Point somatic mutations in bladder cancer: key carcinogenesis events, diagnostic markers and therapeutic targets

  • Authors: Mikhailenko D.S1,2, Nemtsova M.V2,3
  • Affiliations:
    1. N.A. Lopatkin Scientific Research Institute of Urology and Interventional Radiology - branch of National Medical Research Radiological Center of the Ministry of Healthcare of the Russian Federation
    2. Research Centre of Medical Genetics
    3. Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian Federation
  • Issue: No 1 (2016)
  • Pages: 100-105
  • Section: Articles
  • URL: https://journals.eco-vector.com/1728-2985/article/view/282358
  • ID: 282358

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Development of bladder cancer (BC) involves accumulating several genetic alterations in somatic cells: point mutations, extended deletions in the localization of tumor suppressor genes, amplification of oncogenes, aberrant DNA methylation, changes in the expression pattern of regulatory RNAs and numerous structural genes. From all of the above, point mutations have the greatest potential as diagnostic markers, as they frequently occur in carcinogenesis, characterize initiation and further clonal evolution of malignancy and represent a change in DNA detectable by routine molecular genetic methods. If we look at the clinical classification of bladder cancer, 90% of the BC presented by urothelial carcinoma, 80% of patients had superficial and 20% - of muscle-invasive tumors. The differences in morphological classification, staging and prognosis of bladder cancer represent different pathogenic pathways of tumor development. Superficial bladder cancer develops through a stage of hyperplasia involving activation of mutations in the genes FGFR3, PIK3CA, HRAS, ERBB2, TERT and others. It is shown that frequent point mutations FGFR3, PIK3CA and TERT are present in the tumor cells in the urine sediment and can be considered as markers for non-invasive molecular genetic diagnosis of primary BC and for monitoring of disease recurrence. Muscle-invasive bladder cancer develops through the stages of dysplasia and carcinoma in situ, in which mutations initially occur in key suppressor genes (TP53 and RB1) and a number of chromatin remodeling genes. This leads to genomic instability and multiple chromosome aberrations that are subjected to selection in the further clonal evolution of tumors towards predominance of more malignant subclones. This review presents systematized information about the main mutations in BC carcinogenesis, their role in the primary tumor progression, metastasizing and role as a target for diagnosis and targeted therapy.

Full Text

Restricted Access

About the authors

D. S Mikhailenko

N.A. Lopatkin Scientific Research Institute of Urology and Interventional Radiology - branch of National Medical Research Radiological Center of the Ministry of Healthcare of the Russian Federation; Research Centre of Medical Genetics

Email: dimserg@mail.ru
L.R., Ph.D.

M. V Nemtsova

Research Centre of Medical Genetics; Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian Federation

Email: nemtsova_m_v@mail.ru

References

  1. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F.Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J Cancer. 2015;136(5): E359-E386.
  2. Tan D., Lynch H.T. Principles of Molecular Diagnostics and Personalized Cancer Medicine. Lippincott Williams & Wilkins, Philadelphia (USA), 2013.
  3. Pal'tsev M.A., Zaletaev D.V. Systems of genetic and epigenetic markers in the diagnosis of cancer. M.:Meditsina. 2009;384p. Russian (Пальцев М.А., Залетаев Д.В. Системы генетических и эпигенетических маркеров в диагностике онкологических заболеваний. М.:Медицина. 2009.384 c.)
  4. Hoglund M. The bladder cancer genome: chromosomal changes as prognostic markers, opportunities, and obstacles. Urol. Oncol. 2012; 30(4): 533-540.
  5. Knowles M.A., Hurst C.D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer. 2015; 15(1): 25-41.
  6. Pandith A.A., Zhah Z.A., Siddiqi M.A. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer. Urol. Oncol. 2013; 31(4):398-406.
  7. Guancial E.A., Werner L., Bellmunt J., Bamias A., Choueiri T.K., Ross R., Schutz F.A., Park R.S., O'Brien R.J., Hirsch M.S., Barletta J.A., Berman D.M., Lis R., Loda M., Stack E. C., Garraway L.A., Riester M., Michor F., Kantoff P.W., Rosenberg J.E. FGFR3 expression in primary and metastatic urothelial carcinoma of the bladder. Cancer Med. 2014; 3(4): 835-844.
  8. Dodurga Y., Tataroglu C., Kesen Z., Satiroglu-Tufan N.L. Incidence of fibroblast growth factor receptor 3 gene (FGFR3) A248C, S249C, G372C, and T375C mutations in bladder cancer. Genet. Mol. Res. 2011;10(1):86-95.
  9. Liu X., Zhang W., Geng D., He J., Zhao Y., Yu L. Clinical significance of fibroblast growth factor receptor-3 mutations in bladder cancer: a systematic review and meta-analysis. Genet. Mol. Res. 2014;13(1):1109-1120.
  10. Iyer G., Milowsky M.I. Fibroblast growth factor receptor-3 in urothelial tumorigenesis. Urol. Oncol. 2013;31(3):303-311.
  11. Silverberg D.M. Urothelial carcinoma of the upper urinary tract diagnosed via FGFR3 mutation detection in urine: a case report. BMC Urol. 2012;12:20.
  12. Zuiverloon T.C., van der Aa M.N., van der Kwast T.H., Steyerberg E.W., Lingsma H.F., Bangma C.H., Zwarthoff E.C. Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin. Cancer Res. 2010;16(11):3011-3018.
  13. Zuiverloon T.C., Tjin S.S., Busstra M. et al. Optimization of nonmuscle invasive bladder cancer recurrence detection using a urine based FGFR3 mutation assay. J. Urol. 2011;186(2):707-712.
  14. Millholland J.M., Li S., Fernandez C.A., Shuber A.P. Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing. Res. Rep. Urol. 2012; 4: 33-40.
  15. Ross R.L., Askham J.M., Knowles M.A. PIK3CA mutation spectrum in urothelial carcinoma reflects cell context-dependent signaling and phenotypic outputs. Oncogene. 2013; 32: 768-776.
  16. Millis S.Z., Bryant D., Basu G., Bender R., Vranic S., Gatalica Z., Vogelzang N.J. Molecular profiling of infiltrating urothelial carcinoma of bladder and nonbladder origin. Clin. Genitourin. Cancer. 2015;13(1):e37-e49.
  17. Borah S., Xi L., Zaug A.J., Powell N.M., Dancik G.M., Cohen S.B., Costello J.C., Theodorescu D., Cech T.R. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science. 2015; 347(6225): 1006-1010.
  18. Wu S., Huang P., Li C., Huang Y., Li X., Wang Y., Chen C., Lv Z., Tang A., Sun X., Lu J., Li W., Zhou J., Gui Y., Zhou F., Wang D., Cai Z. Telomerase reverse transcriptase gene promoter mutations help discern the origin of urogenital tumors: a genomic and molecular study. Eur. Urol. 2014; 65(2): 274-277.
  19. Hurst C.D., Platt F.M., Knowles M.A. Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine. Eur. Urol. 2014; 65(2): 367-369.
  20. Wang K., Liu T., Ge N., Liu L., Yuan X., Liu J., Kong F., Wang C., Ren H., Yan K., Hu S., Xu Z., Bjorkholm M., Fan Y., Zhao S., Liu C., Xu D. TERT promoter mutations are associated with distant metastases in upper tract urothelial carcinomas and serve as urinary biomarkers detected by a sensitive castPCR. Oncotarget. 2014;5(23):12428-12439.
  21. Allory Y., Beukers W., Sagrera A., Flάndez M., Marques M., Mάrquez M., van der Keur K.A., Dyrskjot L., Lurkin I., Vermeij M., Carrato A., Lloreta J., Lorente J.A., Carrillo-de Santa Pau E., Masius R.G., Kogevinas M., Steyerberg E.W., van Tilborg A.A., Abas C., Orntoft T.F., Zuiverloon T.C., Malats N., Zwarthoff E.C., Real F.X. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur. Urol. 2014; 65(2): 360-366.
  22. Kinde I., Munari E., Faraj S.F., Hruban R.H., Schoenberg M., Bivalacqua T., Allaf M., Springer S., Wang Y., Diaz L.A. Jr, Kinzler K.W., Vogelstein B., Papadopoulos N., Netto G.J. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 2013;73(24):7162-7167.
  23. Бабаян А.Ю., Башкатов С.В., Карякин О.Б., Теплов А.А., Головащенко М.П., Шкарупо В.В., Залетаев Д.В., Немцова М.В. Молекулярногенетические маркеры как факторы прогноза течения поверхностного рака мочевого пузыря. Онкоурология. 2009; 3: 19-24
  24. Gui Y., Guo G., Huang Y., Hu X., Tang A., Gao S., Wu R., Chen C., Li X., Zhou L., He M., Li Z., Sun X., Jia W., Chen J., Yang S., Zhou F., Zhao X., Wan S., Ye R., Liang C., Liu Z., Huang P., Liu C., Jiang H., Wang Y., Zheng H., Sun L., Liu X., Jiang Z., Feng D., Chen J., Wu S., Zou J., Zhang Z., Yang R., Zhao J., Xu C., Yin W., Guan Z., Ye J., Zhang H., Li J., Kristiansen K., Nickerson M.L., Theodorescu D., Li Y., Zhang X., Li S., Wang J., Yang H., Wang J., Cai Z. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 2011; 43(9): 875-878.
  25. Schepeler T., Lamy P., Hvidberg V., Laurberg J.R., Fristrup N., Reinert T., Bartkova J., Tropia L., Bartek J., Halazonetis T.D., Pan C.C., Borre M., Dyrskj0t L., Orntoft T.F. A high resolution genomic portrait of bladder cancer: correlation between genomic aberrations and the DNA damage response. Oncogene. 2013;32:3577-3586.
  26. Weilandt M., Koch A., Rieder H., Deenen R., Schwender H., Niegisch G., Schulz W.A., Target genes of recurrent chromosomal amplification and deletion in urothelial carcinoma. Cancer Genomics Proteomics. 2014; 11: 141-154.
  27. Warrick J.I., Hovelson D.H., Amin A., Liu C.J., Cani A.K., McDaniel A.S., Yadati V., Quist M.J., Weizer A.Z., Brenner J.C., Feng F.Y., Mehra R., Grasso C.S., Tomlins S.A. Tumor evolution and progression in multifocal and paired non-invasive/invasive urothelial carcinoma. Virchows Arch. 2014; 466(3): 297-311.
  28. Hedegaard J., Thorsen K., Lund M.K., Hein A.M., Hamilton-Dutoit S.J., Vang S., Nordentoft I1, Birkenkamp-Demtroder K., Kruh0ffer M., Hager H., Knudsen B., Andersen C.L., S0rensen K.D., Pedersen J.S., Orntoft T.F., Dyrskj0t L. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS ONE. 2014; 9(5): e98187.
  29. Al-Ahmadie H.A., Iyer G., Janakiraman M., Lin O., Heguy A., Tickoo S.K., Fine S.W., Gopalan A., Chen Y.B., Balar A., Riches J., Bochner B., Dalbagni G., Bajorin D.F., Reuter V.E., Milowsky M.I., Solit D.B. Somatic mutation of Fibroblast Growth Factor Receptor-3 (FGFR3) defines a distinct morphologic subtype of high-grade urothelial carcinoma. J. Pathol. 2011;224(2):270-279.
  30. Ross J.S., Wang K., Gay L.M., Al-Rohil R.N., Nazeer T., Sheehan C.E., Jennings T.A., Otto G.A., Donahue A., He J., Palmer G., Ali S., Nahas M., Young G., Labrecque E., Frampton G., Erlich R., Curran J.A., Brennan K., Downing S.R., Yelensky R., Lipson D., Hawryluk M., Miller V.A., Stephens P.J. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carcinoma. Clin. Cancer Res. 2013;20(1):68-75.
  31. Cazier J.B., Rao S.R., McLean C.M., Walker A.K., Wright B.J., Jaeger E.E., Kartsonaki C., Marsden L., Yau C., Camps C., Kaisaki P.; Oxford-Illumina WGS500 Consortium, Taylor J., Catto J.W., Tomlinson I.P., Kiltie A.E., Hamdy F.C. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat. Commun. 2014; 5: 3756.
  32. Balbάs-Martίnez C., Rodriguez-Pinilla M., Casanova A., Dominguez O., Pisano D.G., Gomez G., Lloreta J., Lorente J.A., Malats N., Real F.X. ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One. 2013;8(5):e62483.
  33. Hurst C.D., Platt F.M., Taylor C.F., Knowles M.A. Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin. Cancer Res. 2012; 18(21): 5865-5877.
  34. Neuzillet Y., Paoletti X., Ouerhani S., Mongiat-Artus P., Soliman H., de The H., Sibony M., Denoux Y., Molinie V., Herault A., Lepage M.L., Maille P., Renou A., Vordos D., Abbou C.C., Bakkar A., Asselain B., Kourda N., El Gaaied A., Leroy K., Laplanche A., Benhamou S., Lebret T., Allory Y., Radvanyi F. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012; 7(12): e48993.
  35. Iyer G., Al-Ahmadie H., Schultz N., Hanrahan A.J., Ostrovnaya I., Balar A.V., Kim P.H., Lin O., Weinhold N., Sander C., Zabor E.C., Janakiraman M., Garcia-Grossman I.R., Heguy A., Viale A., Bochner B.H., Reuter V.E., Bajorin D.F., Milowsky M.I., Taylor B.S., Solit D.B. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 2013; 31(25): 3133-3140.
  36. Sathe A., Guerth F., Cronauer M. V., Heck M.M., Thalgott M., Gschwend J.E., Retz M., Nawroth R. Mutant PIK3CA controls DUSP1-dependent ERK1/2 activity to confer response to AKT target therapy. Brit. J. Cancer. 2014; 111(11): 2103-2113.
  37. Chell V., Balmanno K., Little A.S., Wilson M., Andrews S., Blockley L., Hampson M., Gavine P.R., Cook S.J. Tumor cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene. 2013; 32: 3059-3070.
  38. Gust K.M., McConkey D.J., Awrey S., Hegarty P.K., Qing J., Bondaruk J., Ashkenazi A., Czerniak B., Dinney C.P., Black P.C. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol. Cancer Ther. 2013; 12(7): 1245-1254.
  39. Katoh M., Nakagama H. FGF receptors: cancer biology and therapeutics. Med. Res. Rev. 2014; 34(2):280-300.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies