Results of analysis of the structural and functional state of the kidneys by the method of mathematical processing of contrast-enhancing MD-CT data in patients with urolithiasis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction and Objectives: to date there have been several hypotheses on the causes of kidney stone formation. Compromised intrarenal blood flow might play one of major roles in stone formation. Advances in software and 3D technologies have unveiled the nature of contrast medium flow in the intrarenal structures. Mathematical analysis and 3D rendering of computed tomography (CT) scans was utilized for inrarenal contrast medium flow assessment in patients with stone kidney disease. This study aimed at assessing split glomerular filtration rate (sGFR) in patients at the initial stage of stone kidney disease (SKD). sGFR was measured by means of mathematical analysis of 3D rendering abdominal contrast enhanced CT scans. As well as that, possible correlations between irregular inrarenal contrast medium flow and causes of stone formation were considered. Materials and Methods: 23 patients of both sexes with stone kidney disease (SKD) were recruited. They underwent US/Dopler investigation of the kidneys and the bladder, plain X-ray, histopathological evaluation of the tissues (those patients who were operated on), spectroscopic analysis of the stone(s). Mathematical analysis of 3D rendering of CT scans was utilized for sGFR assessment (sGFR reference value: 0,55% of contrast medium per second). Inclusion criteria are as follows: 1) newly diagnosed SKD; 2) stone size less than 1,5-2,0 cm 3) stones that do not block urine flow 4) non-operated young patients; 5) patients free of comorbidities. Inclusion criteria were set to mitigate the effects of other factors that might influence on intrarenal blood flow and conduct the study per se. Results: Mathematical analysis of 3D rendering of CT scans allowed to elucidate changes in sGFR in 22 (95,6%) patients out of23. HypErfiltration (hyperF) was detected in 10 (43,5%) patients, hypOfiltration (hypoF) was detected in 11(47,8%) patients. sGFR values were statistically significantly different in these groups both on the left (p=0,000142) and on the right (p=0,00068). No significant gender differences were observed (hypoF group aged 25-67 years with the mean age of 43,5 years; hyperF group aged 17-57 years with the mean age of 39 years (p=0,563). Ultrasound Doppler renal resistive index in renal arteries was within the normal range in both groups with no statistically significant difference between the groups. However, 1 patient demonstrated no sGFR changes. Another patient had hyporfiltration on the left (0,48%) and hyperfiltration on the right (0,62%) Conclusions: sGFR alterations (hypo- or hyperfiltration) were detected in the majority of the patients with SKD (95,6%). This in turn might be suggestive of compromised intrarenal blood flow. Further studies are needed to elucidate the optimal management of these patients.

Full Text

Restricted Access

About the authors

D. N Fiev

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: fiev@mail.ru

S. B Khokhalchev

FGAOU VO I.M. Sechenov First Moscow State Medical University

V. V Borisov

FGAOU VO I.M. Sechenov First Moscow State Medical University

V. S Saenko

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: Saenko_vs@mail.ru

Yu. L Demidko

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: demidko1@mail.ru

M. M Chernenlyi

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: mickie.blackie@gmail.com

A. V Proskura

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: proskura777@yandex.ru

K. B Puzakov

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: mrictdoc@mail.ru

E. V Lartcova

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: ekaterina_larcova@inbox.ru

N. V Potoldykova

FGAOU VO I.M. Sechenov First Moscow State Medical University

G. Sh Inoyatov

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: inoyat@yandex.ru

Yu. G. Alyaev

FGAOU VO I.M. Sechenov First Moscow State Medical University

References

  1. Stoller M.L., Low R.K., Shami G.S., McCormick V.D., Kerschmann R.L. High resolution radiography of cadaveric kidneys: unraveling themystery of Randall’s plaque formation. J Urol. 1996;156(4):1263-1266.
  2. Carr R.J. A new theory of the formation of renal calculi. Brit J Urol 1954;26:105.
  3. Stoller V.L., Meng M.V., Abrahams H.M., Kane J.P. The primary stone event; a new hypothesis involving a vascular etiology. J Urol 2004; 171:1920-1924.
  4. Kramer G., Klingler H.C., Steiner G.E. Role of bacteria in the development of kidney stones. Curr. Opin. Urol. 2000;10(1):35-38.
  5. Martel J., Wu C.Y., Young J.D. Nanomedicine (Lond). 2016 Aug 8. Translocation of mineralo-organic nanoparticles from blood to urine: a new mechanism for the formation of kidney stones?
  6. Kidney stones Nature Reviews Disease Primers 2, Article number: 16008 (2016) doi: 10.1038/nrdp.2016.8; Haggitt, R. C. & Pitcock, J. A. Renal medullary calcifications: a light and electron microscopic study. J. Urol. 1971;106:342-347.
  7. Brown C.M., Ackermann D.K., Purich D.L. EQUIL93: a tool for experimental and clinical urolithiasis. Urol. Res. 22, 119-126 (1994); Robertson, W.G., Peacock M.&Nordin B.E. Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin. Sci. 1971;40:365-364.
  8. Khan S.R., Hackett R.L. Retention of calcium oxalate crystals in renal tubules. Scanning Microsc. 1991;5:707-701.
  9. Pytel Y.A., Borisov V. V, Simonov V. A. Human Physiology. Urinary tract. M., High school. 1986. p. 99. Russian (Пытель Ю.А., Борисов В.В., Симонов В.А Физиология человека. Мочевые пути. М., Высшая школа. 1986. С. 99).
  10. Brown C.M., Ackermann D.K., Purich D.L. EQUIL93: a tool for experimental and clinical urolithiasis. Urol. Res. 1994;22:119-126.
  11. Robertson W.G. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall’s plugs and calcium oxalate crystalluria in a computer model of renal function. Urolithiasis. 2015;43(Suppl. 1): 93-107.
  12. Asplin J.R., Mandel N.S., Coe F.L. Evidence of calcium phosphate supersaturation in the loop of Henle. Am. J. Physiol. 1996;270:F604-613.
  13. Finlayson B., Reid F. The expectation of free and fixed particles in urinary stone disease. Invest. Urol. 1978;15, 442-448.
  14. Helck A., Schonermarck U., Habicht A. et al. Determination of split renal function using dynamic CT-angiography: preliminary results. PloS one. 2014; 9: e91774.
  15. Summerlin A.L., Lockhart M.E., Strang A.M. et al. Determination of split renal function by 3D reconstruction of CT angiograms: a comparison with gamma camera renography. AJR Am J Roentgenol. 2008;191:1552-1558.
  16. Patankar K., Low R.S., Blakeway D. et al. Comparison of computer tomographic volumetry versus nuclear split renal function to determine residual renal function after living kidney donation. Acta radiologica (Stockholm, Sweden : 1987). 2014; 55: 753-760.
  17. Barbas A.S., Li Y., Zair M. et al. CT volumetry is superior to nuclear renography for prediction of residual kidney function in living donors. Clinical transplantation. 2016;30:1028-1035.
  18. Mitsui Y., Sadahira T. The assessment of renal cortex and parenchymal volume using automated CT volumetry for predicting renal function after donor nephrectomy. 2018;22:453-458.
  19. Houbois C., Haneder S., Merkt M. et al. Can computed tomography volumetry of the renal cortex replace MAG3-scintigraphy in all patients for determining split renal function? Eur J Radiol. 2018;103:105-111.
  20. You S., Ma X., Zhang C. et al. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method. 2018;28:1077-1084.
  21. Rohrschneider W.K., Hoffend J., Becker K. et al. Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatric radiology. 2000;30:511-522.
  22. Pedersen M., Shi Y., Anderson P. et al. Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magnetic resonance in medicine. 2004;51:510-517.
  23. Rohrschneider W.K., Haufe S., Wiesel M. et al. Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology. 2002;224:683-694.
  24. Аляев Ю.Г., Дзеранов Н.К., Хохлачев С.Б., Борисов В.В. Фиев Д.Н., Демидко Ю.Л., Проскура А.В., Юрова М.В. Новый метод оценки раздельной функции почек на основании мультиспиральной компьютерной томографии с контрастированием. Урология. 2018;2:26
  25. Himmelfarb J., Ikizler T. Chronic Kidney Disease, Dialysis, and Transplantation. A Companion to Brenner and Rector’s The Kidney. Fourth edition ed.: Elsevie, 2019
  26. Мудрая И.С., Кирпатовский В.И. Нарушения уродинамики и сократительной функции верхних мочевыводящих путей при урологических заболеваниях и методы их диагностики. Урология. 2003;3:66-71
  27. Frakiaer J., Djurhuus J.C. Obstructive nephropathy: an upddate of the experimental research. Urol. Res. 1999;27(11):29-39.
  28. Docherty N.G., O’ Sullivan O. E., Healy D. A. et al. Evidence the inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am. J. Physiol. Renal Physiol. 2006;290:F4-F13.
  29. Хоффер М. Цветовая дуплексная сонография. Практическое руководство. М.: Мед. Инт. 2007. 108 с

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies