IMPACT OF PD-L1 STATUS ON THE LONG-TERM OUTCOMES OF RADICAL TREATMENT OF PATIENTS WITH PROSTATE CANCER


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A wide range of variables are associated with poor long-term outcomes of radical treatment in patients with prostate cancer (PCa). Expression of the programmed death-1 ligand 1 (PD-L1) in tumor might be a potential novel marker for PCa. Aim: to evaluate the influence of PD-L1 expression status in tumor cells on long-term results of radical treatment in patients with PCa. Materials and methods: a total of 45 patients with pathologically-proven PCa who undergone radical treatment and followed at N.N. Blokhin National Medical Research Center of Oncology were retrospectively analyzed. In all cases PD-L1 expression in tumor cells was evaluated by immunohistochemical studies of paraffin block sections obtained under direct control of pathologist. Positive expression of PD-L1(+) was defined as expression level in tumor cells ≥ 1%, while hyperexpression was diagnosed when expression level L1 ≥ 5%. Results: PD-L1 expression and hyperexpression in tumor cells were identified in 8 (17.8%) and 6 (13.3%) cases. Median metastasis-free survival in patients with positive PD-L1 expression was 48.918 months (95% CI 42.523-55.313) and was less than in patients with negative PD-L1 expression (68.033 months, 95% CI 48.242- 87.824, p=0.090). Cancer-specific survival in patients with negative PD-L1 expression was significantly longer compared to patients with positive expression (p=0.05) and hyperexpression (p=0.024) of PD-L1 in tumor cells. Multivariate Cox analysis confirmed independent predictive value of positive expression and hyperexpression of PD-L1 in tumor cells for metastasis-free survival (HR 3.461, 95% CI 1.171-10.228, p=0.025, and HR 3.916, 95% CI 1.129-13.591, p=0.032) and cancer-specific survival (HR 7.65, 95% CI 0.69-84.51, p=0.097, and HR 9.73, 95% CI 0.87-108.78, p=0.065). Conclusion: According to our study and published data, positive PD-L1 expression in tumor cells is associated with poor prognosis of PCa. Given the lack of association of PD-L1 expression in tumor cells with the routine clinical and pathological characteristics of the disease, it seems reasonable to include the status of PD-L1 expression in the current predictive nomograms for patients with PCa. The results may indicate the potential benefits of developing personalized approaches to PCa treatment, particularly with targeting a PD-L1/PD-1 signaling pathway in tumor cells.

Full Text

Restricted Access

About the authors

V. B Matveev

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

corresponding member of RAS, MD, professor, Deputy Director on scientific and innovative work and Head of the Department of Urology Moscow, Russia

A. A Kirichek

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: akirdoctor@gmail.com
Ph.D. student at the Department of Urology Moscow, Russia

V. M Safronova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

researcher at the Laboratory ofClinical Oncogenetics Moscow, Russia

K. O Khafizov

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

fellow at the Department of Urology Moscow, Russia

M. G Filippova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Ph.D., senior researcher at the Laboratory of Clinical Oncogenetics Moscow, Russia

L. N Lyubchenko

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

MD, Head of the Laboratory of Clinical Oncogenetics Moscow, Russia

References

  1. Злокачественные новообразованияв России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена -филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2018. 250 с.
  2. (Ахвердиева Г.И., Санай Э.Б., Панов В.О., и соавт. Роль мультипараметрической МРТ в выявлении и локализации раннего рака предстательной железы. Онкоурология. 2013;9(4):25-36. https://doi.org/10.17650/1726-9776-2013-9-4-25-36.
  3. Rasner P.L., Brodetsky B.M., Pushkar D.Yu. Magnetic resonance imaging in the diagnosis of prostate cancer. Pharmateca. 2016;S1:35-39. Russian (Раснер П.И., Бродецкий Б.М., Пушкарь Д.Ю. Магнито-резонансная томография в диагностике рака предстательной железы. Фарматека. 2016;S1:35-39).
  4. Носов Д. А., Гладков О. А., Королева И. А. и соавт. Практические рекомендации по лекарственному лечению рака предстательной железы. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. 2018;8:458-470). doi: 10.18027/2224-5057-2018-8-3s2-458-470.
  5. Mottet N., Bellmunt J., Bolla M., et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618-629. DOI: 10.1016/j. eururo.2016.08.003. PMID: 27568654.
  6. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer Version 4.2018 - August 15, 2018. Available at https://www.nccn.org/professionals/ physician_gls/pdf/prostate
  7. D’Amico A.V., Whittington R., Malkowicz S.B. et al. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. J Urol 2001 ; 166(6):2185-88. doi: 10.1200/JCO.1999.17.1.168 PMID: 11696732.
  8. Gnanapraqasam V.J., Lophatananon A., Wright K.A., et al. Improving clinical risk stratification at diagnosis in primary prostate cancer: a prognostic modelling study. PLoS Med. 2016;13(8):e1002063. doi: 10.1371/journal. pmed.1002063. PMID: 27483464.
  9. D’Amico A.V., Whittington R., Malkowicz S.B. et al. Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era. Cancer. 2002;95(2):281-286. doi: 10.1002/cncr.10657. PMID: 12124827.
  10. Cooperberg M.R., Pasta D.J., Elkin E.P. et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol 2005;173(6):1938-1942. doi: 10.1097/01.ju.0000158155.33890.e7 PMID: 15879786.
  11. Muralidhar V., Chen M.H., Reznor G., et al. Definition and validation of “favorable high-risk prostate cancer”: implication for personalizing treatment of radiation - managed patients. Int J Radiat Oncol Biol Phys. 2015;93(4):828-835. doi: 10.1016/j.ijrobp.2015.07.2281. PMID: 26530751.
  12. Zumsteg Z.S., Zelefsky M.J., Woo K.M., et al. Unification of favourable intermediate-, unfavourable intermediate-, and very high-risk stratification criteria for prostate cancer. BJU Int. 2017;120(5B):E87-E95. Doi: 10.1111/ bju.13903. PMID: 28464446.
  13. Dinh K.T., Muralidhar V., Mahal B.A., et al. Occult high-risk disease in clinically low-risk prostate cancer with ≥ 50% positive biopsy cores: should national guidelines stop calling them low risk? Urology 2016;87:125-132. doi: 10.1016/j.urology.2015.08.026. PMID: 26391387.
  14. Park Y.H., Kim Y., Yu H. et al. Is lymphovascular invasion a powerful predictor for biochemical recurrence in pT3 N0 prostatecancer? Results from the K-CaP database. Sci Rep 2016;6:25419. doi: 10.1038/srep25419. PMID: 27146602.
  15. Saeter T., Vlatkovic L., Waaler G., et al. Combining lymphovascular invasion with reactive stromal grade predicts prostate cancer mortality. Prostate 2016;76(12):1088-1094. doi: 10.1002/pros.23192. PMID: 27271973
  16. Liu H., Zhou H., Yan L., et al. Prognostic significance ofsix clinicopathological features for biochemical recurrence after radical prostatectomy: a systematic review and meta-analysis. Oncotarget. 2017;9(63) :32238-32249. doi: 10.18632/oncotarget.22459. PMID: 30181813.
  17. Peng L.C., Naranq A.K., Gergis C., et al. Effects of perineural invasion on biochemical recurrence and prostate cancer-specific survival in patients treated with definitve external beam radiotherapy. Urol Oncol 2018;36(6):309.e7-309.e14. doi: 10.1016/j.urolonc.2018.02.008. PMID: 29551548.
  18. Trudel D, Downes MR, Sykes J, et al. Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. Eur J Cancer. 2014;50:1610-1616. doi: 10.1016/j.ejca.2014.03.009. PMID: 24703897.
  19. Kweldam CF, Wildhagen MF, Steyerberg EW, et al. Cribriform growth is highly predictive for postoperative metastasis and disease-specific death in Gleason score 7 prostate cancer. Mod Pathol. 2015;28:457-464. doi: 10.1038/modpathol.2014.116. PMID: 25189638.
  20. Tretiakova M.S., Wei W., Boyer H.D., et al. Prognostic value of Ki67 in localized prostate carcinoma: a multi-institutional study of >1000 prostatectomies. Prostate Cancer Prostatic Dis. 2016;19(3):264-270. doi: 10.1038/pcan.2016.12. PMID: 27136741.
  21. Heck M., Retz M., Bandur M., et al. PD38-09 Molecular lymph node analysis provides superior prognostic information in prostate cancer patients undergoing radical prostatectomy and extended pelvic lymph node dissection in comparison with standard histopathology. J Urol 2018;199(4):e739-740. Available at: https://doi.org/10.1016/jjuro.2018.02.1756
  22. Castro E., Goh C., Leongamornlert D., et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localized prostate cancer. Eur Urol. 2015;68(2):186-193. Doi: 10.1016/j. eururo.2014.10.022. PMID: 25454609.
  23. Матвеев В.Б., Киричек А.А., Савинкова А.В., Хачатурян А.В., Головина Д.А., Любченко Л.Н. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология. 2018;14(4):53- 67). https://doi.org/10.17650/1726-9776-2018-14-4-53-67
  24. Koqanemaru S., Inoshita N., Miura Y., et al. Prognostic value of programmed death-ligand 1 expression in patients with stage III colorectal cancer. Cancer Sci. 2017;108(5):853-858. doi: 10.1111/cas.13229.
  25. Tsang J.Y., Au W.L., Lo K.Y., et al. PD-L1 expression and tumor infiltrating PD-1+ lymphocytes associated with outcome in HER2+ breast cancer patients. Breast Cancer Res Treat 2017;162(1):19-30. Doi: 10.1007/ s10549-016-4095-2. PMID: 28058578.
  26. Zhuan-Sun Y., Huang F., Feng M., et al. Prognostic value of PD-L1 overexpression for pancreatic cancer: evidence from a meta-analysis. Onco Targets Ther. 2017;10:5005-5012. doi: 10.2147/OTT.S146383. PMID: 29081663.
  27. Карпенко Т.Д., Козлов Н.А., Любченко Л.Н. и соавт. Анализ экспрессии белка PD-L1 в клетках злокачественной мезотелиомы плевры. Российский онкологический журнал. 2018;23(1):4-9. doi: 10.18821/1028-9984-2018-23-1-4-9.
  28. Zhang M., Wang D., Sun Q., et al. Prognostic significance of PD-L1 expression and 18F-FDG PET/CT in surgical pulmonary squamous cell carcinoma. Oncotarget 2017;8(31):516305-1640. Doi: 10.18632/ oncotarget.18257. PMID: 28881674.
  29. Li J., Wang P., Xu Y. Prognostic value of programmed cell death ligand 1 expression in patients with head and neck cancer: a systematic review and meta-analysis. PLoS One. 2017;12(6):e0179536. doi: 10.1371/journal. pone.0179536. PMID: 28604812.
  30. Chang H., Jung W., Kim A., et al. Expression and prognostic signifance of programmed death protein 1 and programed death ligand-1, and cytotoxic T lymphocyte-associated molecule-4 in hepatocellular carcinoma. APMIS. 2017;125(8):690-698. doi: 10.1111/apm.12703. PMID: 28493410.
  31. Zhang M., Dong Y., Liu H., et al. The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients. Sci Rep. 2016;6:37933. Doi: 10.1038/ screp37933. PMID: 27892511.
  32. Calagua C., Russo J., Sun Y., et al. Expression of PD-L1 in Hormone-naïve and Treated Prostate Cancer Patients Receiving Neoadjuvant Abiraterone Acetate plus Prednisone and Leuprolide. Clin Cancer Res 2017; 23(22):6812-6822. doi: 10.1158/1078-0432.CCR-17-0807. PMID: 28893901.
  33. Baas W., Gershburg S., Dynda D., et al. Immune characterization of the programmed death receptor pathway in high risk prostate cancer. Clin Genitourin Cancer. 2017;15(5):577-581. doi: 10.1016/j.clgc.2017.04.002. PMID: 28461179.
  34. Martin A.M., Nirschl T.R., Nirschl C.J., et al. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate Cancer Prostatic Dis 2015;18(4):325-332. doi: 10.1039/pcan.2015.39. PMID: 26260996.
  35. Gevensleben H., Dietrich D., Golletz C., et al. The Immune Checkpoint Regulator PD-L1 Is Highly Expressed in Aggressive Primary Prostate Cancer. Clin Cancer Res, American Association for Cancer Research, 2016;22(8):1969-1977. doi: 10.1158/1078-0432.CCR-15-2042. PMID: 26573597.
  36. Kataoka K., Shiraishi Y., Takeda Y., et al. Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 2016;534:402-406. doi: 10.1038/nature18294. PMID: 27281199
  37. Topalian S.L., Drake C.G., Pardoll D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015;27(4):450-461. doi: 10.1016/j.cceli.2015.03.001. PMID: 25858804.
  38. Ribas A., Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med 2016;213(13):2835-2840. doi: 10.1084/jem.20161462. PMID: 279036404.
  39. Haffner M.C., Guner G., Taheri D., et al. Comprehensive evaluation of PD-L1 expression in primary and metastatic prostate cancer, The American Journal of Pathology. 2018;188(6):1478-1485. Doi: 10.1016/j. ajpath.2018.02.014. PMID: 29577933.
  40. Ness N., Andersen S., Khanehkenari M.R., et al. The prognostic role of immune checkpoint markers programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) in a large, multicenter prostate cancer cohort. Oncotarget. 2017;8(16):26789-26801. Doi: 10.18632/ oncotarget.15817. PMID: 28460462.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies