Molecular and cellular mechanisms of damage to renal parenchyma in renal warm ischemia


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Warm ischemia of the renal parenchyma is a forced feature of laparoscopic partial nephrectomy. It is accompanied by oxygen deprivation of the organ and followed by re-oxygenation, which can cause additional damage to the renal tissue. This damage can result in acute functional and structural disorders of individual parts of the nephron, increasing the risk for a renal dysfunction. Timely diagnosis of the dysfunction is vital for the success of the treatment. The article provides an overview of current scientific data on the mechanisms of ischemic and reperfusion injuries at the molecular-cellular level and describes the current methods of their detection. Experimental and clinical study of the molecular-cellular mechanisms of ischemic-reperfusion injury of the renal tissue made it possible, first, to determine the main targets of alteration (cytolemma, mitochondria, lysosomes), and second, to establish its consequences, among which the most important are hypoergosis, DNA damage, simultaneous activation of intracellular systems of the suicidal program and induction of electrical breakdown of membranes of target nephrocytes; thirdly, to reveal the range of possibilities for limiting the consequences of hypoxia and/or re-oxygenation, among which interference in the metabolism of purines, measures ensuring the preservation of colloid osmotic pressure inside and outside the cell and membrane stabilization, antioxidant defense and inhibition of cysteine proteinases, etc. However, despite the advances in understanding the pathogenesis of cell damage, including ischemic-hypoxic injury, the problem of intraoperative ischemia-reperfusion safety remains relevant.

Full Text

Restricted Access

About the authors

S. V Popov

St. Luke’s Clinical Hospital

Email: doc.popov@gmail.ru
Dr.Med.Sci., Prof., Urologist at the St. Luke’s Clinical Hospital, Head of the Center for Endoscopic Urology and New Technologies

R. G Guseinov

St. Luke’s Clinical Hospital

Email: rusfa@yandex.ru
Urologist

A. G Martov

A.I. Burnazyan SSC Federal Medical Biophysical Center of FMBA of Russia

Email: martovalex@mail.ru
Dr.Med.Sci., Prof., Head of Department of Urology

T. M Muratov

Akmolinsk Regional hospital №2

Email: cln-rkb@akmzdrav.kz
Urologist of the Highest Qualification Category, Head Physician

N. B Tabynbaev

Regional hospital №2, Astana

Email: kense.777@mail.ru
Dr.Med.Sci., Prof., Chairman of the Board

References

  1. Алексеев Б.Я., Нюшко К.М., Калпинский А.С. и др. Резекция S-образной перекрестно-дистопированной почки у больного почечно-клеточным раком. Онкоурология. 2012;1:94-99
  2. Shao P., Qin C., Yin C. et al. Laparoscopic Partial Nephrectomy With Segmental Renal Artery Clamping. Techniqueand Clinical Outcomes. Eur. Urol. 2011;51:849-855.
  3. Eltzschig H.K., Collard C.D. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 2004;(70):71-86.
  4. Patard J.J., Choueiri Т.К., Lechevallier E. et al. Developments in research on kidney cancer: highlights from urological and oncological congresses in 2007. Eur. Urol. Suppl. 2008;2: 494-507.
  5. Bhayani S.B., Rha K.H., Pinto P.A., Ong A.M., Allaf M.E., Trock B.J., Jarrett T.W., Kavoussi L.R. Laparoscopic partial nephrectomy: effect of warm ischemia on serum creatinine. J. Urol. 2004;172(4, Pt. 1):1264- 1266.
  6. Harmon W.J., Kavoussi L.R. and Bishoff J.T. Laparoscopic nephronsparing surgery for solid renal masses using the ultrasonic shears. Urology. 2000;56:754.
  7. Jiang M., Wei Q., Dong G., Komatsu M., Su Y., Dong Z. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 2012;82(12):1271-1283.
  8. Humphreys B.D., Czerniak S., DiRocco D.P., Hasnain W., Cheema R., Bonventre J. V. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl. Acad. Sci. U. S. A. 2011;108(22):9226-9231.
  9. Akhtar M.Z., Sutherland A., Huang H., Ploeg R.J., Pugh C.W. The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. Am. J. Transplant. 2014;14(7):1481-1487.
  10. Байбурина Г.А., Нургалеева Е.А., Башкатов С.А., Шибкова Д.З. Изменения структуры и процессов липопероксидации в почках после ишемии-реперфузии у крыс с различной чувствительностью к гипоксии. Современные проблемы науки и образования. 2015;2-1
  11. Bonventre J.V., Yang L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 2011;121(11):4210-4221.
  12. Архипов Е.В., Сигитова О.Н. Роль структурнофункциональной дестабилизации мембран нефроцитов в патогенезе прогрессирования пиелонефрита. Клиническая нефрология. 2010;6:73-76
  13. Бердичевский Б.А., Овчинников А.А., Султанбаев Р.А., Тевс Д.В. Состояние мембранодестабилизирующих процессов у пациентов с хроническим обструктивным пиелонефритом. Медицинская наука и образование Урала. 2004;1:8
  14. Eckle T., Faigle M., Grenz A., Laucher S., Thompson L.F., Eltzschig H.K. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood. 2008;111(4):2024-2035.
  15. Trifillis A.L. Kangh M.W., Crowley R.A., Trump B.F. Metabolic studies of postischemicacute renal failure in the rat. Exp. Mol. Pathol. 1984; 40:155-168.
  16. Ruegg C.E., Mandel U. Differential effects of anoxia or mitochondrial znhibitors in renal proximal straight (PST) and convoluted (PCT) tubules. Kidney Mt. 1990;37:529.
  17. Le Hir M., Angielsiu S., Dubach U.C. Properties of an ecto-5’-nucleotidase of the renal brush border. Renal Physiol. (Base!). 1985;8:321-327.
  18. Дряженков И.Г., Комлев Д.Л., Лось М.С. Факторы ишемического повреждения почки при ее резекции. Клиническая медицина. 2013;6
  19. Weinberg J.M. Adenine nucleotide metabolism by isolated kidney tubules during oxygen deprivation. Biochem. Med. Metab. Biol. 1988;39:319-329.
  20. Plagemann P.G.W., Wohlhueter R.M., Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochem. Biophys. Acta. 1998; 947:405-444.
  21. Van Waarde A., Stromski M.E., Thulin G., Gaudio K.M., Kashgarian M., Shulman R.G., Siegel N.J. Protection of the kidney against ischemic injury by inhibition of 5’-nucleotidase. Am. J. Physiol. 1989;256:298- 305.
  22. Avison M.J., Van Waarde A., Thulin G., Shulman R.G., Siegel N.J. Adenosine transport contributes to the beneficial effect of post-ischemic ATP-MgCI2. (abstract). Kidney Mt. 1990;37:476.
  23. Williamson J.R., Monck J.R. Hormone effects on cellular Ca2 fluxes. Annu. Rev. Physiol. 1989;51:107-124.
  24. Burnier M., Van Putten V.J., Schieppatl A. et al. Effect of extracellular acidosis on 45Ca uptake in isolated hypoxic proximal tubules. Am. J. Physiol. 1988;254:839-846.
  25. Noel J., Tejedor A., Vinay P. et al. BBM H-ATPase activity in the dog kidney. Modulation by substrate avaialability (abstract). Kidney Mt. 1990;37:529.
  26. Abuelo J.G. Normotensive: ischemic acute renal failure. N. Eng. J. Med. 2007;357(8):797-805.
  27. Кирпатовский В.И., Казаченко А.В., Яненко Э.К. Резистентность почки к ишемическому повреждению и клеточные механизмы адаптации. Урология. 2004;2:72-75
  28. Mason J., Welson J., Torhorst J. The contribution of vascular obstruction to the functional defect that follows renal ischemia. Kidney Int. 1987;31:65-71.
  29. Hirayama A., Nagase S., Ueda A. et al. In vivo imaging of oxidative stress in ischemia-reperfusion renal injury using electron paramagnetic resonance. Am. J. Physiol. 2005;288(3):597-603.
  30. Pasupathy S., Homer-Vanniasinkam S. Ischaemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts. Eur. J. Vasc. Endovasc. Surg. 2005;29(2):106-115.
  31. Jacobs W.R., Mandel L.I. Role of cytosolic free calcium in renal tubule damage during anoxia. (abstract). Kidney mt. 1988;33:359.
  32. Peng T.-I., M.-J. Jou. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010;1201:183-188.
  33. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 2012;298:229-317.
  34. Митциев А.К. Изменение активности перекисного окисления липидов как механизм развития патологии почек при действии тяжелых металлов. Патологическая физиология и экспериментальная терапия. 2015;2:72-76
  35. Szijártó A. Free radicals and hepatic ischemia-reperfusion. Orv. Hetil. 2015;156(47):1904-1907.
  36. Зенков Н.К., Ланкин В.З., Меньщикова Е.Б. Окислительный стресс. Биохимический и патофизиологический аспекты. М.: Наука. Интерпериодика, 2001. 340 с.
  37. Cutrin J.C., Zingaro B.,Camandola S. Contribution of gamma glutamyltranspeptidase to oxidative damage of ischemic rat kidney. Kidney Int. 2000;57(2):526-533. Free radicals in biological systems.
  38. Владимиров Ю.А. Свободные радикалы в биологических системах. Соросовский образовательный журнал. 2000;12:13-19.
  39. Gamelin L.M., Zager R.A. Evidence against oxidant injury as a critical mediator of postischemic acute renal failure. Am J. Physiol. 1988;255(3 Pt 2):F450-60.
  40. Blomgren K., Nilsson E., Karlsson J.O. Calpain and calpastatinlevels in different organs of the rabbit. Comp. Biochem. Physiol. [B]. 1989;93:403-407.
  41. Yoshimura N., Hatanaka M., Kitahara A., Kavaguchi N., Murachi T. Intracellular localization of two distinct Ca2-proteases (calpain I. and calpain II) as demonstrated by using discriminative antibodies. J. Biol. Chem. 1984;259:9847-9852.
  42. Goncalves-Primo A., Mourāo T.B., Andrade-Oliveira V., Campos E.F., Medina-Pestana J.O., Tedesco-Silva H., Gerbase-DeLima M. Investigation of apoptosis-related gene expression levels in preimplantation biopsies as predictors of delayed kidney graft function. Transplantation. 2014;97(12):1260-1265.
  43. Thompson R.H., Frank I., Lohse G.M. et al. The impact of ischemia time during open nephron sparing surgery on solitary kidneys: a multi-institutional study. J. Urol. 2007;177(2):471-476.
  44. Lieberthal W., Levine J.S. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am. J. Physiol. Am J. Physiol. 1996;271(3 Pt 2):F477-88.
  45. Lieberthal W., Menza S.A., Levine J.S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am. J. Physiol. 1998;274(43):315-327.
  46. Radford I.R. The level of induced DNA double-strand breakage correlates with cell killing after x-irradiation.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1985;48:45-54.
  47. Kaushal G.P., Basnakian A.G., Shah S.V. Apoptotic pathways in ischemic acute renal failure. Review. Kidney Int. 2004;66(2):500-506.
  48. Thornberry N.A., Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312-1316.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies