-247.
  23. Westphalen A.C., Coakley F.V., Kurhanewicz J. et al. Mucinous adenocarcinoma of the prostate: MRI and MR spectroscopy features. A J R. 2009; 193: 238-243.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies