Extracorporeal shock wave lithotripsy: benefits, limitationsand prospects


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article provides an overview of current approaches to the treatment of urolithiasis using extracorporeal shock wave lithotripsy (ESWL). The clinical aspects of use of ESWL in patients with urolithiasis are reported; the main technical specifications of lithotripters are described; the limitations and contraindications for lithotripsy are discussed. Based on the analysis of the main barriers to successful ESWL, data on current trends in the development of this method and increase of its efficacy are presented.

Full Text

Restricted Access

About the authors

V. N Pavlov

SBEI HPE «Bashkir State Medical University» of RMH

Email: pavlov@bashgmu.ru
Department of Urology with the course IPGE

A. V Alekseev

SBEI HPE «Bashkir State Medical University» of RMH

Email: Alekseevdlt@mail.ru
PhD in Medical Sciences, Assistant Professor at the Department of Urology with the course IPGE

A. M Pushkarev

SBEI HPE «Bashkir State Medical University» of RMH

Department of Urology with the course IPGE

R. S Iskhakova

SBEI HPE «Bashkir State Medical University» of RMH

Department of Urology with the course IPGE

M. R Garipov

SBEI HPE «Bashkir State Medical University» of RMH

Department of Urology with the course IPGE

A. A Makhmut’yanova

SBEI HPE «Bashkir State Medical University» of RMH

Department of Urology with the course IPGE

References

  1. Ordon M., Urbach D., Mamdani M., Saskin R., Honey R.J., Pace K.T. The surgical management of kidney stone disease: a population based time series analysis. J. Urol. 2014;192:1450-1456.
  2. Аляев Ю.Г., Руденко В.И., Газимиев М.-С.А. Мочекаменная болезнь. Актуальные вопросы диагностики и выбора метода лечения. М.-Тверь: Триада, 2006
  3. Аляев Ю.Г., Григорян В.А., Руденко В.И. и др. Современные технологии в диагностике и лечении мочекаменной болезни. М.: Литтерра, 2007
  4. Дутов В.В. Современные аспекты лечения некоторых форм мочекаменной болезни. Дис.. докт. мед. наук. М., 2000
  5. D’Addessi A., Vittori M., Racioppi M., Pinto F., Sacco E., Bassi P. Complications of extracorporeal shock wave lithotripsy for urinary stones: to know and to manage them-a review. Scientific World Journal. 2012;2012:619820.
  6. Бешлиев Д.А., Опасности, ошибки, осложнения дистанционной литотрипсии. Их лечение и профилактика. Дис.. докт. мед. наук. М., 2003
  7. Дзеранов Н.К. Дистанционная ударно-волновая литотрипсия в лечении мочекаменной болезни. Дис.. докт. мед. наук. М., 1994
  8. Дзеранов Н.К., Лопаткин Н.А. Мочекаменная болезнь. Практические рекомендации. М.: Оверлей, 2007
  9. Rassweiler J.J., Knoll T., Kohrmann K.U., McAteer J.A. Shock Wave Technology and Application: An Update. Eur. Urol. 2011; 59(5): 784-796.
  10. Дутов В.В. Современные аспекты лечения некоторых форм мочекаменной болезни. Дис.. докт. мед. наук. М., 2000
  11. Egilmez T., Tekin M.I., Gonen M., Kilinc F., Goren R., Ozkardes H. Efficacy and safety of a new-generation shockwave lithotripsy machine in the treatment of single renal or ureteral stones: experience with 2670 patients. J. Endourol. 2007;21(1):23-27.
  12. Albala D.M., Assimos D.G., Clayman R.V., Denstedt J.D., Grasso M., Gutierrez-Aceves J., Kahn R.I., Leveillee R.J., Lingeman J.E., Macaluso J.N. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 2001;166:2072-2080.
  13. Gupta N.P., Ansari M.S., Kesarvani P., Hatt E.K., McAteer J.A., Lingeman J.E. Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int. 2005;95:1285-1288.
  14. Williams J.C., Saw K.C., Paterson R.F., Hatt E.K., McAteer J.A., Lingeman J.E. Variability of renal stone fragility in shock wave lithotripsy. Urol. 2003;61:1092-1096.
  15. Perks A.E., Schuler T.D., Lee J., Ghiculete D., Chung D.G.,.Honey R.J., Pace K.T. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urol. 2008;72:765-769.
  16. Pareek G., Armenakas N.A., Panagopoulos G., Bruno J.J., Fracchia J.A. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urol. 2005;65:33-36.
  17. Viola D., Anagnostou T., Thompson T.J. et al. Sixteen years of experience with stone management in horseshoe kidneys. Urol. Int. 2007;78: 214-218.
  18. Cleveland R.O., Anglade R., Babayan R.K. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J. Endourol. 2004; 18 :629-633.
  19. Sorensen M., Bailey M.R., Shah A.R. Quantitative Assessment of Shockwave Lithotripsy Accuracy and the Effect of Respiratory Motion. J. Endourol. 2012;26(8):1070-1074.
  20. Eichel L., Batzold P., Erturk E. Operator experience and adequate anesthesia improve treatment outcome with third-generation lithotripters. J. Endourol. 2001;15:671-673.
  21. Pishchalnikov Y.A., Neucks J.S., Von Der Haar R.J., Pishchalnikova I.V., Williams J.C., McAteer J.A. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J. Urol. 2006;176:2706-2710.
  22. Jain A., Shah T.K. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur. Urol. 2007;51:1680-1687.
  23. Boris C., Roosen A., Dickman M., Hocaoglu Y., Sandner S., Bader M., Stief C.G., Walther S. Monitoring the coupling of the lithotripter therapy head with skin during routine shock wave lithotripsy with a surveillance camera. J. Urol. 2012;187(1):157-163.
  24. Tailly G.G., Tailly-Cusse M.M. Optical coupling control: an important step toward better shockwave lithotripsy. J. Endourol. 2014;28( 11): 1368-1373.
  25. Zhou Y., Cocks F.H., Preminger G.M., Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J. Urol. 2004;172(1):349-354.
  26. Greenstein A., Matzkin H. Does the rate of extracorporeal shock wave delivery affect stone fragmentation? Urol. 1999;54:430-432.
  27. Paterson R.F., Lifshitz D.A., Lingeman J.E. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. J. Urol. 2002;168:2211-2215.
  28. Chacko J., Moore M., Sankey N., Chandhoke P.S. Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J. Urol. 2006,175(4):1370-1373.
  29. Pishchalnikov Y.A., McAteer J.A., Williams J.C., Pishchalnikova I.V., von Der Haar R.J. Why stones break better at slow shock wave rate than at fast rate: in vitro study with a research electrohydraulic lithotripter. J. Endourol. 2006;20:537-541.
  30. Connors B.A., Evan A.P., Blomgren P.M., Handa R.K., Willis L.R., Gao S., McAteer J.A., Lingeman J.E. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int. 2009;104:1004-1008.
  31. Semins M.J., Trock B.J., Matlaga B.R. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J. Urol. 2008;179:194-197.
  32. Connors B.A., Evan A.P., Blomgren P.M. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J. Endourol. 2006;20(9):607-611.
  33. Willis L.R., Evan A.P., Connors B.A., Handa R.K., Blomgren P.M., Lingeman J.E. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J. Am. Soc. Nephrol. 2006;17:663-667.
  34. Lambert E.H., Walsh R., Moreno M. W., Gupta M. Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J. Urol. 2010;183:580-584.
  35. Lalak N., Moussa S.A., Smith G., Tolley D.A. The Dornier Compact Delta lithotripter: the first 500 renal calculi. J. Endourol. 2002;16:3-7.
  36. Maloney M.E. Progressive increase of lithotripter output produces better in vivo stone comminution. J. Endourol. 2006, 20(9):603-606.
  37. Mazzucchi E. Comparison between two shock wave regimens using frequencies of 60 and 90 impulses per minute for urinary stones. Clinics (San Paulo) 2010;65(10):961-965.
  38. Sapozhnikov O.A., Maxwell A.D., MacConaghy B., Bailey M.R. A mechanistic analysis of stone fracture in lithotripsy. J. Acoust. Soc. Am. 2007;121:1190-1202.
  39. McAteer J.A., Evan A.P., Williams J.C., Lingeman J.E. Treatment protocols to reduce renal injury during shock wave lithotripsy. Curr. Opin. Urol. 2009;19:192-195.
  40. Graber S.F., Danuser H., Hochreiter W.W., Studer U.E. A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. J. Urol. 2003;169(1):54-57.
  41. Ng C.F., McLornan L., Thompson T.J., Tolley D.A. Comparison of 2 generations of piezoelectric lithotriptors using matched pair analysis. J. Urol. 2004;172(5):1887-1891.
  42. Vakalopoulos I. Development of a mathematical model to predict extracorporeal shockwave lithotripsy outcome. J. Endourol. 2009;23(6):891-897.
  43. McAteer J.A., Evan A.P. The acute and long-term adverse effects of shock wave lithotripsy. Semin. Nephrol. 2008;28(2):200-213.
  44. Cimentepe E., Eroglu M., Oztürk U. Rapid communication: renal apoptosis after shockwave application in rabbit model. J. Endourol. 2006;20(12):1091-1095.
  45. Bierkens A.F., Hendrikx A.J.M., Ezz E., Din K. The value of antibiotic prophylaxis during extracorporeal shock wave lithotripsy in the prevention of urinary tract infections in patients with urine proven sterile prior to treatment. Eur. Urol. 1997;31(1):30-35.
  46. Аляев Ю.Г., Рапопорт Л.М., Руденко В.И., Винаров А.З. Осложнения дистанционной ударно-волновой литотрипсии (ДЛТ). Профилактика и лечение. М.: Мультипринт, 2001
  47. Аляев Ю.Г., Рапопорт Л.М., Руденко В.И. Профилактика и лечение осложнений дистанционной ударно-волновой литотрипсии (ДЛТ). М.: Mark print & publisher, 2003
  48. Bergsdorf T., Thüroff S., Chaussy C. The isolated perfused kidney: an in vitro test system for evaluation of renal tissue by high-energy shockwave sources. J. Endourol. 2005;19:883-888.
  49. Zhong P., Zhou Y., Zhu S. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture. Ultrasound Med. Biol. 2002;28:661-671.
  50. Williams J.C., Jason J.F., Woodward M.A., Stonehill M.A., Evan A.P., McAteer J.A. Cell damage by lithotripter shock waves at high pressure to preclude cavitation. Ultrasound Med. Biol. 1999;25:473-479.
  51. Willis L.R., Evan A.P., Connors B.A. Shockwave lithotripsy: Dose-related effects on renal structure, hemodynamics, and tubular function. J. Endourol. 2005;19:90-101.
  52. Evan A.P., McAteer J.A., Connors B.A. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int. 2007;101:382-388.
  53. Goel M.C., Baserge N.S., Babu R.V., Sinha S., Kapoor R. Pediatric kidney: functional outcome after extracorporeal shock wave lithotripsy. J. Urol. 1996;155(6):2044-2046.
  54. Рапопорт Л.М. Профилактика и лечение осложнений дистанционной ударно-волновой литотрипсии. Дис.. докт. мед. наук. М., 1998
  55. Dhar N.B., Thornton J., Karafa M.T., Streem S.B. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J. Urol. 2004;172(6):2271-2274.
  56. Knapp P.M., Kulb T.B., Lingeman J.E. Extracorporeal shock wave lithotripsy-induced perirenal hematomas. J. Urol. 1988; 139(4): 700-703.
  57. Seitz G., Pletzer K., Neisius D., Dippel W., Gebhardt T. Pathologic-anatomic alterations in human kidneys after extracorporeal piezoelectric shock wave lithotripsy. J. Endourol. 1991;5(1):17-20.
  58. Morris J.S., Husmann D.A., Wilson W.T., Preminger G.M. Temporal effects of shock wave lithotripsy. J. Urol. 1991;145(4):881-883.
  59. Fayad A., El-Sheikh M.G., Abdelmohsen M., Abdelraouf H. Evaluation of renal function in children undergoing extracorporeal shock wave lithotripsy. J. Urol. 2010;184(3):1111-1114.
  60. Vlajkovic M., Slavkovic A., Radovanovic M., Siric Z., Stefanovic V., Perovic S. Long-term functional outcome of kidneys in children with urolithiasis after ESWL treatment. Eur. J. Pediatr. Surg. 2002; 12(2):118-123.
  61. Griffin S.J., Margaryan M., Archambaud F., Sergent-Alaoui A., Lottmann H.B. Safety of shock wave lithotripsy for treatment of pediatric urolithiasis: 20-year experience. J. Urol. 2010;183(6):2332-2336.
  62. Krambeck A.E., Gettman M.T., Rohlinger A.L., Lohse C.M., Patterson D.E., Segura J.W. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow up. J. Urol. 2006;175(5):1742-1747.
  63. Chew B.H. Twenty-year prevalence of diabetes mellitus and hypertension in patients receiving shock-wave lithotripsy for urolithiasis. BJU Int. 2011,22(4):268-274.
  64. de Cogain M., Krambeck A.E., Rule A.D. Shock wave lithotripsy and diabetes mellitus: a population-based cohort study. Urol. 2012;79(2) : 298-302.
  65. Krambeck A.E., Rule A.D., Li X., Bergstralh E.J., Bergstralh E.J., Gettman M.T., Lieske J.C. Shock wave lithotripsy is not predictive of hypertension among community stone formers at long-term follow up. J. Urol. 2011;185(1):164-169.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies