Experimental Models of Stress Urinary Incontinence


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite numerous medical and surgical treatment strategies available, the problem of stress urinary incontinence (SUI) in women is still not completely resolved. Continuing research is underway to modify the sling operations and develop new bulk-enhancing agents, including the use of tissue engineering and cell technologies.
To evaluate the safety and effectiveness of new methods at the preclinical stage, adequate and reproducible experimental models of SUI in laboratory animals should be used.
This article presents analysis of all SUI models described in the scientific literature and the results of an experimental study comparing two primary ways of modeling, based on bilateral pudendal nerve damage in female rats.
The experiment results showed that only bilateral electrocoagulation of proximal part of pudendal nerves by the posterior approach ensured a stable and long-term SUI symptoms in animals in the form of leak point pressure reduction in the urodynamic study and increase of the of the urethral lumen according to histomorphometric analysis.
The results suggest that an adequate experimental SUI model is urethral rabdomiosphincter denervation by pudendal nerve electrocoagulation by the posterior surgical approach, when the nerve is damaged in the area of its separation from sciatic nerve. In this case stable and reproducible results are obtainable.

About the authors

A V Makarov

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

T H Fathudinov

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

E A Tuhovskaja

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

I A Apolihina

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

I V Arutjunjan

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

A M Ismailova

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

A V Elchaninov

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

E Ju Kananyhina

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

T A Teterina

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

G B Bolshakova

Research Institute of Human Morphology

Research Institute of Human Morphology

A V Vasilev

Research Institute of Human Morphology

Research Institute of Human Morphology

V V Glinkina

Russian National Research Medical University n.a. N.I. Pirogov

Russian National Research Medical University n.a. N.I. Pirogov

A N Murashev

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

G T Suhih

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

V.I. Kulakov Research Center for Obstetrics, Gynecology andPerinatology

References

  1. Hempel C., Wienhold D., Benken N., Eggersmann C., Thwoff J.W. Definition of overactive bladder and epidemiology of urinary incontinence. Urology. 1997;50:4.
  2. Mischinger J., Amend B., Reisenauer C., Bedke J., Naumann G., Germann M., Kruck S., Arenas Desilva L.F., Wallwiener H., Koelbl H., Nitti V., Sievert K.D. Different surgical approaches for stress urinary incontinence in women. Minerva Ginecol. 2013;65(1):21 -28.
  3. Herrera-Imbroda B., Lara M.F., Izeta A., Sievert K.D., Hart M.L. Stress urinary incontinence animal models as a tool to study cell- based regenerative therapies targeting the urethral sphincter. Adv. Drug. Deliv. Rev. 2014;23:pii: S0169-409X(14)00226-9.
  4. Lee J.Y., Cannon T.W., Pruchnic R., Fraser M.O., Huard J., Chancellor M.B. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2003;14(1):31 -37.
  5. Huang Y., Daneshgari F., Liu G. Successful induction of stress urinary incontinence in mice by vaginal distension does not depend on the estrous cycle. Urology. 2014;83(4) :958.
  6. Deng K., Lin D.L., Hanzlicek B., Balog B., Penn M.S., Kiedrowski M.J., Hu Z., Ye Z., Zhu H., Damaser M.S. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am. J. Physiol. Renal. Physiol. 2015;308(2):F92-F100.
  7. Rodriguez L.V., Chen S., Jack G.S., de Almeida F., Lee K.W., Zhang R. New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency.Am. J.Physiol. Regul. Integr. Comp. Physiol.2005;288(5): R1332-R1338.
  8. Pauwels E., DeWachter S., Wyndaele J.J. Evaluation of different techniques to create chronic urinary incontinence in the rat. BJU Int. 2009;103(6):782-786.
  9. Skaff M., Pinto E., Leite K.R., Almeida F.G. Development of a rabbit's urethral sphincter deficiency animal model for anatomical- functional evaluation. Int. Braz. J. Urol. 2012;38(1): 17-24.
  10. Praud C., Sebe P., Bierinx A.S., Sebille A. Improvement of urethral sphincter deficiency in female rats following autologous skeletal muscle myoblasts grafting. Cell. Transplant. 2007 ;16(7) :741 -749.
  11. Takahashi S., Chen Q., Ogushi T., Fujimura T., Kumagai J., Matsumoto S., Hijikata S., Tabata Y., Kitamura T. Periurethral injection of sustained release basic fibroblast growth factor improves sphincteric contractility of the rat urethra denervated by botulinum-a toxin. J. Urol. 2006;176(2):819-823.
  12. Salcedo L., Mayorga M., Damaser M., BalogB., Butler R., Penn M., Zutshi M. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem. Cell. Res. 2013;10(1):95-102.
  13. Hong S.H., Piao S., Kim I.G., Lee J.Y., Cho H.J., Kim S.W., Hwang T.K., Lee J.Y. Comparison of three types of stress urinary incontinence rat models: electrocauterization, pudendal denervation, and vaginal distension. Urology. 2013;81(2):465.
  14. Liu G., Pareta R.A., Wu R., Shi Y., Zhou X., Liu H., Deng C., Sun X., Atala A., Opara E.C., Zhang Y. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials. 2013;34(4):1311-1326.
  15. Zhang X., Alwaal A., Lin G., Li H., Zaid U.B., Wang G., Wang L., Banie L., Ning H., Lin C.S., Guo Y., Zhou L., Lue T.F. Urethral musculature and innervation in the female rat. Neurourol. Urodyn. 2015;18.
  16. Shi L.B., Cai H.X., Chen L.K., Wu Y, Zhu S.A., Gong X.N., Xia Y.X., Ouyang H.W., Zou X.H. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency. Biomaterials. 2014;35(5) :1519-1530. 17.
  17. NRC [National Research Council]. 1996. Guide for the Care and Use of Laboratory Animals. 7th ed. Washington DC: National Academy Press, 1996.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies