Application of 3D printing in urology


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of this article is to outline the role and possible applications of 3D printing in urology. At present, this technique provides the opportunity to choose the individual strategy of patient management, to conduct preoperative planning and surgical rehearsal; for medical specialists to reduce the learning curve in mastering modern complex surgical techniques, and for doctors and students to improve understanding of pathological processes in the kidney and the prostate gland.

Full Text

Restricted Access

About the authors

Yu. G Alyaev

I.M. Sechenov First MSMU of Minzdrav of Russia (Sechenov University); Research Institute for Uronephrology and Human Reproductive Health

Email: ugalyaev@mail.ru
Corr.-Member of the RAS, Dr.Med.Sci., Prof., Head of Department of Urology; Director of the Urology Clinic

E. A Bezrukov

I.M. Sechenov First MSMU of Minzdrav of Russia (Sechenov University), Research Institute of Uronephrology and Human Reproductive Health

Email: eabezrukov@rambler.ru
Dr.Med.Sci., Head of the 1st Department of the Urology Clinic, Prof. at the Department of Urology

D. N Fiev

I.M. Sechenov First MSMU of Minzdrav of Russia (Sechenov University), Research Institute of Uronephrology and Human Reproductive Health

Email: fiev@mail.ru
Dr.Med.Sci., Leading Researcher

E. S Sirota

I.M. Sechenov First MSMU of Minzdrav of Russia (Sechenov University), Research Institute of Uronephrology and Human Reproductive Health

Email: essirota@mail.ru
Ph.D., Senior Researcher

S. V Pesegov

I.M. Sechenov First MSMU of Minzdrav of Russia (Sechenov University)

Email: s_pesegov@mail.ru
Ph.D., Urologist at the Urology Clinic

I. Sh Byadretdinov

I.M. Sechenov First MSMU of Minzdrav of Russia (Sechenov University)

Email: ildarbyadretdinov@yandex.ru
Sixth Year Student

References

  1. Статистическая информация. Заболеваемость населения России в 2014 году. М., 2015 г.
  2. Rohner D., Guijarro-Martinez R., Bucher P., Hammer B. Importance of patient-specific intraoperative guides in complex maxillofacial reconstruction. J. Craniomaxillofac Surg. 2013;41(5):382-390.
  3. Zein N.N., Hanouneh I.A., Bishop P.D., Samaan M., Eghtesad B., Quintini C., Miller C., Yerian L., Klatte R. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl. 2013;19(12):1304-10. doi: 10.1002/lt.23729. Epub 2013 Oct 21.
  4. Alberti C. Three-dimensional CT and structure models. Br J. Radiol. 1980;53:261-262.
  5. Tonner H.D., Engelbrecht H. Ein neues Verfahren zur Herstellung alloplastischer Spezialimplantate fur den Becken-Teilersatz. Fortschritte der Medizin. 1979; 97(16):781-783.
  6. Hoang D., Perrault D., Stevanovic M., Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med. 2016;4(23):456 Doi: 10.21037/ atm.2016.12.18.
  7. Hull C. Apparatus for production of three-dimensional object by stereolithography. 4 575 330 A. US patent. 1986.
  8. Kim G.B., Lee S., Kim H., Yang D.H., Kim Y.H., Kyung Y.S., Kim C.S., Choi S.H., Kim B.J., Ha H., Kwon S.U., Kim N. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean J. Radiol. 2016;17:182-197.
  9. Leigh S.J., Bradley R.J., Purssell C.P., Billson D.R., Hutchins D.A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One. 2012;7:e49365.
  10. Peltola S.M., Melchels F.P.W., Grijpma D.W., Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Medю 2008;40:268-280.
  11. Rengier F., Mehndiratta A., Tengg-Kobligk von H., Zechmann C.M., Unterhinninghofen R., Kauczor H.U. 3D printing based on imaging data: review of medical applications. Giesel. Int J. CARS 2010;5:335-341.
  12. Luyk N., Namdarian B., Challacombe B. Touching the future: threedimensional printing facilitates preoperative planning, realistic simulation and enhanced precision in robotassisted laparoscopic partial nephrectomy. BJU International. 2017;119(4):510-512. Doi: 10.1111/ bju.13800.
  13. Knoedler M., Feibus A.H., Lange A., Maddox M.M., Ledet E. Thomas Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding. Silberstein Urology. 2015;85(6):1259.
  14. Silberstein J., Maddox M., Dorsey P., Feibus A., Thomas R., Lee B. Physical Models of Renal Malignancies Using Standard Crosssectional Imaging and 3-Dimensional Printers: A Pilot Study Urology. 2014;84:268-72. Doi.org/10.1016/j.urology.2014.03.042.
  15. Zheng Y.X., Yu D.F., Zhao J.G., Wu Y.L., Zheng B. 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning? J. Surg Educ. 2016;73:518-523.
  16. Komai Y., Sugimoto M., Gotohda N., Matsubara N., Kobayashi T., Sakai Y., Shiga Y., Saito N. Patient-Specific 3D Printed Kidney Designed for «4D» Surgical Navigation-a Novel Aid to Facilitate Minimally Invasive Off-Clamp Partial Nephrectomy in Complex Tumor Cases. Urology. Doi.org/doi: 10.1016/j.urology.2015.11.060.
  17. Shiga Y., Sugimoto M., Iwabuchi T., Kawano Y., Oiwa Y., Watanabe H., Hariu K., Shimbori M., Umeda K., Otsutomo T., Morikawa H., Yamamoto R. Benefit of three-dimensional printing in robotic laparoscopic renal surgery: Tangible surgical navigation using a patient-based threedimensional printed kidney Eur Urol. 2014;13(Suppl):e1124.
  18. Maddox M., Feibus A., Liu J., Wang J., Thomas R., Silberstein J. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J. Robot Surg. 2017 Jan 20. doi: 10.1007/s11701-017-0680-6. [Epub ahead of print].
  19. Knoedler М., Feibus А.Н., Lange А., Maddox М., Ledet Е., Thomas R., Silberstein J.L. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding. Urology. 2015;85(6):1259.
  20. Zhang Y., Ge H.W., Li N.C., Yu C.F., Guo H.F., Jin S.H., Liu J.S., Na Y.Q. Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J. Urol. 2016;34(4):533-37. doi: 10.1007/s00345-015-1530-7.
  21. Bernhard J.C., Isotani S., Matsugasumi T., Duddalwar V., Hung A.J., Suer E., Baco E., Satkunasivam R., Djaladat H., Metcalfe C., Hu B., Wong K., Park D., Nguyen M., Hwang D., Bazargani S. T., de Castro AJbreu A.L., Aron M., Ukimura O., Gill I.S. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 2016;34(3):337-45. doi: 10.1007/s00345-015-1632.
  22. Turney B.W. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access. J. Endourol. 2014;28(3):360-363. doi: 10.1089/end.2013.0616. Epub 2013 Dec 26.
  23. Priester A., Natarajan S., Le J.D., Garritano J., Radosavcev B., Grundfest W., Margolis D.J.A., Marks L.S., Huang J. A system for evaluating magnetic resonance imaging of prostate cancer using patient-specific 3D printed molds. Am J. Clin Exp Urol. 2014;2(2):127-135.
  24. Shin T., Ukimura O., Gill I.S. Three-dimensional Printed Model of Prostate Anatomy and Targeted Biopsy-proven Index Tumor to Facilitate Nerve-sparing Prostatectomy. Eur Urol. 2016;69(2):377-379. doi: 10.1016/j.eururo.2015.09.024.
  25. Youssef R.F., Spradling K., Yoon R., Dolan B., Chamberlin J., Okhunov Z., Clayman R., Landman /Applications of three-dimensional printing technology in urological practice. BJU Int. 2015;116(5):697-702.
  26. Wong J.Y., Pfahnl A.C. 3D printing of surgical instruments for long-duration space missions. Aviat Space Environ Med. 2014;85:758-763.
  27. Kondor S., Grant G., Liacouras P. et al. On demand additive manufacturing of a basic surgical kit. J. Med Devices. 2013;7:030916.
  28. Junco M., Okhunov Z., Yoon R., Khanipour R., Juncal S., Abedi G., Lusch A., Landman J. Development, Initial Porcine, and Cadaver Experience with Three-Dimensional Printing of Endoscopic and Laparoscopic Equipment. J. Endourol. 2015;29(1):58-62. Doi: 10.1089/ end.2014.0280.
  29. Park C.J., Kim H.W., Jeong S., Seo S., Park Y., Moon H.S., Lee J.H. Anti-Reflux Ureteral Stent with Polymeric Flap Valve Using Three-Dimensional Printing: An In Vitro Study. J. Endourol. 2015;29(8): 933-938.
  30. Martelli N., Serrano C., Brink H., Pineau J., Prognon P., Borget I., Batti S. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016; 159(6): 1485-500. Doi: 10.1016/j. surg.2015.12.017.
  31. Hoang D., Perrault D., Stevanovic M., Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med 2016;4(23):456. Doi: 10.21037/ atm.2016.12.18.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies