BRACHYTHERAPY NEEDLE STEERING USING INTRATISSUE REAL-TIME ULTRASOUND 3D VISUALIZATION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To explore in a model experiment the capability of the developed software for 3D- ultrasound imaging of tumors in the pelvic tissue phantom to steer a brachytherapy needle using 6-axis robotic arm. Materials and methods. The experiment employed a six-axis robotic arm with a device for moving the needle, a phantom with a tumor model and ultrasound scanner with biplane transducer. Controlled by the developed software, the robotic arm automatically inserted the needle in the phantom. At all stages of inserting the needle, its position in the phantom was continuously tracked using data obtained by the ultrasonic transducer. Results The software was developed and tested for intra-tissue ultrasound imaging to steer a brachytherapy needle using US-scanner coupled with the robotic system providing 3D tumor modeling within the pelvic tissue phantom. In the course of the operation, the program corrects the existing model using current US images considering any shifting and swelling of the prostate. Conclusion. The model experiment proved the operational capability of the proposed method of 3D tumor modeling within the pelvic tissue phantom and tracking needle movement in the phantom in real time using US scanner coupled with a robotic system for brachytherapy. Further development of the software, providing ultrasound image processing and automatically correcting the brachytherapy needle trajectory, will complete preclinical studies of a robotic arm and warrant clinical trials.

Full Text

Restricted Access

About the authors

N. A Gryaznov

Central Scientific Research and Experimental Design Institute of Robotics and Technical Cybernetics

Email: gna@rtc.ru
St. Petersburg

K. Y Senchik

Central Scientific Research and Experimental Design Institute of Robotics and Technical Cybernetics

Email: k-yurivich@bk.ru
St. Petersburg

G. S Kireeva

Central Scientific Research and Experimental Design Institute of Robotics and Technical Cybernetics

Email: galinakireyeva@mail.ru
PhD (biol.), Junior Researcher at the 6th Research Division St. Petersburg

V. V Kharlamov

Central Scientific Research and Experimental Design Institute of Robotics and Technical Cybernetics

Email: sl@ltc.ru
St. Petersburg

D. V Novitskiy

Central Scientific Research and Experimental Design Institute of Robotics and Technical Cybernetics

Email: kira_9_1@mail.ru
St. Petersburg

S. A Nikitin

Central Scientific Research and Experimental Design Institute of Robotics and Technical Cybernetics

Email: s.nikitin@rtc.ru
St. Petersburg

References

  1. Koukourakis G., Kelekis N., Armonis V. Brachytherapy for Prostate Cancer: A Systematic Review. Adv Urol. 2009; 2009. [Electronic source]. URL: http://www.hindawi.com/journals/au/2009/327945/. doi: 10.1155/2009/327945.
  2. Yan K., Podder T., Buzurovic I. Radioactive seed immobilization techniques for interstitial brachytherapy. International Journal of Computer Assisted Radiology and Surgery. 2008;3:165-171. doi: 10.1007/s11548-008-0156-2.
  3. Лопота А.В., Грязнов Н.А., Сенчик К.Ю., Харламов В.В., Никитин С.А., Киреева Г.С. Возможности использования гибких игл и способов контроля их введения в составе роботизированных комплексов для проведения процедуры брахитерапии. Урология. 2015;6: 43-47
  4. Gryaznov N.A., Senchik K.Y., Kharlamov V.V., Kireeva G.S. Robotic systems for prostate cancer brachytherapy (robot-assisted systems). Indian Journal of Science and Technology. 2015;8(29):1-6 doi: 10.17485/ijst/2015/v8i29/86845.
  5. Лопота А.В., Сенчик К.Ю., Грязнов Н.А., Харламов В.В., Киреева Г.С. Роботизированные системы для проведения брахитерапии при раке предстательной железы. Вестник хирургии им. И.И. Грекова. 2016;175(1):118-122
  6. Сенчик К.Ю., Беляев А.М., Грязнов Н.А., Булкин Р.С., Харламов В.В., Гафтон Г.И., Ширин А.С., Беспалов В.Г., Беляева О.А., Киреева Г.С. Роботизированные системы для высокоточной доставки радионуклидных микроисточников при проведении операций низкодозной брахитерапии. Вестник Национального медикохирургического центра им. Н.И. Пирогова. 2015; 10(1):84-88
  7. Phee L., Xiao D., Yuen J., Chan C.F., Ho H., Thong C.H. et al. Ultrasound guided robotic system for transperineal biopsy of the prostate. IEEE Int. Conf. Robot. Autom. 2005;2005:1315-1320. doi: 10.1109/R0B0T.2005.1570297.
  8. Podder T., Buzurovic, I., Huang, K., Yu Y. MIRAB: an image-guided multichannel robot for prostate brachytherapy. Bodine J. 2010;78(3):39-43. doi: 10.1016/j.ijrobp.2010.07.1876.
  9. Salcudean S.E., Prananta T.D., Morris W.J., Spadinger M., Spadinger I. A robotic needle guide for prostate brachytherapy. IEEE Int. Conf. Robot. Autom. 2008; 2008:2975-2981.
  10. Yu Y., Podder T.K., Zhang Y.D., Ng W.S., Misic V., Sherman J., Fuller D., Rubens D.J., Strang J.G., Brasacchio R.A., Messing E.M. Robotic system for prostate brachytherapy. Comput. Aided Surg. 2007;12:366-370.
  11. Fichtinger G., Fiene J.P., Kennedy C.W., Kronreif G., Iordachita I., Song D.Y., Burdette E.C., Kazanzides P. Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 2008;12(5):535-545.
  12. Fichtinger G., DeWeese T.L., Patriciu A., Tanacs A., Mazilu D., Anderson J.H., Masamune K., Taylor R.H., Stoianovici D. System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance. Acad. Radiol. 2002;9:60-74. doi: 10.1016/S1076-6332(03)80297-0.
  13. Sridhar A.N., Hughes-Hallet A., Mayer E.K., Pratt P.J., Edwards P.J., Yang G.Z., Darzi A.W., Vale J.A. Image-guided robotic interventions for prostate cancer. Nat. Rev. Urol. 2013;10:452-446. Doi: 10.1038/ nrurol.2013.129.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies