The incidence of AZF deletions, CFTR mutations and long alleles of the ar CAG repeats during the primary laboratory diagnostics in a heterogeneous group of infertily men


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim: microdeletions in the AZF region ofY-chromosome, compound heterozygotes of severe and mild CFTR mutations, and long CAG-repeats in the androgen receptor gene (AR) as marker of predisposition are frequently studied as genetic causes of male infertility. A simultaneously testing of the panel including biochemical, immunological, cyto- and molecular genetic markers is often performed during the complex laboratory diagnostics in infertile men. The aim of our work was to identify molecular genetic alterations, which are advisable for simultaneously testing in a man with currently uncertain form of infertility, to increase the informativeness of laboratory diagnostics. Materials and methods: a retrospective study of 885 infertile men was conducted. AZF deletions were determined by multiplex PCR using 10 STS-markers (sY83, sY84, sY86, sY127, sY134, sY143, sY152, sY157, sY254, sY255) and two control loci SRY and AMEL with detection in polyacrylamide gel. Mutations in the CFTR gene (F508del, CFTRdel2.3(21kb), I507del, 1677delTA, 2143delT, 2184insA, 394delTT, W1282X, G542X, N1303K, R334W and 5T) were detected by PCR and SNaPshot. For determination of length of the AR CAG-repeat a fragment analysis of fluorescently labeled PCR products on the 3500xl capillary sequencer was performed. Results: AZF deletions were detected in 8.2% of cases. The largest number of deletions was found in the AZFc subregion (58.9%), while a frequency of deletion in AZFa, AZFb or combined deletions of two and three subregions was 5.5%, 12.3% and 23.3%, respectively. Heterozygous carriage of severe CFTR mutations was detected in 4.7% patients. The most frequent mutation was F508del (83.3%), followed by CFTRdel21kb (7.1%) and W1282X (4.8%). The frequency of the mild splicing 5T mutation was 5.3%, and its incidence was significantly higher than in the previously published control group (p=0.002). AR genotyping revealed that the most prevailing allele was 21 (CAG) (21.5%). Long alleles with 27 or more CAG-trinucleotides were identified in 7.5% of the tested cases. In addition, 7 CAG heterozygotes with Kleinfelter syndrome were found. Conclusion: during primary complex laboratory diagnostics in a heterogeneous group of infertile men, it is advisable to detect AZF deletions and the most frequent CFTR mutations, including F508del, CFTRdel21kb, 1677delTA, 2143delT, W1282X and 5T. The more comprehensive analysis of CFTR mutations is justified only in patients with verified obstructive infertility. Sequencing of panels associated with infertility genes using NGS technology is promising.

Full Text

Restricted Access

About the authors

D. S Mikhaylenko

I.M. Sechenov First Moscow State Medical University (Sechenov University); N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center; Research Centre for Medical Genetics

Email: dimserg@mail.ru

I. Y Sobol

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: sobol.lux@yandex.ru

N. Y Safronova

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: nisa55@mail.ru

O. A Simonova

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: simonova_o.a@mail.ru

E. A Efremov

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: konfandrology@rambler.ru

G. D Efremov

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: efremov.gen@yandex.ru

B. Y Alekseev

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: byalekseev@mail.ru

A. D Kaprin

N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologioal Center

Email: contact@nmicr.ru

M. V Nemtsova

I.M. Sechenov First Moscow State Medical University (Sechenov University); Research Centre for Medical Genetics

Email: nemtsova_m_v@mail.ru

References

  1. Чалый М.Е., Ахвледиани Н.Д., Харчилава Р.Р. Мужское бесплодие. Урология; 2017, 2-s2: 4-19). Doi: 10.18565/ urol.2017.2-supplement.4-19.
  2. Krausz C., Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369-384. doi: 10.1038/s41585-018-0003-3.
  3. Colaco S., Modi D. Genetics of the human Y. chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16(1):14. doi: 10.1186/s12958-018-0330-5.
  4. Souza D.A., Faucz F.R., Pereira-Ferrari L. et al. Congenital bilateral absence of the vas deferens as an atypical form of cystic fibrosis: reproductive implications and genetic counseling. Andrology. 2018;6(1):127-135. doi: 10.1111/andr.12450.
  5. Никифорова А.И., Абрамов Д.Д., Зобкова Г.Ю. и др. Определение мутаций гена CFTR у детей с муковисцидозом. Вестник РГМУ. 2018;3:35-41). doi: 10.24075/vrgmu.2018.037.
  6. Черных В.Б., Степанова А.А., Бескоровайная Т.С. и др. Частота и спектр мутаций и IVS8-T полиморфизма гена CFTR среди российских мужчин с бесплодием. Генетика. 2010;46(6):844-852
  7. Gottlieb B., Lombroso R., Beitel L.K., Trifiro M.A. Molecular pathology of the androgen receptor in male infertility. Reprod Biomed Online. 2005;10(1):42-48.
  8. Flannigan R., Schlegel P.N. Genetic diagnostics of male infertility in clinical practice. Best Pract Res Clin Obstet Gynaecol. 2017;44:26-37. doi: 10.1016/j.bpobgyn.2017.05.002.
  9. Винник Ю.Ю., Борисов В.В. Диагностика мужского бесплодия: современное состояние проблемы. Клиническая лекция. Consilium Medicum. 2017;19(7):65-69). doi: 10.26442/2075-1753_19.7.65-69.
  10. Liu X.G., Hu H.Y., Guo Y.H., Sun Y.P. Correlation between Y. chromosome microdeletion and male infertility. Genet Mol Res. 2016;15(2):gmr.15028426. doi: 10.4238/gmr.15028426.
  11. Aксельрод Э.В., Миронов К.О., Михайленко Д.С. и др. Разработка и апробация методики на основе мультиплексной полимеразной цепной реакции в режиме реального времени для определения клинически значимых микроделеций в Y-хромосоме. Клиническая лабораторная диагностика. 2018;63(2):124-128). doi: 10.18821/0869-2084-2018-63-2-124-128.
  12. Абрамов Д.Д., Кадочникова В.В., Якимова Е.Г. и др. Высокая частота носительства в Российской Федерации мутаций гена CFTR, ассоциированных с муковисцидозом, и мутаций гена РАН, ассоциированных с фенилкетонурией. Вестник РГМУ. 2015;4:32-35
  13. Yang X., Sun Q., Yuan P. et al. Novel mutations and polymorphisms in the CFTR gene associated with three subtypes of congenital absence of vas deferens. Fertil Steril. 2015; 104(5): 1268-75.e 1 -2. Doi: 10.1016/j. fertnstert.2015.07.1143.
  14. Gelfi C., Perego M., Righetti P.G. et al. Rapid capillary zone electrophoresis in isoelectric histidine buffer: high resolution of the poly-T tract allelic variants in intron 8 of the CFTR gene. Clin Chem. 1998;44(5):906-913.
  15. Соловьева Е.В., Татару Д.А., Преда О.Г. и др. Мутации гена CFTR у мужчин с бесплодием. Медицинская генетика. 2018; 17(5):28-38). doi: 10.25557/2073-7998.2018.05.28-38.
  16. Михайленко Д.С., Бабенко О.В., Кириллова Е.А. и др. Комплексный молекулярногенетический анализ микроделеций области AZF, мутаций гена CFTR и длины CAG-повтора гена AR у мужчин с бесплодием. Проблемы репродукции. 2005;11(6):52-55
  17. Черных В.Б., Руднева С.А., Сорокина Т.М. и др. Влияние CAG-полиморфизма гена андрогенового рецептора (AR) на сперматогенез у мужчин с бесплодием. Андрология и генитальная хирургия. 2015;16(4):55-61). doi: 10.17650/2070-9781-2015-16-4-55-61.
  18. Xiao F., Lan A., Lin Z. et al. Impact of CAG repeat length in the androgen receptor gene on male infertility - a meta-analysis. Reprod BioMed Online. 2016;1-11. doi: 10.1016/j.rbmo.2016.03.012.
  19. Quaynor S.D., Bosley M.E., Duckworth C.G. et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol. 2016;437:86-96. doi: 10.1016/j.mce.2016.08.007.
  20. Robay A., Abbasi S., Akil A. et al. A systematic review on the genetics of male infertility in the era of next-generation sequencing. Arab J. Urol. 2018;16:53-64. doi: 10.1016/j.aju.2017.12.003.
  21. Черных В.Б., Яманди Т.А., Сафина Н.Ю. Новые молекулярные технологии в диагностике генетических причин мужского бесплодия. Андрология и генитальная хирургия. 2017;18(1):10-22). doi: 10.17650/2070-9781-2017-18-1-10-22.
  22. Gunes S., Arslan M.A., Hekim G.N., Asci R. The role of epigenetics in idiopathic male infertility. J. Assist Reprod Genet. 2016;33(5):553-569. doi: 10.1007/s10815-016-0682-8.
  23. Santi D., De Vincentis S., Magnani E., Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5(4):695-703. doi: 10.1111/andr.12379.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies